metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,4,6-tri­amino-1,3,5-triazin-1-ium) hexa­aqua­cobalt(II) bis­­[bis­­(pyridine-2,6-di­carboxyl­ato)cobaltate(II)] tetra­hydrate

aFaculty of Chemistry, Teacher Training University, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, Ardabil Branch, Ardabil, Iran, cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and dDepartment of Chemistry, Shahid Beheshti University, Evin, Tehran, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 1 November 2007; accepted 6 December 2007; online 18 December 2007)

The title compound, (C3H7N6)2[Co(H2O)6][Co(C7H3NO4)2]2·4H2O, or (tataH)2[Co(H2O)6][Co(pydc)2]2·4H2O (where tata is 2,4,6-triamino-1,3,5-triazine and pydc is pyridine-2,6-dicarboxylic acid), was obtained by reaction of Co(NO3)2·6H2O with the proton-transfer compound (tataH)2(pydc) in aqueous solution. The [Co(pydc)2]2− anion is a six-coordinate CoII complex with a distorted octa­hedral coordination geometry. The structure also contains hexa­aqua­cobalt(II) cations (site symmetry [\overline{1}]), (tataH)+ cations and uncoordinated water mol­ecules. The two(pydc)2− ligands in each [Co(pydc)2]2− anion are almost perpendicular to each other [dihedral angle between their mean planes = 82.3 (1)°]. There is extensive O—H⋯O, N—H⋯N, O—H⋯N and C—H⋯O hydrogen bonding in the structure, as well as ππ stacking between (pydc)2− ligands with an inter­planar distance of 3.484 (15) Å.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803-m1804.]); Aghabozorg, Daneshvar et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]); Sheshmani et al. (2006[Sheshmani, S., Aghabozorg, H., Panah, F. M., Alizadeh, R., Kickelbick, G., Nakhjavan, B., Moghimi, A., Ramezanipour, F. & Aghabozorg, H. R. (2006). Z. Anorg. Allg. Chem. 632, 469-474.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H7N6)2[Co(H2O)6][Co(C7H3NO4)2]2·4H2O

  • Mr = 1271.66

  • Triclinic, [P \overline 1]

  • a = 8.4003 (6) Å

  • b = 11.3014 (7) Å

  • c = 13.8794 (10) Å

  • α = 95.901 (6)°

  • β = 106.017 (5)°

  • γ = 107.133 (5)°

  • V = 1185.73 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 120 (2) K

  • 0.50 × 0.50 × 0.45 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2004[Stoe & Cie (2004). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.570, Tmax = 0.595

  • 14236 measured reflections

  • 6289 independent reflections

  • 6111 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.06

  • 6289 reflections

  • 426 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O13i 0.83 (2) 1.97 (2) 2.7982 (18) 178 (3)
N3—H3C⋯O3 0.84 (2) 2.21 (2) 3.0041 (17) 159 (2)
N5—H5B⋯O3ii 0.83 (2) 2.35 (2) 2.9713 (16) 133 (2)
N5—H5C⋯N4ii 0.82 (2) 2.16 (2) 2.9765 (17) 178 (3)
N7—H7A⋯O10ii 0.82 (2) 2.22 (2) 3.0291 (16) 169 (2)
N7—H7B⋯O7i 0.80 (2) 2.26 (2) 3.0560 (17) 172 (2)
N8—H8⋯O8i 0.85 (2) 1.89 (2) 2.7404 (17) 174 (2)
O9—H9A⋯N6ii 0.79 (3) 1.94 (3) 2.7298 (16) 179 (4)
O9—H9B⋯O2iii 0.87 (3) 1.89 (3) 2.7263 (16) 162 (3)
O10—H10B⋯O12 0.81 (2) 1.88 (3) 2.6759 (17) 167 (3)
O10—H10C⋯O4iv 0.81 (2) 1.97 (2) 2.7675 (15) 171 (3)
O11—H11B⋯O5 0.80 (3) 1.97 (2) 2.7313 (14) 157 (2)
O11—H11C⋯O2v 0.83 (2) 1.90 (2) 2.7101 (16) 165 (2)
O12—H12B⋯O4vi 0.79 (3) 2.06 (3) 2.8389 (17) 174 (2)
O12—H12C⋯O6 0.84 (3) 1.98 (3) 2.8196 (16) 171 (2)
O13—H13A⋯O1vii 0.77 (3) 2.01 (3) 2.7642 (16) 171 (3)
O13—H13B⋯O8 0.82 (3) 1.87 (3) 2.6642 (14) 163 (2)
C4—H4⋯O13viii 0.93 2.43 3.164 (2) 136
C10—H10A⋯O6ix 0.93 2.45 3.344 (2) 162
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z; (iii) x, y-1, z; (iv) -x, -y, -z+1; (v) -x, -y+1, -z+1; (vi) x-1, y, z; (vii) -x, -y+1, -z; (viii) x, y, 1+z; (ix) -x-1, -y, -z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we have reported the reactions between Co(NO3)2.6H2O and two proton-transfer compounds: (GH)2(pydc) (where G is guanidine) and (pipzH2)(pydc) (where pipz is piperazine) in a 1:2 molar ratio. These reactions lead to the formation of the complexes (GH)2[Co(H2O)6][Co(pydc)2]2 (Sheshmani et al., 2006) and (pipzH2)[Co(H2O)6][Co(pydc)2]2.8H2O (Aghabozorg, Attar Gharamaleki et al., 2007), respectively.

Here, we report the synthesis and X-ray crystal structure of the title compound (Fig. 1). The compound contains [Co(pydc)2]2- anions, [Co(H2O)6]2+ cations (site symmetry 1), and (tataH)+ cations. In the [Co(pydc)2]2- anions, the CoII atom is hexacoordinated by two N atoms (N1 and N2) and four O atoms (O1, O3, O5 and O7) from the carboxylate groups of two (pydc)2- groups that act as tridentate ligands. The coordination geometry is distorted octahedral, with atoms N1 and N2 occupying axial positions and the O atoms forming the equatorial plane. The N1—Co2—N2 angle deviates ca 7.7° from linearity. The mean Co—N and Co—O bond lengths for Co1 are 2.0214 (11) and 2.1658 (10) Å, respectively, consistent with similar complexes in the literature. The dihedral angle between the mean planes of the two (pydc)2- groups is 82.3 (1)°.

There is extensive O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonding in the structure, as well as ππ stacking between (pydc)2- ligands with an interplanar distance of 3.484 (15) Å (symmetry operator: -x, -y + 1, -z + 1). Atom O8 of the C14?O8 carboxyl group lies above the N2/C9–C13 ring with an O···centroid distance of 3.240 (1) Å (symmetry operator: x, -y + 1, -z).

Related literature top

For related literature, see: Aghabozorg, Attar Gharamaleki, et al. (2007); Aghabozorg, Daneshvar, et al. (2007); Sheshmani et al. (2006).

Experimental top

The proton-transfer compound, (tataH)2(pydc), was prepared by the reaction of pyridine-2,6-dicarboxylic acid (pydcH2) with 2,4,6-triamino-1,3,5-triazine (tata). The reaction between Co(NO3)2.6H2O (115 mg, 0.5 mmol) in water (20 ml) and (tataH)2(pydc) (420 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio gave a violet crystalline compound after slow evaporation of the solvent at room temperature.

Refinement top

The N-bound and O-bound H atoms were located in difference Fourier maps and their positions were freely refined. Other H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Recently, we have reported the reactions between Co(NO3)2.6H2O and two proton-transfer compounds: (GH)2(pydc) (where G is guanidine) and (pipzH2)(pydc) (where pipz is piperazine) in a 1:2 molar ratio. These reactions lead to the formation of the complexes (GH)2[Co(H2O)6][Co(pydc)2]2 (Sheshmani et al., 2006) and (pipzH2)[Co(H2O)6][Co(pydc)2]2.8H2O (Aghabozorg, Attar Gharamaleki et al., 2007), respectively.

Here, we report the synthesis and X-ray crystal structure of the title compound (Fig. 1). The compound contains [Co(pydc)2]2- anions, [Co(H2O)6]2+ cations (site symmetry 1), and (tataH)+ cations. In the [Co(pydc)2]2- anions, the CoII atom is hexacoordinated by two N atoms (N1 and N2) and four O atoms (O1, O3, O5 and O7) from the carboxylate groups of two (pydc)2- groups that act as tridentate ligands. The coordination geometry is distorted octahedral, with atoms N1 and N2 occupying axial positions and the O atoms forming the equatorial plane. The N1—Co2—N2 angle deviates ca 7.7° from linearity. The mean Co—N and Co—O bond lengths for Co1 are 2.0214 (11) and 2.1658 (10) Å, respectively, consistent with similar complexes in the literature. The dihedral angle between the mean planes of the two (pydc)2- groups is 82.3 (1)°.

There is extensive O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonding in the structure, as well as ππ stacking between (pydc)2- ligands with an interplanar distance of 3.484 (15) Å (symmetry operator: -x, -y + 1, -z + 1). Atom O8 of the C14?O8 carboxyl group lies above the N2/C9–C13 ring with an O···centroid distance of 3.240 (1) Å (symmetry operator: x, -y + 1, -z).

For related literature, see: Aghabozorg, Attar Gharamaleki, et al. (2007); Aghabozorg, Daneshvar, et al. (2007); Sheshmani et al. (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Water molecules are omitted. The suffix a denotes atoms generated by the symmetry operator -x, -y, -z + 1.
[Figure 2] Fig. 2. π···π Stacking interaction between two aromatic rings of (pydc)2- units, with interplanar distance of 3.484 (15) Å [-x, -y + 1, -z + 1]; C—O···π stacking interactions between CO groups of carboxylate fragments with aromatic rings of (pydc)2- with distances of 3.240 (1) Å for C14–O8···Cg1 (x, -y + 1, -z) [Cg1 is the centroid for N2/C9–C13 ring].
[Figure 3] Fig. 3. Unit cell packing. Hydrogen bonds are shown as dashed lines.
Bis(2,4,6-triamino-1,3,5-triazin-1-ium) hexaaquacobalt(II) bis[bis(pyridine-2,6-dicarboxylato)cobaltate(II)] tetrahydrate top
Crystal data top
(C3H7N6)2[Co(H2O)6][Co(C7H3NO4)2]2·4H2OZ = 1
Mr = 1271.66F(000) = 651
Triclinic, P1Dx = 1.781 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4003 (6) ÅCell parameters from 2500 reflections
b = 11.3014 (7) Åθ = 1.9–29.2°
c = 13.8794 (10) ŵ = 1.15 mm1
α = 95.901 (6)°T = 120 K
β = 106.017 (5)°Block, violet
γ = 107.133 (5)°0.50 × 0.50 × 0.45 mm
V = 1185.73 (14) Å3
Data collection top
Stoe IPDSII
diffractometer
6289 independent reflections
Radiation source: fine-focus sealed tube6111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ scansθmax = 29.2°, θmin = 1.9°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2004)
h = 1111
Tmin = 0.570, Tmax = 0.595k = 1515
14236 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.0178P]
where P = (Fo2 + 2Fc2)/3
6289 reflections(Δ/σ)max = 0.019
426 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
(C3H7N6)2[Co(H2O)6][Co(C7H3NO4)2]2·4H2Oγ = 107.133 (5)°
Mr = 1271.66V = 1185.73 (14) Å3
Triclinic, P1Z = 1
a = 8.4003 (6) ÅMo Kα radiation
b = 11.3014 (7) ŵ = 1.15 mm1
c = 13.8794 (10) ÅT = 120 K
α = 95.901 (6)°0.50 × 0.50 × 0.45 mm
β = 106.017 (5)°
Data collection top
Stoe IPDSII
diffractometer
6289 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2004)
6111 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.595Rint = 0.021
14236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
6289 reflectionsΔρmin = 0.90 e Å3
426 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09807 (17)0.59767 (12)0.39201 (10)0.0120 (2)
C20.19794 (16)0.52881 (12)0.46046 (9)0.0100 (2)
C30.26752 (17)0.56041 (12)0.56675 (10)0.0120 (2)
H3A0.25200.62730.60350.014*
C40.36138 (17)0.48851 (12)0.61643 (10)0.0123 (2)
H40.40870.50680.68740.015*
C50.38413 (17)0.38926 (12)0.55950 (10)0.0110 (2)
H5A0.44810.34160.59170.013*
C60.30917 (16)0.36313 (11)0.45369 (9)0.0092 (2)
C70.32416 (16)0.26121 (11)0.37973 (10)0.0099 (2)
C80.23329 (17)0.17773 (12)0.16471 (10)0.0110 (2)
C90.17660 (16)0.21879 (12)0.07477 (10)0.0102 (2)
C100.26571 (17)0.16132 (12)0.02722 (10)0.0118 (2)
H10A0.36940.09260.04600.014*
C110.19517 (17)0.20971 (12)0.10097 (10)0.0125 (2)
H11A0.25240.17360.17000.015*
C120.03839 (17)0.31260 (12)0.07062 (10)0.0118 (2)
H12A0.00960.34640.11880.014*
C130.04411 (16)0.36325 (11)0.03343 (9)0.0096 (2)
C140.21779 (16)0.47113 (12)0.08186 (10)0.0102 (2)
C150.34004 (16)0.22483 (12)0.01662 (10)0.0102 (2)
C160.12106 (17)0.07415 (12)0.11206 (10)0.0112 (2)
C170.33515 (17)0.21334 (12)0.15514 (10)0.0111 (2)
N10.21838 (14)0.43202 (10)0.40734 (8)0.00895 (19)
N20.02564 (14)0.31650 (10)0.10290 (8)0.00952 (19)
N30.41635 (16)0.28384 (11)0.11324 (9)0.0126 (2)
H3B0.504 (3)0.349 (2)0.1304 (17)0.027 (5)*
H3C0.370 (3)0.258 (2)0.1568 (17)0.021 (5)*
N40.19481 (15)0.12353 (10)0.01054 (8)0.0114 (2)
N50.02803 (16)0.02294 (11)0.14102 (9)0.0145 (2)
H5B0.079 (3)0.057 (2)0.2023 (19)0.029 (6)*
H5C0.073 (3)0.049 (2)0.0984 (18)0.025 (5)*
N60.18535 (15)0.11571 (11)0.18643 (8)0.0118 (2)
N70.41327 (17)0.25597 (11)0.22155 (9)0.0142 (2)
H7A0.369 (3)0.218 (2)0.2810 (17)0.022 (5)*
H7B0.497 (3)0.320 (2)0.2040 (17)0.022 (5)*
N80.41245 (15)0.27160 (11)0.05467 (8)0.0113 (2)
H80.504 (3)0.337 (2)0.0403 (19)0.034 (6)*
O10.04288 (13)0.54960 (9)0.29686 (7)0.01419 (18)
O20.07887 (16)0.69381 (10)0.43161 (8)0.0199 (2)
O30.26322 (13)0.26350 (9)0.28504 (7)0.01189 (17)
O40.39502 (13)0.18586 (9)0.41537 (8)0.01399 (18)
O50.12884 (13)0.24112 (9)0.25325 (7)0.01391 (18)
O60.37131 (13)0.08811 (10)0.14719 (8)0.01572 (19)
O70.27238 (12)0.50218 (9)0.17825 (7)0.01198 (17)
O80.29441 (13)0.52186 (9)0.02292 (7)0.01449 (18)
O90.04230 (14)0.08822 (10)0.37722 (8)0.01480 (19)
H9A0.024 (4)0.097 (3)0.322 (2)0.043 (7)*
H9B0.053 (3)0.162 (3)0.381 (2)0.043 (7)*
O100.27658 (13)0.08879 (9)0.43229 (8)0.01282 (18)
H10B0.331 (3)0.047 (2)0.404 (2)0.035 (6)*
H10C0.321 (3)0.116 (2)0.4736 (19)0.032 (6)*
O110.02330 (13)0.15266 (9)0.42733 (8)0.01306 (18)
H11B0.071 (3)0.158 (2)0.370 (2)0.033 (6)*
H11C0.044 (3)0.207 (2)0.4624 (18)0.028 (6)*
O120.47942 (15)0.01920 (11)0.31460 (9)0.0196 (2)
H12B0.512 (3)0.069 (2)0.340 (2)0.036 (6)*
H12C0.443 (3)0.048 (2)0.268 (2)0.033 (6)*
O130.29453 (14)0.49240 (11)0.16999 (8)0.0180 (2)
H13A0.205 (4)0.480 (2)0.210 (2)0.039 (7)*
H13B0.277 (3)0.488 (2)0.115 (2)0.037 (6)*
Co10.10510 (2)0.385862 (16)0.253625 (12)0.00886 (5)
Co20.00000.00000.50000.01165 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0127 (5)0.0121 (5)0.0124 (6)0.0050 (4)0.0048 (4)0.0029 (4)
C20.0104 (5)0.0095 (5)0.0101 (5)0.0027 (4)0.0042 (4)0.0016 (4)
C30.0132 (5)0.0119 (5)0.0100 (5)0.0032 (4)0.0047 (4)0.0005 (4)
C40.0133 (5)0.0131 (5)0.0086 (5)0.0016 (4)0.0039 (4)0.0011 (4)
C50.0112 (5)0.0108 (5)0.0101 (5)0.0022 (4)0.0032 (4)0.0037 (4)
C60.0094 (5)0.0083 (5)0.0096 (5)0.0019 (4)0.0039 (4)0.0018 (4)
C70.0100 (5)0.0087 (5)0.0111 (5)0.0019 (4)0.0049 (4)0.0017 (4)
C80.0118 (5)0.0109 (5)0.0111 (5)0.0045 (4)0.0037 (4)0.0034 (4)
C90.0107 (5)0.0094 (5)0.0108 (5)0.0036 (4)0.0034 (4)0.0023 (4)
C100.0110 (5)0.0107 (5)0.0120 (6)0.0029 (4)0.0019 (4)0.0015 (4)
C110.0137 (6)0.0137 (6)0.0082 (5)0.0046 (5)0.0012 (4)0.0001 (4)
C120.0133 (6)0.0131 (6)0.0089 (5)0.0044 (5)0.0035 (4)0.0022 (4)
C130.0104 (5)0.0092 (5)0.0092 (5)0.0034 (4)0.0029 (4)0.0018 (4)
C140.0108 (5)0.0087 (5)0.0108 (5)0.0032 (4)0.0036 (4)0.0015 (4)
C150.0116 (5)0.0102 (5)0.0104 (5)0.0055 (4)0.0040 (4)0.0024 (4)
C160.0129 (5)0.0092 (5)0.0118 (6)0.0045 (4)0.0036 (4)0.0020 (4)
C170.0132 (5)0.0107 (5)0.0103 (5)0.0054 (4)0.0039 (4)0.0018 (4)
N10.0094 (4)0.0086 (4)0.0083 (4)0.0019 (4)0.0032 (4)0.0015 (4)
N20.0105 (5)0.0094 (4)0.0084 (4)0.0034 (4)0.0026 (4)0.0017 (4)
N30.0137 (5)0.0129 (5)0.0095 (5)0.0021 (4)0.0039 (4)0.0012 (4)
N40.0123 (5)0.0107 (5)0.0098 (5)0.0024 (4)0.0032 (4)0.0015 (4)
N50.0147 (5)0.0131 (5)0.0115 (5)0.0002 (4)0.0039 (4)0.0000 (4)
N60.0131 (5)0.0113 (5)0.0094 (5)0.0025 (4)0.0032 (4)0.0014 (4)
N70.0169 (5)0.0126 (5)0.0103 (5)0.0003 (4)0.0059 (4)0.0005 (4)
N80.0115 (5)0.0113 (5)0.0092 (5)0.0013 (4)0.0038 (4)0.0008 (4)
O10.0176 (5)0.0155 (4)0.0107 (4)0.0089 (4)0.0033 (4)0.0020 (3)
O20.0300 (6)0.0169 (5)0.0167 (5)0.0149 (4)0.0067 (4)0.0016 (4)
O30.0142 (4)0.0128 (4)0.0088 (4)0.0053 (3)0.0035 (3)0.0011 (3)
O40.0184 (5)0.0137 (4)0.0146 (4)0.0089 (4)0.0078 (4)0.0057 (3)
O50.0141 (4)0.0150 (4)0.0096 (4)0.0009 (4)0.0034 (3)0.0028 (3)
O60.0131 (4)0.0149 (4)0.0155 (4)0.0006 (4)0.0049 (4)0.0029 (4)
O70.0126 (4)0.0122 (4)0.0092 (4)0.0018 (3)0.0033 (3)0.0015 (3)
O80.0157 (4)0.0147 (4)0.0110 (4)0.0005 (4)0.0061 (4)0.0026 (3)
O90.0201 (5)0.0161 (5)0.0092 (4)0.0093 (4)0.0034 (4)0.0011 (4)
O100.0156 (4)0.0126 (4)0.0115 (4)0.0053 (4)0.0050 (4)0.0044 (3)
O110.0183 (5)0.0114 (4)0.0108 (4)0.0066 (4)0.0045 (4)0.0036 (3)
O120.0271 (6)0.0227 (5)0.0190 (5)0.0157 (5)0.0131 (4)0.0095 (4)
O130.0139 (5)0.0264 (5)0.0110 (4)0.0030 (4)0.0041 (4)0.0031 (4)
Co10.01010 (9)0.00890 (8)0.00667 (8)0.00262 (6)0.00218 (6)0.00084 (6)
Co20.01542 (12)0.01014 (11)0.00968 (11)0.00476 (9)0.00401 (9)0.00194 (8)
Geometric parameters (Å, º) top
C1—O21.2401 (16)C16—N41.3541 (16)
C1—O11.2729 (16)C16—N61.3548 (16)
C1—C21.5195 (17)C17—N71.3232 (17)
C2—N11.3358 (16)C17—N61.3310 (17)
C2—C31.3922 (17)C17—N81.3636 (16)
C3—C41.3965 (18)N1—Co12.0218 (11)
C3—H3A0.930N2—Co12.0211 (11)
C4—C51.3952 (18)N3—H3B0.83 (2)
C4—H40.930N3—H3C0.84 (2)
C5—C61.3898 (17)N5—H5B0.83 (2)
C5—H5A0.930N5—H5C0.82 (2)
C6—N11.3356 (16)N7—H7A0.82 (2)
C6—C71.5199 (17)N7—H7B0.81 (2)
C7—O41.2438 (16)N8—H80.86 (3)
C7—O31.2781 (15)O1—Co12.1383 (10)
C8—O61.2373 (16)O3—Co12.1802 (10)
C8—O51.2833 (16)O5—Co12.1532 (10)
C8—C91.5223 (17)O7—Co12.1916 (9)
C9—N21.3391 (16)O9—Co22.0538 (10)
C9—C101.3877 (17)O9—H9A0.79 (3)
C10—C111.3989 (18)O9—H9B0.87 (3)
C10—H10A0.930O10—Co22.1250 (10)
C11—C121.3982 (18)O10—H10B0.81 (3)
C11—H11A0.930O10—H10C0.81 (3)
C12—C131.3920 (17)O11—Co22.1166 (10)
C12—H12A0.930O11—H11B0.81 (3)
C13—N21.3364 (16)O11—H11C0.83 (3)
C13—C141.5196 (17)O12—H12B0.79 (3)
C14—O81.2576 (15)O12—H12C0.85 (3)
C14—O71.2624 (15)O13—H13A0.77 (3)
C15—N31.3205 (17)O13—H13B0.83 (3)
C15—N41.3324 (16)Co2—O9i2.0538 (10)
C15—N81.3706 (16)Co2—O11i2.1166 (10)
C16—N51.3251 (17)Co2—O10i2.1250 (10)
O2—C1—O1126.05 (12)C15—N3—H3C118.9 (14)
O2—C1—C2118.92 (12)H3B—N3—H3C120 (2)
O1—C1—C2115.03 (11)C15—N4—C16115.97 (11)
N1—C2—C3121.29 (12)C16—N5—H5B121.4 (16)
N1—C2—C1112.54 (11)C16—N5—H5C120.0 (16)
C3—C2—C1126.15 (11)H5B—N5—H5C119 (2)
C2—C3—C4117.93 (12)C17—N6—C16115.98 (11)
C2—C3—H3A121.0C17—N7—H7A117.6 (15)
C4—C3—H3A121.0C17—N7—H7B120.4 (15)
C5—C4—C3119.94 (12)H7A—N7—H7B122 (2)
C5—C4—H4120.0C17—N8—C15119.54 (11)
C3—C4—H4120.0C17—N8—H8116.7 (16)
C6—C5—C4118.55 (12)C15—N8—H8123.8 (16)
C6—C5—H5A120.7C1—O1—Co1116.52 (8)
C4—C5—H5A120.7C7—O3—Co1114.43 (8)
N1—C6—C5120.80 (11)C8—O5—Co1115.52 (8)
N1—C6—C7113.45 (11)C14—O7—Co1114.48 (8)
C5—C6—C7125.72 (11)Co2—O9—H9A119 (2)
O4—C7—O3126.28 (12)Co2—O9—H9B116.3 (18)
O4—C7—C6118.49 (11)H9A—O9—H9B105 (3)
O3—C7—C6115.22 (11)Co2—O10—H10B117.2 (18)
O6—C8—O5126.18 (12)Co2—O10—H10C111.2 (17)
O6—C8—C9118.67 (11)H10B—O10—H10C107 (2)
O5—C8—C9115.14 (11)Co2—O11—H11B134.2 (18)
N2—C9—C10121.47 (12)Co2—O11—H11C113.0 (16)
N2—C9—C8113.40 (11)H11B—O11—H11C102 (2)
C10—C9—C8125.11 (11)H12B—O12—H12C108 (2)
C9—C10—C11118.14 (12)H13A—O13—H13B107 (3)
C9—C10—H10A120.9N2—Co1—N1172.24 (4)
C11—C10—H10A120.9N2—Co1—O1107.89 (4)
C12—C11—C10119.79 (12)N1—Co1—O176.33 (4)
C12—C11—H11A120.1N2—Co1—O576.99 (4)
C10—C11—H11A120.1N1—Co1—O596.02 (4)
C13—C12—C11118.36 (12)O1—Co1—O599.47 (4)
C13—C12—H12A120.8N2—Co1—O3100.34 (4)
C11—C12—H12A120.8N1—Co1—O376.35 (4)
N2—C13—C12121.12 (11)O1—Co1—O3151.15 (4)
N2—C13—C14112.50 (11)O5—Co1—O392.44 (4)
C12—C13—C14126.37 (11)N2—Co1—O776.19 (4)
O8—C14—O7125.66 (12)N1—Co1—O7110.86 (4)
O8—C14—C13117.54 (11)O1—Co1—O787.05 (4)
O7—C14—C13116.80 (11)O5—Co1—O7153.11 (4)
N3—C15—N4120.51 (12)O3—Co1—O794.11 (4)
N3—C15—N8118.32 (12)O9—Co2—O9i180.000 (1)
N4—C15—N8121.16 (11)O9—Co2—O11i88.64 (4)
N5—C16—N4116.86 (12)O9i—Co2—O11i91.36 (4)
N5—C16—N6117.28 (12)O9—Co2—O1191.36 (4)
N4—C16—N6125.86 (12)O9i—Co2—O1188.64 (4)
N7—C17—N6120.34 (12)O11i—Co2—O11180.0
N7—C17—N8118.30 (12)O9—Co2—O10i89.04 (4)
N6—C17—N8121.36 (12)O9i—Co2—O10i90.96 (4)
C6—N1—C2121.47 (11)O11i—Co2—O10i87.97 (4)
C6—N1—Co1119.06 (8)O11—Co2—O10i92.03 (4)
C2—N1—Co1119.45 (9)O9—Co2—O1090.96 (4)
C13—N2—C9121.11 (11)O9i—Co2—O1089.04 (4)
C13—N2—Co1119.93 (9)O11i—Co2—O1092.03 (4)
C9—N2—Co1118.84 (9)O11—Co2—O1087.97 (4)
C15—N3—H3B121.1 (16)O10i—Co2—O10180.00 (6)
O2—C1—C2—N1175.99 (12)N5—C16—N6—C17179.97 (12)
O1—C1—C2—N13.28 (16)N4—C16—N6—C170.49 (19)
O2—C1—C2—C32.4 (2)N7—C17—N8—C15176.18 (12)
O1—C1—C2—C3178.33 (12)N6—C17—N8—C153.55 (19)
N1—C2—C3—C40.67 (19)N3—C15—N8—C17179.25 (12)
C1—C2—C3—C4177.60 (12)N4—C15—N8—C170.25 (19)
C2—C3—C4—C50.53 (19)O2—C1—O1—Co1178.25 (11)
C3—C4—C5—C61.09 (18)C2—C1—O1—Co10.95 (14)
C4—C5—C6—N10.48 (18)O4—C7—O3—Co1168.69 (10)
C4—C5—C6—C7178.42 (11)C6—C7—O3—Co112.44 (13)
N1—C6—C7—O4174.80 (11)O6—C8—O5—Co1177.49 (11)
C5—C6—C7—O47.12 (19)C9—C8—O5—Co11.93 (14)
N1—C6—C7—O36.23 (15)O8—C14—O7—Co1177.89 (10)
C5—C6—C7—O3171.84 (12)C13—C14—O7—Co12.28 (14)
O6—C8—C9—N2179.96 (12)C13—N2—Co1—O184.95 (10)
O5—C8—C9—N20.58 (16)C9—N2—Co1—O199.00 (10)
O6—C8—C9—C101.74 (19)C13—N2—Co1—O5179.15 (10)
O5—C8—C9—C10177.73 (12)C9—N2—Co1—O53.10 (9)
N2—C9—C10—C111.12 (19)C13—N2—Co1—O389.02 (10)
C8—C9—C10—C11179.30 (12)C9—N2—Co1—O387.03 (10)
C9—C10—C11—C120.45 (19)C13—N2—Co1—O72.71 (9)
C10—C11—C12—C130.63 (19)C9—N2—Co1—O7178.76 (10)
C11—C12—C13—N21.12 (19)C6—N1—Co1—O1178.41 (10)
C11—C12—C13—C14177.53 (12)C2—N1—Co1—O12.95 (9)
N2—C13—C14—O8179.98 (11)C6—N1—Co1—O583.28 (9)
C12—C13—C14—O81.28 (19)C2—N1—Co1—O595.36 (9)
N2—C13—C14—O70.13 (16)C6—N1—Co1—O37.78 (9)
C12—C13—C14—O7178.88 (12)C2—N1—Co1—O3173.58 (10)
C5—C6—N1—C20.73 (18)C6—N1—Co1—O797.00 (9)
C7—C6—N1—C2177.45 (11)C2—N1—Co1—O784.36 (10)
C5—C6—N1—Co1177.89 (9)C1—O1—Co1—N2172.32 (9)
C7—C6—N1—Co13.94 (14)C1—O1—Co1—N10.91 (9)
C3—C2—N1—C61.32 (18)C1—O1—Co1—O593.04 (10)
C1—C2—N1—C6177.17 (11)C1—O1—Co1—O320.05 (14)
C3—C2—N1—Co1177.29 (9)C1—O1—Co1—O7113.22 (10)
C1—C2—N1—Co14.23 (14)C8—O5—Co1—N22.70 (9)
C12—C13—N2—C90.48 (19)C8—O5—Co1—N1173.89 (9)
C14—C13—N2—C9178.34 (11)C8—O5—Co1—O1109.02 (9)
C12—C13—N2—Co1176.44 (9)C8—O5—Co1—O397.36 (9)
C14—C13—N2—Co12.38 (14)C8—O5—Co1—O76.70 (15)
C10—C9—N2—C130.67 (19)C7—O3—Co1—N2161.61 (9)
C8—C9—N2—C13179.04 (11)C7—O3—Co1—N111.20 (9)
C10—C9—N2—Co1175.33 (9)C7—O3—Co1—O130.34 (13)
C8—C9—N2—Co13.04 (14)C7—O3—Co1—O584.40 (9)
N3—C15—N4—C16176.38 (12)C7—O3—Co1—O7121.69 (9)
N8—C15—N4—C162.61 (18)C14—O7—Co1—N22.67 (9)
N5—C16—N4—C15176.90 (12)C14—O7—Co1—N1173.94 (9)
N6—C16—N4—C152.58 (19)C14—O7—Co1—O1111.90 (9)
N7—C17—N6—C16176.15 (12)C14—O7—Co1—O56.68 (14)
N8—C17—N6—C163.57 (18)C14—O7—Co1—O396.99 (9)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O13ii0.83 (2)1.97 (2)2.7982 (18)178 (3)
N3—H3C···O30.84 (2)2.21 (2)3.0041 (17)159 (2)
N5—H5B···O3iii0.83 (2)2.35 (2)2.9713 (16)133 (2)
N5—H5C···N4iii0.82 (2)2.16 (2)2.9765 (17)178 (3)
N7—H7A···O10iii0.82 (2)2.22 (2)3.0291 (16)169 (2)
N7—H7B···O7ii0.80 (2)2.26 (2)3.0560 (17)172 (2)
N8—H8···O8ii0.85 (2)1.89 (2)2.7404 (17)174 (2)
O9—H9A···N6iii0.79 (3)1.94 (3)2.7298 (16)179 (4)
O9—H9B···O2iv0.87 (3)1.89 (3)2.7263 (16)162 (3)
O10—H10B···O120.81 (2)1.88 (3)2.6759 (17)167 (3)
O10—H10C···O4i0.81 (2)1.97 (2)2.7675 (15)171 (3)
O11—H11B···O50.80 (3)1.97 (2)2.7313 (14)157 (2)
O11—H11C···O2v0.83 (2)1.90 (2)2.7101 (16)165 (2)
O12—H12B···O4vi0.79 (3)2.06 (3)2.8389 (17)174 (2)
O12—H12C···O60.84 (3)1.98 (3)2.8196 (16)171 (2)
O13—H13A···O1vii0.77 (3)2.01 (3)2.7642 (16)171 (3)
O13—H13B···O80.82 (3)1.87 (3)2.6642 (14)163 (2)
C4—H4···O13viii0.932.433.164 (2)136
C10—H10A···O6ix0.932.453.344 (2)162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x, y, z; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x1, y, z; (vii) x, y+1, z; (viii) x, y, z+1; (ix) x1, y, z.

Experimental details

Crystal data
Chemical formula(C3H7N6)2[Co(H2O)6][Co(C7H3NO4)2]2·4H2O
Mr1271.66
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.4003 (6), 11.3014 (7), 13.8794 (10)
α, β, γ (°)95.901 (6), 106.017 (5), 107.133 (5)
V3)1185.73 (14)
Z1
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.50 × 0.50 × 0.45
Data collection
DiffractometerStoe IPDSII
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2004)
Tmin, Tmax0.570, 0.595
No. of measured, independent and
observed [I > 2σ(I)] reflections
14236, 6289, 6111
Rint0.021
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.06
No. of reflections6289
No. of parameters426
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.90

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O13i0.83 (2)1.97 (2)2.7982 (18)178 (3)
N3—H3C···O30.84 (2)2.21 (2)3.0041 (17)159 (2)
N5—H5B···O3ii0.83 (2)2.35 (2)2.9713 (16)133 (2)
N5—H5C···N4ii0.82 (2)2.16 (2)2.9765 (17)178 (3)
N7—H7A···O10ii0.82 (2)2.22 (2)3.0291 (16)169 (2)
N7—H7B···O7i0.80 (2)2.26 (2)3.0560 (17)172 (2)
N8—H8···O8i0.85 (2)1.89 (2)2.7404 (17)174 (2)
O9—H9A···N6ii0.79 (3)1.94 (3)2.7298 (16)179 (4)
O9—H9B···O2iii0.87 (3)1.89 (3)2.7263 (16)162 (3)
O10—H10B···O120.81 (2)1.88 (3)2.6759 (17)167 (3)
O10—H10C···O4iv0.81 (2)1.97 (2)2.7675 (15)171 (3)
O11—H11B···O50.80 (3)1.97 (2)2.7313 (14)157 (2)
O11—H11C···O2v0.83 (2)1.90 (2)2.7101 (16)165 (2)
O12—H12B···O4vi0.79 (3)2.06 (3)2.8389 (17)174 (2)
O12—H12C···O60.84 (3)1.98 (3)2.8196 (16)171 (2)
O13—H13A···O1vii0.77 (3)2.01 (3)2.7642 (16)171 (3)
O13—H13B···O80.82 (3)1.87 (3)2.6642 (14)163 (2)
C4—H4···O13viii0.932.433.164 (2)136
C10—H10A···O6ix0.932.453.344 (2)162
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x, y1, z; (iv) x, y, z+1; (v) x, y+1, z+1; (vi) x1, y, z; (vii) x, y+1, z; (viii) x, y, z+1; (ix) x1, y, z.
 

Acknowledgements

Financial support from Teacher Training University is gratefully acknowledged.

References

First citationAghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheshmani, S., Aghabozorg, H., Panah, F. M., Alizadeh, R., Kickelbick, G., Nakhjavan, B., Moghimi, A., Ramezanipour, F. & Aghabozorg, H. R. (2006). Z. Anorg. Allg. Chem. 632, 469–474.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2004). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds