metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(pyrimidin-2-ylamino)pyrimidin­ium] hexa­molybdate

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: jdchen@cycu.edu.tw

(Received 24 October 2007; accepted 24 November 2007; online 6 December 2007)

The title compound, (C8H8N5)2[Mo6O19], was prepared by reaction of Mo(CO)6 and dipyrimidylamine in refluxing toluene. The hexa­nuclear polyoxomolybdate anions lie on centres of inversion. Each 2-(pyrimidin-2-ylamino)pyrimidinium cation forms an intra­molecular N—H⋯N hydrogen bond and the cations are linked through self-complementary pairs of N—H⋯N hydrogen bonds into dimers across centres of inversion. The cations and anions are inter­linked through C—H⋯O contacts.

Related literature

For related literature, see: Shivaiah (2006[Shivaiah, V. (2006). Inorg. Chem. Commun. 9, 1191-1194.]); Bridgeman & Cavigliasso (2002[Bridgeman, A. J. & Cavigliasso, G. (2002). Inorg. Chem. 41, 1761-1770.]); Shi et al. (2006[Shi, Y., Yang, W., Xue, G., Hu, H. & Wang, J. (2006). J. Mol. Struct. 784, 244-248.]); Wang et al. (2004[Wang, X., Guo, Y., Wang, E., Duan, L., Xu, X. & Hu, C. (2004). J. Mol. Struct. 691, 171-180.]); Guo et al. (2004[Guo, Y., Wang, X., Li, Y., Wang, E., Xu, L. & Hu, C. (2004). J. Coord. Chem. 57, 445-451.]); Burkholder & Zubieta (2004[Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279-284.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, Z. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638-2684.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H8N5)2[Mo6O19]

  • Mr = 1228.03

  • Monoclinic, P 21 /n

  • a = 10.4338 (19) Å

  • b = 13.7437 (19) Å

  • c = 11.0792 (17) Å

  • β = 105.471 (13)°

  • V = 1531.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 295 (2) K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.578, Tmax = 0.883

  • 3399 measured reflections

  • 2660 independent reflections

  • 1833 reflections with I > 2σ(I)

  • Rint = 0.082

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.146

  • S = 1.02

  • 2660 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −1.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N4 0.86 1.95 2.605 (12) 132
N1—H1N⋯N5i 0.86 2.07 2.924 (13) 180
C2—H2⋯O8ii 0.93 2.65 3.444 (14) 144
C4—H4⋯O2iii 0.93 2.69 3.391 (14) 133
C6—H6⋯O6iv 0.93 2.38 3.250 (15) 157
C7—H7⋯O1v 0.93 2.51 3.196 (14) 131
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polyoxomolybdates are an important class of metal-oxygen cluster compounds (Shivaiah, 2006; Bridgeman & Cavigliasso, 2002) which show interesting chemical and physical properties (Shi, et al., 2006; Wang, et al., 2004; Guo, et al., 2004; Burkholder & Zubieta, 2004; Hagrman, et al., 1999). Since the anions contain many oxygen atoms which are good hydrogen-bond acceptors, cocrystallization with organic cations should result in interesting supramolecular chemistry. In the title complex (Fig. 1), the protonated dipyrimidylamine molecules (Hdipm) are linked into dimers by N—H···N hydrogen bonds. The cations and anions are interlinked through C—H···O contacts (Fig. 2).

Related literature top

For related literature, see: Shivaiah (2006); Bridgeman & Cavigliasso (2002); Shi et al. (2006); Wang et al. (2004); Guo et al. (2004); Burkholder & Zubieta (2004); Hagrman et al. (1999).

Experimental top

Mo(CO)6 (0.52 g, 2.00 mmol) was added to a solution of dipyrimidylamine (dipm) (0.34 g, 2.00 mmol) in 20 ml toluene. The mixture was refluxed for 18 h to yield an orange solution. The solvent was reduced and n-hexanes added to induce precipitation. The precipitate was filtered and washed by ether (3 × 10 ml) and then dried under reduced pressure to give an orange powder. The green plate crystals were obtained by slow diffusion of ether into a CH2Cl2 solution of the orange powder. The crystals were filtered and washed by ether (3 × 10 ml) and then dried under reduced pressure. Overall crystal yield: 0.207 g (8.43%, based on Mo). Elemental analysis calculated: C, 15.16%; H, 1.31%; N, 11.41%; found: C, 15.02%; H, 1.34%; N, 11.03%.

Refinement top

H atoms were placed geometrically with C—H = 0.93 Å and N—H = 0.86 Å, and refined as riding with Uiso(H) = Ueq(C/N).

Structure description top

Polyoxomolybdates are an important class of metal-oxygen cluster compounds (Shivaiah, 2006; Bridgeman & Cavigliasso, 2002) which show interesting chemical and physical properties (Shi, et al., 2006; Wang, et al., 2004; Guo, et al., 2004; Burkholder & Zubieta, 2004; Hagrman, et al., 1999). Since the anions contain many oxygen atoms which are good hydrogen-bond acceptors, cocrystallization with organic cations should result in interesting supramolecular chemistry. In the title complex (Fig. 1), the protonated dipyrimidylamine molecules (Hdipm) are linked into dimers by N—H···N hydrogen bonds. The cations and anions are interlinked through C—H···O contacts (Fig. 2).

For related literature, see: Shivaiah (2006); Bridgeman & Cavigliasso (2002); Shi et al. (2006); Wang et al. (2004); Guo et al. (2004); Burkholder & Zubieta (2004); Hagrman et al. (1999).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. Partial packing diagram showing N—H···N hydrogen bonding between Hdipm molecules and C—H···O contacts to the polyoxometalate.
Bis[2-(pyrimidin-2-ylamino)pyrimidinium] hexamolybdate top
Crystal data top
(C8H8N5)2[Mo6O19]F(000) = 1172
Mr = 1228.03Dx = 2.664 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 31 reflections
a = 10.4338 (19) Åθ = 4.8–12.5°
b = 13.7437 (19) ŵ = 2.48 mm1
c = 11.0792 (17) ÅT = 295 K
β = 105.471 (13)°Plate, green
V = 1531.2 (4) Å30.40 × 0.20 × 0.05 mm
Z = 2
Data collection top
Bruker P4
diffractometer
1833 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ω scansh = 112
Absorption correction: ψ scan
(North et al., 1968)
k = 116
Tmin = 0.578, Tmax = 0.883l = 1312
3399 measured reflections3 standard reflections every 97 reflections
2660 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0858P)2]
where P = (Fo2 + 2Fc2)/3
2660 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 1.78 e Å3
Crystal data top
(C8H8N5)2[Mo6O19]V = 1531.2 (4) Å3
Mr = 1228.03Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.4338 (19) ŵ = 2.48 mm1
b = 13.7437 (19) ÅT = 295 K
c = 11.0792 (17) Å0.40 × 0.20 × 0.05 mm
β = 105.471 (13)°
Data collection top
Bruker P4
diffractometer
1833 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.082
Tmin = 0.578, Tmax = 0.8833 standard reflections every 97 reflections
3399 measured reflections intensity decay: none
2660 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.91 e Å3
2660 reflectionsΔρmin = 1.78 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.06601 (9)0.95848 (7)0.32376 (8)0.0380 (3)
Mo20.15184 (9)0.87281 (7)0.46013 (9)0.0418 (3)
Mo30.16049 (9)0.89727 (7)0.61876 (9)0.0434 (3)
N10.4384 (8)0.9695 (6)0.3239 (8)0.040 (2)
H1N0.46071.01660.37640.048*
N20.4053 (10)1.0908 (7)0.1792 (9)0.052 (2)
N30.3659 (9)0.9281 (7)0.1128 (8)0.043 (2)
H3N0.36760.86760.13310.052*
N40.4025 (9)0.8036 (6)0.2961 (9)0.046 (2)
N50.4845 (8)0.8709 (6)0.4968 (9)0.040 (2)
O10.1142 (7)0.9318 (7)0.1952 (7)0.065 (2)
O20.2622 (8)0.7811 (6)0.4336 (9)0.072 (3)
O30.2743 (9)0.8222 (7)0.7019 (9)0.076 (3)
O40.00001.00000.50000.0286 (19)
O50.0732 (7)0.8658 (5)0.3211 (7)0.052 (2)
O60.1775 (7)1.0683 (5)0.3902 (7)0.0414 (17)
O70.1797 (7)0.8825 (5)0.4514 (7)0.0446 (18)
O80.0033 (7)0.8138 (5)0.5623 (8)0.056 (2)
O90.0736 (7)1.0520 (6)0.2626 (6)0.052 (2)
O100.2525 (6)0.9816 (6)0.3719 (6)0.0465 (19)
C10.4034 (10)0.9955 (8)0.1993 (9)0.041 (3)
C20.3673 (12)1.1171 (10)0.0578 (12)0.060 (3)
H20.36991.18270.03760.072*
C30.3249 (13)1.0509 (11)0.0372 (12)0.064 (4)
H30.29681.07110.12020.077*
C40.3252 (12)0.9553 (10)0.0069 (11)0.055 (3)
H40.29710.90890.06940.066*
C50.4425 (9)0.8789 (7)0.3750 (10)0.037 (2)
C60.4060 (12)0.7135 (9)0.3495 (12)0.054 (3)
H60.37740.65960.29870.064*
C70.4491 (11)0.7019 (8)0.4714 (11)0.048 (3)
H70.45370.64020.50680.057*
C80.4876 (10)0.7831 (8)0.5462 (10)0.046 (3)
H80.51610.77580.63270.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0374 (5)0.0496 (6)0.0324 (5)0.0021 (4)0.0188 (4)0.0061 (4)
Mo20.0393 (5)0.0414 (5)0.0508 (6)0.0114 (4)0.0228 (4)0.0095 (4)
Mo30.0400 (5)0.0502 (6)0.0424 (6)0.0122 (4)0.0151 (4)0.0098 (5)
N10.043 (5)0.041 (5)0.035 (5)0.002 (4)0.009 (4)0.005 (4)
N20.059 (6)0.049 (6)0.048 (6)0.006 (5)0.016 (5)0.000 (5)
N30.053 (5)0.046 (5)0.034 (5)0.004 (4)0.016 (4)0.005 (4)
N40.047 (5)0.042 (5)0.051 (6)0.003 (4)0.018 (4)0.007 (5)
N50.036 (5)0.045 (5)0.038 (5)0.004 (4)0.009 (4)0.001 (4)
O10.046 (4)0.120 (7)0.036 (4)0.014 (5)0.023 (4)0.025 (5)
O20.069 (6)0.067 (6)0.100 (7)0.029 (5)0.054 (5)0.034 (5)
O30.067 (6)0.088 (7)0.075 (6)0.035 (5)0.026 (5)0.038 (5)
O40.024 (4)0.037 (5)0.029 (5)0.002 (4)0.014 (4)0.009 (4)
O50.047 (4)0.055 (5)0.061 (5)0.024 (4)0.029 (4)0.029 (4)
O60.040 (4)0.042 (4)0.049 (4)0.004 (3)0.025 (3)0.003 (3)
O70.042 (4)0.042 (4)0.058 (5)0.012 (3)0.028 (4)0.003 (4)
O80.062 (5)0.032 (4)0.085 (6)0.012 (4)0.037 (5)0.014 (4)
O90.042 (4)0.083 (6)0.034 (4)0.013 (4)0.017 (3)0.016 (4)
O100.028 (3)0.077 (5)0.035 (4)0.003 (4)0.009 (3)0.002 (4)
C10.046 (6)0.047 (7)0.034 (6)0.002 (5)0.018 (5)0.004 (5)
C20.063 (8)0.066 (8)0.053 (8)0.001 (7)0.021 (7)0.007 (7)
C30.067 (8)0.085 (10)0.039 (7)0.007 (7)0.011 (6)0.010 (7)
C40.055 (7)0.066 (8)0.046 (8)0.004 (6)0.017 (6)0.005 (6)
C50.025 (5)0.047 (6)0.038 (6)0.001 (4)0.008 (4)0.012 (5)
C60.061 (7)0.044 (7)0.060 (9)0.002 (6)0.023 (6)0.012 (6)
C70.058 (7)0.035 (6)0.048 (8)0.000 (5)0.011 (6)0.002 (5)
C80.051 (7)0.052 (7)0.041 (7)0.007 (5)0.023 (5)0.008 (6)
Geometric parameters (Å, º) top
Mo1—O11.673 (7)N3—C11.315 (13)
Mo1—O71.897 (7)N3—C41.333 (14)
Mo1—O91.926 (7)N3—H3N0.860
Mo1—O51.926 (7)N4—C51.347 (13)
Mo1—O61.927 (7)N4—C61.369 (15)
Mo1—O42.3087 (9)N5—C51.308 (13)
Mo2—O21.680 (8)N5—C81.321 (13)
Mo2—O81.892 (8)O4—Mo1i2.3087 (9)
Mo2—O6i1.927 (7)O4—Mo3i2.3137 (9)
Mo2—O51.931 (8)O4—Mo2i2.3210 (9)
Mo2—O101.935 (7)O6—Mo2i1.927 (7)
Mo2—O42.3210 (9)O9—Mo3i1.916 (7)
Mo3—O31.655 (8)O10—Mo3i1.911 (8)
Mo3—O10i1.911 (8)C2—C31.372 (18)
Mo3—O9i1.916 (7)C2—H20.930
Mo3—O71.928 (8)C3—C41.356 (19)
Mo3—O81.963 (8)C3—H30.930
Mo3—O42.3137 (9)C4—H40.930
N1—C51.364 (13)C6—C71.314 (16)
N1—C11.378 (13)C6—H60.930
N1—H1N0.860C7—C81.384 (15)
N2—C11.329 (14)C7—H70.930
N2—C21.347 (15)C8—H80.930
O1—Mo1—O7104.1 (4)C1—N3—H3N120.6
O1—Mo1—O9102.6 (4)C4—N3—H3N120.6
O7—Mo1—O9153.3 (3)C5—N4—C6116.5 (10)
O1—Mo1—O5103.8 (4)C5—N5—C8117.9 (9)
O7—Mo1—O588.1 (3)Mo1i—O4—Mo1180.0
O9—Mo1—O586.5 (4)Mo1i—O4—Mo390.22 (4)
O1—Mo1—O6102.0 (4)Mo1—O4—Mo389.78 (4)
O7—Mo1—O687.3 (3)Mo1i—O4—Mo3i89.78 (4)
O9—Mo1—O686.2 (3)Mo1—O4—Mo3i90.22 (4)
O5—Mo1—O6154.1 (3)Mo3—O4—Mo3i180.0
O1—Mo1—O4178.3 (4)Mo1i—O4—Mo290.27 (3)
O7—Mo1—O476.9 (2)Mo1—O4—Mo289.73 (3)
O9—Mo1—O476.4 (2)Mo3—O4—Mo290.14 (4)
O5—Mo1—O477.4 (2)Mo3i—O4—Mo289.86 (4)
O6—Mo1—O476.7 (2)Mo1i—O4—Mo2i89.73 (3)
O2—Mo2—O8102.7 (4)Mo1—O4—Mo2i90.27 (3)
O2—Mo2—O6i102.7 (4)Mo3—O4—Mo2i89.86 (4)
O8—Mo2—O6i87.6 (3)Mo3i—O4—Mo2i90.14 (4)
O2—Mo2—O5103.9 (3)Mo2—O4—Mo2i180.0
O8—Mo2—O588.8 (4)Mo1—O5—Mo2115.7 (3)
O6i—Mo2—O5153.3 (3)Mo2i—O6—Mo1116.7 (3)
O2—Mo2—O10103.7 (4)Mo1—O7—Mo3117.0 (3)
O8—Mo2—O10153.6 (3)Mo2—O8—Mo3116.7 (3)
O6i—Mo2—O1085.9 (3)Mo3i—O9—Mo1116.9 (3)
O5—Mo2—O1085.6 (3)Mo3i—O10—Mo2116.6 (3)
O2—Mo2—O4179.1 (3)N3—C1—N2125.9 (10)
O8—Mo2—O477.2 (2)N3—C1—N1119.6 (10)
O6i—Mo2—O476.4 (2)N2—C1—N1114.3 (10)
O5—Mo2—O477.0 (2)N2—C2—C3122.4 (13)
O10—Mo2—O476.4 (2)N2—C2—H2118.8
O3—Mo3—O10i103.7 (4)C3—C2—H2118.8
O3—Mo3—O9i104.2 (4)C4—C3—C2118.3 (12)
O10i—Mo3—O9i88.2 (3)C4—C3—H3120.9
O3—Mo3—O7103.1 (4)C2—C3—H3120.9
O10i—Mo3—O788.0 (3)N3—C4—C3119.8 (12)
O9i—Mo3—O7152.6 (3)N3—C4—H4120.1
O3—Mo3—O8103.1 (4)C3—C4—H4120.1
O10i—Mo3—O8153.1 (3)N5—C5—N4124.5 (10)
O9i—Mo3—O885.6 (3)N5—C5—N1118.0 (9)
O7—Mo3—O885.7 (3)N4—C5—N1117.5 (9)
O3—Mo3—O4179.0 (4)C7—C6—N4121.1 (11)
O10i—Mo3—O477.1 (2)C7—C6—H6119.5
O9i—Mo3—O476.4 (2)N4—C6—H6119.5
O7—Mo3—O476.2 (2)C6—C7—C8118.8 (11)
O8—Mo3—O476.0 (2)C6—C7—H7120.6
C5—N1—C1128.6 (9)C8—C7—H7120.6
C5—N1—H1N115.7N5—C8—C7121.2 (10)
C1—N1—H1N115.7N5—C8—H8119.4
C1—N2—C2114.8 (10)C7—C8—H8119.4
C1—N3—C4118.7 (10)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N40.861.952.605 (12)132
N1—H1N···N5ii0.862.072.924 (13)180
C2—H2···O8iii0.932.653.444 (14)144
C4—H4···O2iv0.932.693.391 (14)133
C6—H6···O6v0.932.383.250 (15)157
C7—H7···O1vi0.932.513.196 (14)131
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C8H8N5)2[Mo6O19]
Mr1228.03
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.4338 (19), 13.7437 (19), 11.0792 (17)
β (°) 105.471 (13)
V3)1531.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerBruker P4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.578, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
3399, 2660, 1833
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.146, 1.02
No. of reflections2660
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 1.78

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL (Bruker, 1997.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N40.861.952.605 (12)131.5
N1—H1N···N5i0.862.072.924 (13)179.6
C2—H2···O8ii0.932.653.444 (14)144.0
C4—H4···O2iii0.932.693.391 (14)133.3
C6—H6···O6iv0.932.383.250 (15)156.5
C7—H7···O1v0.932.513.196 (14)131.3
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to the National Science Council of the Republic of China for support. This research was also supported by the project of the specific research fields in Chung Yuan Christian University, Taiwan, under grant CYCU-95-CR-CH.

References

First citationBridgeman, A. J. & Cavigliasso, G. (2002). Inorg. Chem. 41, 1761–1770.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, Y., Wang, X., Li, Y., Wang, E., Xu, L. & Hu, C. (2004). J. Coord. Chem. 57, 445–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, Z. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638–2684.  CrossRef PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationShi, Y., Yang, W., Xue, G., Hu, H. & Wang, J. (2006). J. Mol. Struct. 784, 244–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationShivaiah, V. (2006). Inorg. Chem. Commun. 9, 1191–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, X., Guo, Y., Wang, E., Duan, L., Xu, X. & Hu, C. (2004). J. Mol. Struct. 691, 171–180.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds