metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[1-(1-naphthyl­meth­yl)-3-(2-pyrid­yl)-1H-pyrazole-κ2N2,N3]palladium(II)

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China, and bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: chunsenliu@mail.nankai.edu.cn

(Received 1 November 2007; accepted 24 November 2007; online 6 December 2007)

In the title compound, [PdCl2(C19H15N3)], the PdII centre is four-coordinated by two N-atom donors from one 1-[3-(2-pyrid­yl)pyrazol-1-ylmeth­yl]naphthalene (L) ligand and by two Cl atoms in a distorted square-planar coordination geometry. In the crystal structure, adjacent PdII mononuclear units form inter­molecular C—H⋯π inter­actions involving the benzene and pyridine rings of different L ligands and ππ stacking inter­actions between the pyrazolyl-pyridine and naphthalene rings of neighbouring L ligands, with a centroid–centroid separation of 3.522 (1) Å.

Related literature

For related literature, see: Bell et al. (2003[Bell, Z. R., Harding, L. P. & Ward, M. D. (2003). Chem. Commun. pp. 2432-2433.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Liu, Li et al. (2007[Liu, C.-S., Li, J.-R., Zou, R.-Q., Zhou, J.-N., Shi, X.-S., Wang, J.-J. & Bu, X.-H. (2007). J. Mol. Struct. 843, 66-77.]); Liu, Zhang et al. (2007[Liu, C.-S., Zhang, H., Chen, R., Shi, X.-S., Bu, X.-H. & Yang, M. (2007). Chem. Pharm. Bull. 55, 996-1001.]); Paul et al. (2004[Paul, R. L., Argent, S. P., Jeffery, J. C., Harding, L. P., Lynamd, J. M. & Ward, M. D. (2004). J. Chem. Soc. Dalton Trans. pp. 3453-3458.]); Singh et al. (2003[Singh, S., Mishra, V., Mukherjee, J., Seethalekshmi, N. & Mukherjee, R. (2003). J. Chem. Soc. Dalton Trans. pp. 3392-3397.]); Sony & Ponnuswamy (2006[Sony, S. M. M. & Ponnuswamy, M. N. (2006). Cryst. Growth Des. 6, 736-742.]); Steel (2005[Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.]); Ward et al. (2001[Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251-272.]); Zhang et al. (2005[Zhang, H., Liu, C.-S., Bu, X.-H. & Yang, M. (2005). J. Inorg. Biochem. 99, 1119-1125.]); Zou et al. (2004[Zou, R.-Q., Bu, X.-H. & Zhang, R.-H. (2004). Inorg. Chem. 43, 5382-5386.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C19H15N3)]

  • Mr = 462.64

  • Orthorhombic, P 21 21 21

  • a = 9.330 (6) Å

  • b = 12.139 (8) Å

  • c = 15.918 (11) Å

  • V = 1803 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 293 (2) K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.772, Tmax = 0.848

  • 10453 measured reflections

  • 3702 independent reflections

  • 3340 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.054

  • S = 1.03

  • 3702 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1580 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACg1i 0.93 2.89 3.602 134
C18—H18ACg2ii 0.93 3.05 3.803 139
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]. Cg1 is the centroid of atoms C1–C5/C10 and Cg2 is the centroid of atoms Pd1/N2/C14/C15/N3.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In recent years, attention has been focused on the synthetic approach and the structural control of metal-organic coordination architectures with ligands based on pyrazolyl-pyridine chelating units (Steel, 2005; Ward et al., 2001). In this field, Ward and co-workers have reported novel functional complexes through the use of 3-(2-pyridyl)pyrazole and/or 3-(2-pyridyl)pyrazole-based ligands (Bell et al., 2003; Paul et al., 2004; Singh et al., 2003; Ward et al., 2001; Zou et al., 2004). Recently, we have reported the preparation of a non-planar ligand, 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene (denoted L) (Liu & Li et al., 2007; Liu & Zhang et al., 2007; Zhang et al., 2005). We report here the crystal structure of a palladium complex of this ligand, [(L)PdCl2].

In the title compound, the PdII centre is four-coordinated by two N-atom donors from one L ligand and two Cl atoms. The coordination geometry around the PdII center can be described as a slightly distorted square-plane (Fig. 1). In the crystal structure, the PdII mononuclear units form intermolecular π···π stacking interactions between pyrazolyl-pyridine and naphthalene rings of neighbouring L ligands with a centroid–centroid separation of 3.522 (1) Å (Janiak, 2000) and C—H···π interactions involving C1/C2/C3/C4/C5/C10 (centroid Cg1) benzene rings of the L ligands as well as five-membered chelate rings Pd1/N2/C14/C15/N3 (centroid Cg2) (Sony and Ponnuswamy, 2006) (Fig. 2).

Related literature top

For related literature, see: Bell et al. (2003); Janiak (2000); Liu, Li et al. (2007); Liu, Zhang et al. (2007); Paul et al. (2004); Singh et al. (2003); Sony & Ponnuswamy (2006); Steel (2005); Ward et al. (2001); Zhang et al. (2005); Zou et al. (2004). Cg1 is the centroid of atoms C1–C5/C10 and Cg2 is the centroid of atoms Pd1/N2/C14/C15/N3.

Experimental top

The ligand 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene (L) was synthesized according to the method reported in the literature (Liu & Li et al., 2007; Liu & Zhang et al., 2007; Zhang et al., 2005). A solution of PdCl2 (0.1 mmol) in methanol (15 ml) and acetonitrile (5 ml) was added to L (0.1 mmol). A yellow solid formed was filtered off and the resulting solution was kept at room temperature. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days. Yield: ca 30%. Elemental analysis calculated: C 49.32, H 3.27, N 9.08%; found: C 49.47, H 3.16, N 9.20%.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene), with Uiso(H) = 1.2 or 1.5 Ueq(C).

Structure description top

In recent years, attention has been focused on the synthetic approach and the structural control of metal-organic coordination architectures with ligands based on pyrazolyl-pyridine chelating units (Steel, 2005; Ward et al., 2001). In this field, Ward and co-workers have reported novel functional complexes through the use of 3-(2-pyridyl)pyrazole and/or 3-(2-pyridyl)pyrazole-based ligands (Bell et al., 2003; Paul et al., 2004; Singh et al., 2003; Ward et al., 2001; Zou et al., 2004). Recently, we have reported the preparation of a non-planar ligand, 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene (denoted L) (Liu & Li et al., 2007; Liu & Zhang et al., 2007; Zhang et al., 2005). We report here the crystal structure of a palladium complex of this ligand, [(L)PdCl2].

In the title compound, the PdII centre is four-coordinated by two N-atom donors from one L ligand and two Cl atoms. The coordination geometry around the PdII center can be described as a slightly distorted square-plane (Fig. 1). In the crystal structure, the PdII mononuclear units form intermolecular π···π stacking interactions between pyrazolyl-pyridine and naphthalene rings of neighbouring L ligands with a centroid–centroid separation of 3.522 (1) Å (Janiak, 2000) and C—H···π interactions involving C1/C2/C3/C4/C5/C10 (centroid Cg1) benzene rings of the L ligands as well as five-membered chelate rings Pd1/N2/C14/C15/N3 (centroid Cg2) (Sony and Ponnuswamy, 2006) (Fig. 2).

For related literature, see: Bell et al. (2003); Janiak (2000); Liu, Li et al. (2007); Liu, Zhang et al. (2007); Paul et al. (2004); Singh et al. (2003); Sony & Ponnuswamy (2006); Steel (2005); Ward et al. (2001); Zhang et al. (2005); Zou et al. (2004). Cg1 is the centroid of atoms C1–C5/C10 and Cg2 is the centroid of atoms Pd1/N2/C14/C15/N3.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 199 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal packing showing a two-dimensional network structure in the title compound formed by the co-effects of intermolecular C—H···π (dashed solid lines) and π···π stacking (dashed open lines) interactions. For the sake of clarity, only H atoms involved in the interactions are shown.
Dichlorido[1-(1-naphthylmethyl)-3-(2-pyridyl)-1H-pyrazole- κ2N2,N3]palladium(II) top
Crystal data top
[PdCl2(C19H15N3)]F(000) = 920
Mr = 462.64Dx = 1.705 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 970 reflections
a = 9.330 (6) Åθ = 3.4–26.4°
b = 12.139 (8) ŵ = 1.33 mm1
c = 15.918 (11) ÅT = 293 K
V = 1803 (2) Å3Block, yellow
Z = 40.20 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
3702 independent reflections
Radiation source: fine-focus sealed tube3340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1011
Tmin = 0.772, Tmax = 0.848k = 1415
10453 measured reflectionsl = 1915
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0227P)2 + 0.3859P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3702 reflectionsΔρmax = 0.27 e Å3
226 parametersΔρmin = 0.37 e Å3
0 restraintsAbsolute structure: Flack (1983), 1580 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[PdCl2(C19H15N3)]V = 1803 (2) Å3
Mr = 462.64Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.330 (6) ŵ = 1.33 mm1
b = 12.139 (8) ÅT = 293 K
c = 15.918 (11) Å0.20 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
3702 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3340 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.848Rint = 0.028
10453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.27 e Å3
S = 1.03Δρmin = 0.37 e Å3
3702 reflectionsAbsolute structure: Flack (1983), 1580 Friedel pairs
226 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.83064 (2)0.490954 (17)0.051890 (13)0.03837 (7)
C10.5698 (4)0.9043 (3)0.1086 (3)0.0546 (9)
H1A0.63810.90010.06620.065*
C20.5637 (4)0.9961 (3)0.1585 (3)0.0654 (10)
H2A0.62811.05340.14980.079*
C30.4620 (4)1.0044 (4)0.2221 (2)0.0704 (12)
H3A0.45891.06700.25570.084*
C40.3679 (4)0.9219 (4)0.2351 (2)0.0651 (11)
H4A0.29930.92900.27710.078*
C50.3714 (3)0.8245 (3)0.1859 (2)0.0511 (9)
C60.2756 (4)0.7376 (4)0.1995 (2)0.0639 (11)
H6A0.20780.74330.24210.077*
C70.2800 (4)0.6453 (3)0.1516 (3)0.0613 (10)
H7A0.21680.58780.16220.074*
C80.3806 (4)0.6365 (3)0.0856 (2)0.0505 (8)
H8A0.38240.57300.05300.061*
C90.4752 (3)0.7192 (2)0.0689 (2)0.0408 (7)
C100.4739 (3)0.8161 (3)0.1208 (2)0.0430 (7)
C110.5803 (3)0.7164 (2)0.0027 (2)0.0444 (8)
H11A0.55760.77580.04120.053*
H11B0.67560.73010.01930.053*
C120.5032 (4)0.5886 (3)0.1173 (2)0.0534 (8)
H12A0.43230.63290.14060.064*
C130.5448 (3)0.4872 (3)0.1465 (2)0.0512 (8)
H13A0.50900.44920.19270.061*
C140.6522 (3)0.4540 (2)0.09185 (19)0.0397 (7)
C150.7469 (3)0.3595 (2)0.0911 (2)0.0394 (7)
C160.7465 (4)0.2785 (3)0.1518 (2)0.0479 (8)
H16A0.67990.28060.19520.058*
C170.8446 (4)0.1953 (3)0.1477 (3)0.0612 (10)
H17A0.84590.14040.18850.073*
C180.9416 (5)0.1935 (3)0.0826 (3)0.0675 (13)
H18A1.00960.13770.07890.081*
C190.9366 (4)0.2753 (3)0.0231 (3)0.0619 (11)
H19A1.00220.27400.02090.074*
N10.5823 (3)0.6132 (2)0.04930 (19)0.0434 (6)
N20.6739 (3)0.53078 (17)0.03249 (14)0.0378 (5)
N30.8397 (3)0.35759 (19)0.02653 (16)0.0438 (6)
Cl11.00048 (11)0.42155 (9)0.13879 (7)0.0708 (3)
Cl20.81909 (11)0.64162 (6)0.13707 (5)0.0521 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03920 (11)0.03896 (11)0.03696 (11)0.00037 (11)0.00213 (10)0.00045 (11)
C10.058 (2)0.0449 (19)0.060 (2)0.0110 (17)0.0040 (18)0.0000 (17)
C20.075 (2)0.0455 (19)0.076 (3)0.013 (2)0.024 (2)0.010 (2)
C30.077 (3)0.066 (3)0.068 (2)0.035 (3)0.030 (2)0.022 (2)
C40.062 (3)0.083 (3)0.051 (2)0.038 (2)0.0089 (18)0.015 (2)
C50.043 (2)0.064 (2)0.045 (2)0.0218 (16)0.0049 (15)0.0039 (17)
C60.054 (2)0.091 (3)0.047 (2)0.019 (2)0.0085 (18)0.009 (2)
C70.052 (2)0.067 (3)0.065 (3)0.0033 (18)0.0031 (19)0.016 (2)
C80.0479 (19)0.0458 (18)0.058 (2)0.0036 (15)0.0020 (16)0.0069 (16)
C90.0423 (17)0.0381 (15)0.0422 (19)0.0102 (13)0.0011 (15)0.0071 (13)
C100.0429 (18)0.0443 (17)0.0417 (18)0.0133 (14)0.0067 (14)0.0004 (14)
C110.0485 (19)0.0372 (17)0.048 (2)0.0078 (15)0.0034 (15)0.0021 (16)
C120.056 (2)0.060 (2)0.045 (2)0.0141 (18)0.0071 (18)0.0007 (16)
C130.0554 (18)0.057 (2)0.0416 (17)0.0038 (19)0.0077 (14)0.0047 (18)
C140.0411 (17)0.0422 (15)0.0357 (16)0.0023 (14)0.0045 (14)0.0002 (12)
C150.0440 (18)0.0360 (16)0.0381 (18)0.0043 (14)0.0079 (14)0.0011 (13)
C160.058 (2)0.0444 (19)0.041 (2)0.0048 (15)0.0079 (16)0.0053 (15)
C170.075 (3)0.0427 (18)0.065 (2)0.005 (2)0.015 (3)0.0149 (16)
C180.074 (3)0.055 (2)0.073 (3)0.022 (2)0.002 (2)0.013 (2)
C190.070 (3)0.054 (2)0.062 (3)0.0214 (19)0.011 (2)0.0067 (17)
N10.0465 (15)0.0424 (13)0.0414 (15)0.0105 (11)0.0035 (13)0.0016 (14)
N20.0408 (12)0.0366 (11)0.0361 (13)0.0021 (11)0.0040 (11)0.0018 (9)
N30.0489 (15)0.0385 (12)0.0440 (15)0.0071 (14)0.0022 (14)0.0013 (10)
Cl10.0659 (6)0.0788 (6)0.0677 (6)0.0211 (5)0.0224 (5)0.0102 (5)
Cl20.0678 (5)0.0452 (4)0.0435 (4)0.0047 (4)0.0009 (5)0.0056 (3)
Geometric parameters (Å, º) top
Pd1—N22.043 (3)C9—C111.504 (5)
Pd1—N32.046 (3)C11—N11.456 (4)
Pd1—Cl12.2658 (14)C11—H11A0.970
Pd1—Cl22.2792 (14)C11—H11B0.970
C1—C21.370 (5)C12—N11.343 (5)
C1—C101.408 (5)C12—C131.372 (5)
C1—H1A0.930C12—H12A0.930
C2—C31.390 (6)C13—C141.387 (4)
C2—H2A0.930C13—H13A0.930
C3—C41.347 (6)C14—N21.342 (4)
C3—H3A0.930C14—C151.448 (4)
C4—C51.418 (5)C15—N31.343 (4)
C4—H4A0.930C15—C161.379 (4)
C5—C61.399 (5)C16—C171.365 (5)
C5—C101.414 (5)C16—H16A0.930
C6—C71.356 (6)C17—C181.377 (6)
C6—H6A0.930C17—H17A0.930
C7—C81.413 (5)C18—C191.373 (5)
C7—H7A0.930C18—H18A0.930
C8—C91.363 (5)C19—N31.348 (4)
C8—H8A0.930C19—H19A0.930
C9—C101.438 (4)N1—N21.343 (3)
N2—Pd1—N379.38 (10)C9—C11—H11A108.7
N2—Pd1—Cl1171.74 (7)N1—C11—H11B108.7
N3—Pd1—Cl192.83 (9)C9—C11—H11B108.7
N2—Pd1—Cl299.63 (7)H11A—C11—H11B107.6
N3—Pd1—Cl2178.86 (7)N1—C12—C13108.5 (3)
Cl1—Pd1—Cl288.18 (5)N1—C12—H12A125.8
C2—C1—C10120.8 (4)C13—C12—H12A125.8
C2—C1—H1A119.6C12—C13—C14104.6 (3)
C10—C1—H1A119.6C12—C13—H13A127.7
C1—C2—C3120.6 (4)C14—C13—H13A127.7
C1—C2—H2A119.7N2—C14—C13110.4 (3)
C3—C2—H2A119.7N2—C14—C15116.8 (3)
C4—C3—C2120.2 (4)C13—C14—C15132.6 (3)
C4—C3—H3A119.9N3—C15—C16121.7 (3)
C2—C3—H3A119.9N3—C15—C14114.4 (3)
C3—C4—C5121.3 (4)C16—C15—C14123.9 (3)
C3—C4—H4A119.3C17—C16—C15119.5 (4)
C5—C4—H4A119.3C17—C16—H16A120.2
C6—C5—C10119.4 (3)C15—C16—H16A120.2
C6—C5—C4121.9 (4)C16—C17—C18119.2 (3)
C10—C5—C4118.6 (4)C16—C17—H17A120.4
C7—C6—C5121.1 (4)C18—C17—H17A120.4
C7—C6—H6A119.5C19—C18—C17119.1 (4)
C5—C6—H6A119.5C19—C18—H18A120.5
C6—C7—C8120.1 (4)C17—C18—H18A120.5
C6—C7—H7A120.0N3—C19—C18122.0 (4)
C8—C7—H7A120.0N3—C19—H19A119.0
C9—C8—C7121.3 (3)C18—C19—H19A119.0
C9—C8—H8A119.4C12—N1—N2110.2 (3)
C7—C8—H8A119.4C12—N1—C11126.5 (3)
C8—C9—C10119.0 (3)N2—N1—C11123.2 (3)
C8—C9—C11123.6 (3)C14—N2—N1106.3 (2)
C10—C9—C11117.3 (3)C14—N2—Pd1113.99 (19)
C1—C10—C5118.5 (3)N1—N2—Pd1139.7 (2)
C1—C10—C9122.5 (3)C15—N3—C19118.4 (3)
C5—C10—C9119.1 (3)C15—N3—Pd1115.2 (2)
N1—C11—C9114.4 (3)C19—N3—Pd1126.1 (2)
N1—C11—H11A108.7
C10—C1—C2—C30.3 (5)C14—C15—C16—C17176.9 (3)
C1—C2—C3—C40.2 (6)C15—C16—C17—C180.4 (6)
C2—C3—C4—C51.1 (6)C16—C17—C18—C190.3 (6)
C3—C4—C5—C6179.1 (3)C17—C18—C19—N30.1 (7)
C3—C4—C5—C101.6 (5)C13—C12—N1—N20.4 (4)
C10—C5—C6—C70.4 (5)C13—C12—N1—C11175.1 (3)
C4—C5—C6—C7179.6 (4)C9—C11—N1—C1290.9 (4)
C5—C6—C7—C81.2 (6)C9—C11—N1—N294.1 (3)
C6—C7—C8—C90.4 (6)C13—C14—N2—N10.6 (3)
C7—C8—C9—C101.3 (5)C15—C14—N2—N1175.4 (2)
C7—C8—C9—C11177.3 (3)C13—C14—N2—Pd1179.9 (2)
C2—C1—C10—C50.2 (5)C15—C14—N2—Pd13.9 (3)
C2—C1—C10—C9178.9 (3)C12—N1—N2—C140.6 (3)
C6—C5—C10—C1179.6 (3)C11—N1—N2—C14175.1 (3)
C4—C5—C10—C11.1 (5)C12—N1—N2—Pd1179.6 (2)
C6—C5—C10—C91.3 (5)C11—N1—N2—Pd14.0 (5)
C4—C5—C10—C9178.0 (3)N3—Pd1—N2—C142.0 (2)
C8—C9—C10—C1178.8 (3)Cl2—Pd1—N2—C14178.62 (19)
C11—C9—C10—C12.5 (5)N3—Pd1—N2—N1177.0 (3)
C8—C9—C10—C52.1 (5)Cl2—Pd1—N2—N12.4 (3)
C11—C9—C10—C5176.6 (3)C16—C15—N3—C191.7 (5)
C8—C9—C11—N15.1 (5)C14—C15—N3—C19176.8 (3)
C10—C9—C11—N1176.2 (3)C16—C15—N3—Pd1176.1 (2)
N1—C12—C13—C140.0 (4)C14—C15—N3—Pd12.4 (3)
C12—C13—C14—N20.3 (4)C18—C19—N3—C150.9 (6)
C12—C13—C14—C15174.8 (3)C18—C19—N3—Pd1174.7 (3)
N2—C14—C15—N34.2 (4)N2—Pd1—N3—C150.3 (2)
C13—C14—C15—N3179.2 (3)Cl1—Pd1—N3—C15177.6 (2)
N2—C14—C15—C16174.3 (3)N2—Pd1—N3—C19174.2 (3)
C13—C14—C15—C160.7 (6)Cl1—Pd1—N3—C198.5 (3)
N3—C15—C16—C171.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg1i0.932.893.602134
C18—H18A···Cg2ii0.933.053.803139
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C19H15N3)]
Mr462.64
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.330 (6), 12.139 (8), 15.918 (11)
V3)1803 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.772, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
10453, 3702, 3340
Rint0.028
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.03
No. of reflections3702
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37
Absolute structureFlack (1983), 1580 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT (Bruker, 1998, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL (Bruker, 199 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg1i0.932.893.602134.4
C18—H18A···Cg2ii0.933.053.803139.4
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Startup Fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (No. 2008 to C-SL). The authors also thank Nankai University and Henan Provincial Key Laboratory of Surface & Interface Science for supporting this research.

References

First citationBell, Z. R., Harding, L. P. & Ward, M. D. (2003). Chem. Commun. pp. 2432–2433.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationLiu, C.-S., Li, J.-R., Zou, R.-Q., Zhou, J.-N., Shi, X.-S., Wang, J.-J. & Bu, X.-H. (2007). J. Mol. Struct. 843, 66–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-S., Zhang, H., Chen, R., Shi, X.-S., Bu, X.-H. & Yang, M. (2007). Chem. Pharm. Bull. 55, 996–1001.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPaul, R. L., Argent, S. P., Jeffery, J. C., Harding, L. P., Lynamd, J. M. & Ward, M. D. (2004). J. Chem. Soc. Dalton Trans. pp. 3453–3458.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSingh, S., Mishra, V., Mukherjee, J., Seethalekshmi, N. & Mukherjee, R. (2003). J. Chem. Soc. Dalton Trans. pp. 3392–3397.  CSD CrossRef Google Scholar
First citationSony, S. M. M. & Ponnuswamy, M. N. (2006). Cryst. Growth Des. 6, 736–742.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWard, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251–272.  Web of Science CrossRef CAS Google Scholar
First citationZhang, H., Liu, C.-S., Bu, X.-H. & Yang, M. (2005). J. Inorg. Biochem. 99, 1119–1125.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZou, R.-Q., Bu, X.-H. & Zhang, R.-H. (2004). Inorg. Chem. 43, 5382–5386.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds