metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ3-Iodo-tri-μ3-sulfido-sulfidotris[tris­­(4-meth­oxy­phen­yl)phosphine-κP]tri­copper(I)tungsten(VI) N,N-di­methyl­formide solvate

aInstitute of Molecular Engineering and Advanced Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, Jiangsu, People's Republic of China, and bHuaiyin Teachers College, Huaian 223001, Jiangsu, People's Republic of China
*Correspondence e-mail: chizhang@mail.njust.edu.cn

(Received 25 October 2007; accepted 5 November 2007; online 6 December 2007)

A new W/S/Cu cluster, [Cu3WIS4(C21H21O3P)3]·C3H7NO, was formed by the reaction of ammonium tetra­thio­tungstate(VI), cuprous iodide and tris­(4-methoxy­phen­yl)phosphine in N,N-dimethyl­formamide. The title compound exhibits a heavily distorted cubane-like skeleton in which the average Cu—I, Cu—S and W—μ3-S distances are 2.934, 2.302 and 2.249 Å, respectively. The W atom exhibits tetrahedral geometry, formed by three μ3-S and one terminal S atom; the W—S(terminal) bond length is 2.1426 (13) Å. Each Cu atom is coordinated by one P atom from a tris­(4-methoxy­phen­yl)phosphine (mop), two μ3-S and one μ3-I atom, forming a distorted tetra­hedral coordination geometry. Some of the mop ligand methyl groups have large librations. Together with the three neutral mop ligands, the title compound is neutral; this contrasts with the all-halogen-coordinated Mo/S/Ag clusters with the same structure, which carry negative charge.

Related literature

Two relevant analogs of the title compound are [n-Bu4N]3[MoS4Ag3BrX3] (X = Cl and I; Shi et al., 1994[Shi, S., Ji, W., Tang, S. H., Lang, J. P. & Xin, X. Q. (1994). J. Am. Chem. Soc. 116, 3615-3616.]). Mo(W)/S/Cu(Ag) clusters have been reviewed by How et al. (1996[How, H. W., Xin, X. Q. & Shi, S. (1996). Coord. Chem. Rev. 153, 25-56.]) and Niu et al. (2004[Niu, Y. Y., Zheng, H. G., Hou, H. W. & Xin, X. Q. (2004). Coord. Chem. Rev. 248, 169-183.]). The nonlinear optical properties of Mo(W)/S/Cu(Ag) clusters have been reviewed by Zhang et al. (2007[Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3WIS4(C21H21O3P)3]·C3H7NO

  • Mr = 1759.75

  • Triclinic, [P \overline 1]

  • a = 10.5383 (11) Å

  • b = 18.5135 (16) Å

  • c = 19.3412 (19) Å

  • α = 68.869 (5)°

  • β = 84.706 (6)°

  • γ = 80.605 (6)°

  • V = 3470.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.25 mm−1

  • T = 193 (2) K

  • 0.60 × 0.28 × 0.17 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.248, Tmax = 0.575

  • 34152 measured reflections

  • 12730 independent reflections

  • 11088 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.088

  • S = 1.14

  • 12730 reflections

  • 814 parameters

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −1.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C64—H64⋯O10i 0.95 2.62 3.126 (13) 114
C55—H55⋯I1 0.95 2.96 3.888 (5) 164
C49—H49B⋯I1ii 0.98 3.30 3.864 (5) 119
C42—H42B⋯S2iii 0.98 2.85 3.650 (5) 139
C38—H38⋯S4iv 0.95 2.88 3.646 (5) 138
C34—H34⋯S2 0.95 2.96 3.860 (5) 158
C23—H23⋯S1 0.95 2.88 3.794 (5) 162
C17—H17⋯O2iv 0.95 2.49 3.437 (7) 177
C9—H9⋯O7v 0.95 2.51 3.273 (6) 137
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z; (iii) -x+2, -y+1, -z+1; (iv) x+1, y, z; (v) -x+1, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiometallates can aggregate with closed d-shell metals to form clusters having unusal geometry (How, Xin et al., 1996; Niu et al., 2004) and featuring nonlinear optical properties (Zhang et al., 2007). But the crystal structures of these clusters containing neutral tri(4-methoxylphenyl)phosphine ligands (mop) have not been reported until now. In order to explore the chemistry of Mo(W)/S/Cu(Ag) clusters extensively,we have synthesized the title cluster by the reaction in solution at normal temperatures.

As illustrated in Fig. 1, the title compound exhibits a heavily distorted cubane-like skeleton,where the average Cu—I, Cu—S and W—S distances are 2.934, 2.302 and 2.249 Å,respectively. The W(VI) retains the tetrhedral geometry, formed by three µ3-S and one terminal S atoms; each Cu(I) is coordinated by one P atom from mop, two µ3-S and one µ3-I atoms, forming a distorted tetrahedral coordination geometry.

Together with three neutral mop ligands, the title compound is neutral, This contrasts with the all-halogen-coordinated Mo(W)/S/Ag cluster with the same structure,which carries a negative charge (Shi et al., 1994).

Related literature top

Two relevant analogs of the title compound are [n-Bu4N]3[MoS4Ag3BrX3] (X = Cl and I; Shi et al., 1994). Mo(W)/S/Cu(Ag) clusters have been reviewed by How et al. (1996); Niu et al. (2004). The non-linear optical properties of Mo(W)/S/Cu(Ag) clusters have been reviewed by Zhang et al. (2007).

Experimental top

3 mmol CuI, 1 mmol [NH4]2WS4 and 3 mmol mop were added in 5 mL dmf with thorough stir for 5 minutes. After filtration, the orange-red filtrate was carefully laid on the surface with 10 ml i-PrOH. Yellow block crystals were obtained after about ten days. Yield: 1.058 g in pure form, 60.1% (based on W). Analysis calculated for C66H70Cu3INO10P3S4W: C 45.05, H 4.01, N 0.80%; found: C 45.02, H 4.03, N 0.81%. IR: ν, cm-1, 504.35 s, 444.74 s(W-µ3-S).

Refinement top

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.5Ueq for methyl H atoms and 1.2Ueq for phenyl H atoms. C—H bonds are 0.95 Å in phenyl and 0.98 Å in methyl.

Structure description top

Thiometallates can aggregate with closed d-shell metals to form clusters having unusal geometry (How, Xin et al., 1996; Niu et al., 2004) and featuring nonlinear optical properties (Zhang et al., 2007). But the crystal structures of these clusters containing neutral tri(4-methoxylphenyl)phosphine ligands (mop) have not been reported until now. In order to explore the chemistry of Mo(W)/S/Cu(Ag) clusters extensively,we have synthesized the title cluster by the reaction in solution at normal temperatures.

As illustrated in Fig. 1, the title compound exhibits a heavily distorted cubane-like skeleton,where the average Cu—I, Cu—S and W—S distances are 2.934, 2.302 and 2.249 Å,respectively. The W(VI) retains the tetrhedral geometry, formed by three µ3-S and one terminal S atoms; each Cu(I) is coordinated by one P atom from mop, two µ3-S and one µ3-I atoms, forming a distorted tetrahedral coordination geometry.

Together with three neutral mop ligands, the title compound is neutral, This contrasts with the all-halogen-coordinated Mo(W)/S/Ag cluster with the same structure,which carries a negative charge (Shi et al., 1994).

Two relevant analogs of the title compound are [n-Bu4N]3[MoS4Ag3BrX3] (X = Cl and I; Shi et al., 1994). Mo(W)/S/Cu(Ag) clusters have been reviewed by How et al. (1996); Niu et al. (2004). The non-linear optical properties of Mo(W)/S/Cu(Ag) clusters have been reviewed by Zhang et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL (Sheldrick, 2000); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.
µ3-Iodo-tri-µ3-sulfido-sulfidotris[tris(4-methoxyphenyl)phosphine- κP]tricopper(I)tungsten(VI) N,N-dimethylformide solvate top
Crystal data top
[Cu3WIS4(C21H21O3P)3]·C3H7NOZ = 2
Mr = 1759.75F(000) = 1752
Triclinic, P1Dx = 1.684 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 10.5383 (11) ÅCell parameters from 13164 reflections
b = 18.5135 (16) Åθ = 3.0–25.3°
c = 19.3412 (19) ŵ = 3.25 mm1
α = 68.869 (5)°T = 193 K
β = 84.706 (6)°Block, orange
γ = 80.605 (6)°0.60 × 0.28 × 0.17 mm
V = 3470.2 (6) Å3
Data collection top
Rigaku Mercury
diffractometer
12730 independent reflections
Radiation source: fine-focus sealed tube11088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2222
Tmin = 0.248, Tmax = 0.575l = 2323
34152 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0341P)2 + 1.022P]
where P = (Fo2 + 2Fc2)/3
12730 reflections(Δ/σ)max = 0.001
814 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 1.44 e Å3
Crystal data top
[Cu3WIS4(C21H21O3P)3]·C3H7NOγ = 80.605 (6)°
Mr = 1759.75V = 3470.2 (6) Å3
Triclinic, P1Z = 2
a = 10.5383 (11) ÅMo Kα radiation
b = 18.5135 (16) ŵ = 3.25 mm1
c = 19.3412 (19) ÅT = 193 K
α = 68.869 (5)°0.60 × 0.28 × 0.17 mm
β = 84.706 (6)°
Data collection top
Rigaku Mercury
diffractometer
12730 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
11088 reflections with I > 2σ(I)
Tmin = 0.248, Tmax = 0.575Rint = 0.042
34152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.14Δρmax = 1.16 e Å3
12730 reflectionsΔρmin = 1.44 e Å3
814 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.399659 (17)0.826474 (11)0.320297 (10)0.02020 (7)
I10.78025 (3)0.884325 (19)0.301151 (17)0.02774 (9)
Cu10.50642 (6)0.95940 (4)0.27402 (3)0.03064 (16)
Cu20.61078 (6)0.79755 (4)0.40397 (3)0.02737 (15)
Cu30.61930 (6)0.79911 (4)0.24231 (3)0.03038 (16)
S10.43252 (11)0.89443 (7)0.39090 (6)0.0242 (3)
S20.54227 (12)0.71584 (7)0.35247 (6)0.0251 (3)
S30.44925 (11)0.89628 (7)0.20204 (6)0.0232 (3)
S40.20427 (13)0.80367 (9)0.33394 (8)0.0368 (3)
P10.52675 (12)1.08505 (7)0.21974 (7)0.0231 (3)
P20.70089 (12)0.74719 (7)0.51424 (7)0.0216 (3)
P30.74062 (12)0.75451 (8)0.16219 (7)0.0237 (3)
O10.7833 (3)1.1405 (2)0.07965 (18)0.0391 (9)
O20.0315 (4)1.3019 (3)0.1789 (3)0.0623 (13)
O30.8203 (3)1.2235 (2)0.37847 (19)0.0374 (9)
O40.8635 (4)1.0038 (2)0.5884 (2)0.0504 (11)
O50.3289 (4)0.5759 (2)0.7424 (2)0.0429 (10)
O61.1917 (3)0.5281 (2)0.5370 (2)0.0386 (9)
O70.8379 (3)0.9912 (2)0.13538 (18)0.0367 (9)
O81.2404 (3)0.5585 (2)0.27700 (19)0.0361 (9)
O90.4908 (4)0.5467 (2)0.0580 (2)0.0452 (10)
O100.9702 (12)0.4409 (6)0.0350 (5)0.182 (5)
N10.8345 (7)0.3748 (5)0.0374 (4)0.087 (2)
C10.5987 (4)1.1061 (3)0.1267 (2)0.0226 (11)
C20.6850 (5)1.0483 (3)0.1110 (3)0.0283 (12)
H20.70380.99850.14880.034*
C30.7433 (5)1.0617 (3)0.0422 (3)0.0309 (12)
H30.80251.02140.03280.037*
C40.7169 (5)1.1333 (3)0.0137 (3)0.0287 (12)
C50.6296 (5)1.1911 (3)0.0006 (3)0.0309 (12)
H50.60991.24020.03920.037*
C60.5702 (5)1.1775 (3)0.0692 (3)0.0288 (12)
H60.50931.21740.07790.035*
C70.7590 (6)1.2122 (4)0.1391 (3)0.0462 (16)
H7A0.66831.22160.15170.069*
H7B0.81371.20990.18230.069*
H7C0.77811.25470.12460.069*
C80.3783 (5)1.1532 (3)0.2070 (2)0.0236 (11)
C90.2633 (5)1.1293 (3)0.2001 (3)0.0318 (12)
H90.26231.07700.20300.038*
C100.1505 (5)1.1811 (4)0.1889 (3)0.0453 (15)
H100.07281.16470.18270.054*
C110.1499 (5)1.2563 (3)0.1867 (3)0.0378 (13)
C120.2630 (5)1.2816 (3)0.1925 (3)0.0330 (13)
H120.26351.33400.18950.040*
C130.3760 (5)1.2295 (3)0.2028 (3)0.0309 (12)
H130.45411.24670.20710.037*
C140.0244 (7)1.3766 (4)0.1859 (5)0.091 (3)
H14A0.05931.37020.23330.137*
H14B0.06561.40110.18400.137*
H14C0.07451.40990.14510.137*
C150.6246 (5)1.1232 (3)0.2678 (3)0.0262 (11)
C160.7235 (5)1.1658 (3)0.2345 (3)0.0286 (12)
H160.74741.17350.18400.034*
C170.7884 (5)1.1976 (3)0.2727 (3)0.0351 (13)
H170.85691.22620.24880.042*
C180.7534 (5)1.1876 (3)0.3465 (3)0.0289 (12)
C190.6547 (5)1.1449 (3)0.3806 (3)0.0305 (12)
H190.62971.13800.43070.037*
C200.5925 (5)1.1123 (3)0.3421 (3)0.0305 (12)
H200.52641.08180.36660.037*
C210.8006 (6)1.2060 (4)0.4570 (3)0.0436 (15)
H21A0.71121.22460.46780.065*
H21B0.85861.23220.47380.065*
H21C0.81871.14940.48280.065*
C220.7476 (4)0.8209 (3)0.5442 (2)0.0226 (11)
C230.6890 (5)0.8972 (3)0.5150 (3)0.0356 (13)
H230.62020.90930.48240.043*
C240.7279 (5)0.9567 (3)0.5320 (3)0.0426 (15)
H240.68501.00860.51140.051*
C250.8288 (5)0.9411 (3)0.5786 (3)0.0311 (12)
C260.8862 (5)0.8650 (3)0.6096 (3)0.0351 (13)
H260.95420.85300.64270.042*
C270.8460 (5)0.8055 (3)0.5930 (3)0.0336 (13)
H270.88650.75320.61530.040*
C280.9723 (6)0.9930 (4)0.6306 (4)0.0573 (18)
H28A0.95700.95800.68150.086*
H28B0.98751.04360.63110.086*
H28C1.04790.96980.60840.086*
C290.5894 (4)0.6943 (3)0.5847 (2)0.0229 (11)
C300.5779 (5)0.6949 (3)0.6571 (3)0.0281 (12)
H300.63140.72330.67150.034*
C310.4906 (5)0.6551 (3)0.7077 (3)0.0312 (12)
H310.48370.65650.75660.037*
C320.4121 (5)0.6129 (3)0.6876 (3)0.0311 (12)
C330.4212 (5)0.6114 (3)0.6168 (3)0.0325 (12)
H330.36830.58240.60280.039*
C340.5092 (5)0.6532 (3)0.5657 (3)0.0302 (12)
H340.51400.65320.51640.036*
C350.2483 (6)0.5303 (4)0.7255 (3)0.0519 (17)
H35A0.19050.56430.68620.078*
H35B0.19730.50430.77000.078*
H35C0.30160.49080.70870.078*
C360.8465 (4)0.6772 (3)0.5241 (2)0.0224 (11)
C370.9537 (4)0.6993 (3)0.4773 (2)0.0241 (11)
H370.94830.75020.44060.029*
C381.0663 (5)0.6488 (3)0.4833 (3)0.0271 (11)
H381.13830.66530.45140.033*
C391.0757 (5)0.5738 (3)0.5356 (3)0.0270 (11)
C400.9708 (5)0.5504 (3)0.5824 (3)0.0296 (12)
H400.97620.49890.61800.036*
C410.8581 (5)0.6020 (3)0.5771 (3)0.0286 (12)
H410.78740.58590.61020.034*
C421.1992 (5)0.4470 (3)0.5816 (3)0.0403 (14)
H42A1.18910.44140.63410.060*
H42B1.28310.41940.57260.060*
H42C1.13060.42470.56870.060*
C430.7802 (4)0.8289 (3)0.0747 (3)0.0247 (11)
C440.6792 (5)0.8740 (3)0.0303 (3)0.0294 (12)
H440.59310.86800.04830.035*
C450.7016 (5)0.9271 (3)0.0390 (3)0.0324 (12)
H450.63100.95640.06890.039*
C460.8261 (5)0.9383 (3)0.0658 (3)0.0274 (12)
C470.9280 (5)0.8961 (3)0.0211 (3)0.0305 (12)
H471.01380.90450.03780.037*
C480.9038 (5)0.8414 (3)0.0484 (3)0.0282 (12)
H480.97410.81190.07830.034*
C490.9607 (5)1.0150 (4)0.1609 (3)0.0470 (16)
H49A0.98991.03760.12760.071*
H49B0.95451.05410.21110.071*
H49C1.02250.96950.16170.071*
C500.8925 (4)0.6942 (3)0.1970 (3)0.0243 (11)
C510.9556 (5)0.6379 (3)0.1684 (3)0.0321 (12)
H510.91890.63030.12880.039*
C521.0695 (5)0.5933 (3)0.1961 (3)0.0333 (13)
H521.11060.55490.17630.040*
C531.1244 (4)0.6047 (3)0.2537 (3)0.0268 (11)
C541.0637 (5)0.6590 (3)0.2832 (3)0.0311 (12)
H541.10090.66650.32260.037*
C550.9478 (5)0.7028 (3)0.2553 (3)0.0285 (12)
H550.90550.73960.27660.034*
C561.3030 (5)0.5718 (3)0.3328 (3)0.0434 (15)
H56A1.31140.62740.31720.065*
H56B1.38860.54080.34000.065*
H56C1.25190.55640.37940.065*
C570.6601 (4)0.6930 (3)0.1297 (3)0.0247 (11)
C580.6936 (5)0.6841 (3)0.0609 (3)0.0317 (12)
H580.75730.71200.02930.038*
C590.6351 (5)0.6354 (3)0.0392 (3)0.0335 (13)
H590.65860.63000.00750.040*
C600.5423 (5)0.5940 (3)0.0844 (3)0.0334 (13)
C610.5060 (5)0.6027 (3)0.1520 (3)0.0339 (13)
H610.44110.57530.18300.041*
C620.5657 (5)0.6522 (3)0.1741 (3)0.0296 (12)
H620.54120.65800.22050.036*
C630.3998 (7)0.4996 (4)0.1038 (3)0.0581 (18)
H63A0.43780.46700.15140.087*
H63B0.37600.46610.07920.087*
H63C0.32290.53340.11240.087*
C640.8871 (10)0.4386 (7)0.0048 (7)0.102 (3)
H640.85310.48430.01560.122*
C650.7263 (8)0.3801 (6)0.0877 (5)0.108 (3)
H65A0.74370.34020.13670.162*
H65B0.64900.37160.06880.162*
H65C0.71260.43210.09170.162*
C660.8757 (9)0.3037 (5)0.0244 (5)0.092 (3)
H66A0.94690.31080.01270.137*
H66B0.80400.28870.00620.137*
H66C0.90480.26250.07080.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01969 (11)0.02098 (12)0.01796 (11)0.00449 (8)0.00053 (8)0.00382 (8)
I10.02311 (17)0.0277 (2)0.02850 (19)0.00488 (14)0.00152 (14)0.00455 (14)
Cu10.0427 (4)0.0229 (4)0.0254 (3)0.0109 (3)0.0020 (3)0.0054 (3)
Cu20.0315 (3)0.0265 (4)0.0229 (3)0.0010 (3)0.0087 (3)0.0075 (3)
Cu30.0321 (4)0.0300 (4)0.0228 (3)0.0036 (3)0.0034 (3)0.0063 (3)
S10.0253 (6)0.0242 (7)0.0228 (6)0.0016 (5)0.0014 (5)0.0092 (5)
S20.0323 (7)0.0186 (7)0.0221 (6)0.0013 (5)0.0042 (5)0.0048 (5)
S30.0235 (6)0.0243 (7)0.0177 (6)0.0023 (5)0.0033 (5)0.0025 (5)
S40.0283 (7)0.0433 (9)0.0369 (8)0.0150 (6)0.0023 (6)0.0086 (7)
P10.0262 (7)0.0214 (7)0.0210 (7)0.0056 (5)0.0008 (5)0.0057 (5)
P20.0232 (7)0.0216 (7)0.0194 (6)0.0014 (5)0.0030 (5)0.0067 (5)
P30.0219 (7)0.0260 (7)0.0219 (7)0.0020 (5)0.0014 (5)0.0080 (6)
O10.039 (2)0.052 (3)0.024 (2)0.0059 (18)0.0060 (17)0.0123 (18)
O20.028 (2)0.054 (3)0.099 (4)0.006 (2)0.003 (2)0.026 (3)
O30.036 (2)0.044 (2)0.038 (2)0.0138 (18)0.0025 (17)0.0179 (18)
O40.050 (3)0.040 (3)0.073 (3)0.004 (2)0.024 (2)0.029 (2)
O50.044 (2)0.045 (3)0.040 (2)0.018 (2)0.0146 (19)0.0136 (19)
O60.030 (2)0.028 (2)0.049 (2)0.0077 (16)0.0053 (17)0.0086 (18)
O70.037 (2)0.040 (2)0.026 (2)0.0152 (18)0.0024 (16)0.0013 (17)
O80.030 (2)0.037 (2)0.036 (2)0.0044 (17)0.0045 (17)0.0103 (18)
O90.050 (2)0.048 (3)0.048 (2)0.018 (2)0.004 (2)0.025 (2)
O100.272 (14)0.157 (9)0.142 (8)0.102 (9)0.029 (8)0.061 (7)
N10.101 (6)0.077 (5)0.068 (4)0.014 (5)0.006 (4)0.007 (4)
C10.023 (3)0.024 (3)0.022 (3)0.003 (2)0.004 (2)0.008 (2)
C20.027 (3)0.030 (3)0.023 (3)0.003 (2)0.001 (2)0.004 (2)
C30.030 (3)0.030 (3)0.033 (3)0.001 (2)0.001 (2)0.014 (2)
C40.027 (3)0.040 (3)0.022 (3)0.009 (2)0.000 (2)0.013 (2)
C50.032 (3)0.029 (3)0.025 (3)0.005 (2)0.001 (2)0.001 (2)
C60.029 (3)0.026 (3)0.030 (3)0.001 (2)0.001 (2)0.010 (2)
C70.053 (4)0.057 (4)0.024 (3)0.019 (3)0.004 (3)0.006 (3)
C80.029 (3)0.027 (3)0.019 (3)0.010 (2)0.004 (2)0.011 (2)
C90.030 (3)0.033 (3)0.040 (3)0.010 (2)0.000 (2)0.020 (3)
C100.029 (3)0.051 (4)0.060 (4)0.012 (3)0.001 (3)0.022 (3)
C110.029 (3)0.037 (4)0.043 (3)0.003 (3)0.000 (3)0.012 (3)
C120.038 (3)0.028 (3)0.034 (3)0.000 (2)0.003 (2)0.015 (2)
C130.029 (3)0.031 (3)0.034 (3)0.007 (2)0.002 (2)0.011 (2)
C140.065 (5)0.064 (6)0.149 (8)0.027 (4)0.008 (5)0.057 (6)
C150.026 (3)0.027 (3)0.025 (3)0.002 (2)0.002 (2)0.009 (2)
C160.025 (3)0.037 (3)0.022 (3)0.008 (2)0.004 (2)0.007 (2)
C170.025 (3)0.043 (3)0.035 (3)0.011 (2)0.002 (2)0.008 (3)
C180.022 (3)0.028 (3)0.037 (3)0.001 (2)0.012 (2)0.012 (2)
C190.033 (3)0.027 (3)0.030 (3)0.004 (2)0.001 (2)0.008 (2)
C200.032 (3)0.032 (3)0.028 (3)0.015 (2)0.001 (2)0.007 (2)
C210.050 (4)0.051 (4)0.039 (3)0.013 (3)0.009 (3)0.022 (3)
C220.023 (3)0.025 (3)0.019 (3)0.004 (2)0.000 (2)0.006 (2)
C230.035 (3)0.030 (3)0.041 (3)0.006 (2)0.018 (3)0.012 (3)
C240.048 (4)0.025 (3)0.057 (4)0.009 (3)0.019 (3)0.019 (3)
C250.029 (3)0.028 (3)0.042 (3)0.004 (2)0.001 (2)0.019 (3)
C260.028 (3)0.041 (4)0.041 (3)0.002 (3)0.014 (2)0.021 (3)
C270.041 (3)0.018 (3)0.041 (3)0.000 (2)0.014 (3)0.009 (2)
C280.056 (4)0.046 (4)0.086 (5)0.010 (3)0.023 (4)0.036 (4)
C290.021 (3)0.023 (3)0.022 (3)0.003 (2)0.003 (2)0.007 (2)
C300.030 (3)0.027 (3)0.029 (3)0.005 (2)0.004 (2)0.011 (2)
C310.045 (3)0.030 (3)0.019 (3)0.011 (3)0.007 (2)0.008 (2)
C320.027 (3)0.030 (3)0.032 (3)0.001 (2)0.004 (2)0.008 (2)
C330.028 (3)0.037 (3)0.035 (3)0.011 (2)0.000 (2)0.014 (3)
C340.033 (3)0.041 (3)0.021 (3)0.007 (2)0.002 (2)0.015 (2)
C350.044 (4)0.054 (4)0.054 (4)0.022 (3)0.015 (3)0.014 (3)
C360.027 (3)0.022 (3)0.021 (3)0.003 (2)0.002 (2)0.011 (2)
C370.025 (3)0.021 (3)0.021 (3)0.004 (2)0.003 (2)0.000 (2)
C380.024 (3)0.029 (3)0.028 (3)0.005 (2)0.002 (2)0.009 (2)
C390.023 (3)0.026 (3)0.032 (3)0.003 (2)0.007 (2)0.011 (2)
C400.035 (3)0.020 (3)0.026 (3)0.001 (2)0.003 (2)0.001 (2)
C410.025 (3)0.026 (3)0.034 (3)0.003 (2)0.003 (2)0.010 (2)
C420.042 (3)0.025 (3)0.052 (4)0.013 (3)0.012 (3)0.015 (3)
C430.025 (3)0.028 (3)0.025 (3)0.008 (2)0.002 (2)0.011 (2)
C440.020 (3)0.034 (3)0.031 (3)0.007 (2)0.001 (2)0.007 (2)
C450.024 (3)0.037 (3)0.032 (3)0.003 (2)0.009 (2)0.005 (2)
C460.032 (3)0.031 (3)0.020 (3)0.007 (2)0.003 (2)0.008 (2)
C470.020 (3)0.038 (3)0.030 (3)0.008 (2)0.002 (2)0.006 (2)
C480.023 (3)0.031 (3)0.026 (3)0.001 (2)0.005 (2)0.006 (2)
C490.041 (3)0.051 (4)0.032 (3)0.018 (3)0.007 (3)0.008 (3)
C500.021 (3)0.026 (3)0.021 (3)0.001 (2)0.003 (2)0.005 (2)
C510.032 (3)0.036 (3)0.027 (3)0.001 (2)0.003 (2)0.011 (2)
C520.036 (3)0.034 (3)0.032 (3)0.002 (2)0.003 (2)0.017 (3)
C530.022 (3)0.025 (3)0.026 (3)0.004 (2)0.003 (2)0.001 (2)
C540.034 (3)0.030 (3)0.028 (3)0.003 (2)0.004 (2)0.009 (2)
C550.032 (3)0.029 (3)0.027 (3)0.003 (2)0.003 (2)0.015 (2)
C560.034 (3)0.042 (4)0.048 (4)0.002 (3)0.012 (3)0.010 (3)
C570.021 (3)0.024 (3)0.024 (3)0.001 (2)0.002 (2)0.004 (2)
C580.029 (3)0.036 (3)0.031 (3)0.007 (2)0.005 (2)0.015 (3)
C590.037 (3)0.038 (3)0.032 (3)0.008 (3)0.001 (2)0.018 (3)
C600.033 (3)0.032 (3)0.039 (3)0.004 (2)0.010 (2)0.015 (3)
C610.031 (3)0.032 (3)0.039 (3)0.008 (2)0.001 (2)0.012 (3)
C620.030 (3)0.037 (3)0.022 (3)0.005 (2)0.001 (2)0.012 (2)
C630.070 (5)0.064 (5)0.052 (4)0.036 (4)0.006 (3)0.023 (4)
C640.088 (8)0.101 (9)0.112 (9)0.026 (7)0.003 (6)0.026 (7)
C650.087 (6)0.148 (9)0.070 (6)0.040 (6)0.004 (5)0.038 (6)
C660.123 (8)0.090 (7)0.086 (6)0.043 (6)0.030 (5)0.055 (5)
Geometric parameters (Å, º) top
W1—S42.1426 (13)C21—H21B0.9800
W1—S12.2440 (12)C21—H21C0.9800
W1—S32.2458 (12)C22—C231.379 (7)
W1—S22.2560 (12)C22—C271.392 (6)
W1—Cu12.6931 (7)C23—C241.387 (7)
W1—Cu32.7227 (7)C23—H230.9500
W1—Cu22.7398 (7)C24—C251.385 (7)
I1—Cu22.7754 (7)C24—H240.9500
I1—Cu12.9963 (8)C25—C261.374 (7)
I1—Cu33.0308 (8)C26—C271.390 (7)
Cu1—P12.2182 (14)C26—H260.9500
Cu1—S12.2769 (13)C27—H270.9500
Cu1—S32.2856 (13)C28—H28A0.9800
Cu2—P22.2295 (13)C28—H28B0.9800
Cu2—S22.3189 (13)C28—H28C0.9800
Cu2—S12.3389 (13)C29—C341.378 (7)
Cu3—P32.2202 (14)C29—C301.398 (6)
Cu3—S32.2911 (13)C30—C311.371 (7)
Cu3—S22.3013 (13)C30—H300.9500
P1—C11.817 (5)C31—C321.392 (7)
P1—C81.818 (5)C31—H310.9500
P1—C151.820 (5)C32—C331.374 (7)
P2—C221.811 (5)C33—C341.396 (7)
P2—C361.815 (5)C33—H330.9500
P2—C291.821 (5)C34—H340.9500
P3—C431.819 (5)C35—H35A0.9800
P3—C501.826 (5)C35—H35B0.9800
P3—C571.827 (5)C35—H35C0.9800
O1—C41.371 (6)C36—C411.394 (7)
O1—C71.411 (6)C36—C371.399 (6)
O2—C111.375 (6)C37—C381.371 (6)
O2—C141.427 (8)C37—H370.9500
O3—C181.361 (6)C38—C391.386 (7)
O3—C211.436 (6)C38—H380.9500
O4—C251.351 (6)C39—C401.384 (7)
O4—C281.414 (7)C40—C411.384 (7)
O5—C321.365 (6)C40—H400.9500
O5—C351.423 (7)C41—H410.9500
O6—C391.366 (6)C42—H42A0.9800
O6—C421.430 (6)C42—H42B0.9800
O7—C461.359 (6)C42—H42C0.9800
O7—C491.423 (6)C43—C481.378 (6)
O8—C531.383 (6)C43—C441.389 (7)
O8—C561.427 (6)C44—C451.375 (7)
O9—C601.359 (6)C44—H440.9500
O9—C631.422 (7)C45—C461.386 (7)
O10—C641.107 (12)C45—H450.9500
N1—C641.308 (12)C46—C471.385 (7)
N1—C661.421 (10)C47—C481.392 (7)
N1—C651.443 (10)C47—H470.9500
C1—C21.390 (7)C48—H480.9500
C1—C61.395 (6)C49—H49A0.9800
C2—C31.368 (7)C49—H49B0.9800
C2—H20.9500C49—H49C0.9800
C3—C41.380 (7)C50—C551.386 (6)
C3—H30.9500C50—C511.399 (7)
C4—C51.373 (7)C51—C521.374 (7)
C5—C61.389 (7)C51—H510.9500
C5—H50.9500C52—C531.397 (7)
C6—H60.9500C52—H520.9500
C7—H7A0.9800C53—C541.371 (7)
C7—H7B0.9800C54—C551.387 (7)
C7—H7C0.9800C54—H540.9500
C8—C131.380 (7)C55—H550.9500
C8—C91.391 (7)C56—H56A0.9800
C9—C101.380 (7)C56—H56B0.9800
C9—H90.9500C56—H56C0.9800
C10—C111.377 (8)C57—C621.385 (7)
C10—H100.9500C57—C581.406 (7)
C11—C121.378 (7)C58—C591.367 (7)
C12—C131.385 (7)C58—H580.9500
C12—H120.9500C59—C601.384 (7)
C13—H130.9500C59—H590.9500
C14—H14A0.9800C60—C611.388 (7)
C14—H14B0.9800C61—C621.390 (7)
C14—H14C0.9800C61—H610.9500
C15—C161.379 (6)C62—H620.9500
C15—C201.394 (7)C63—H63A0.9800
C16—C171.378 (7)C63—H63B0.9800
C16—H160.9500C63—H63C0.9800
C17—C181.393 (7)C64—H640.9500
C17—H170.9500C65—H65A0.9800
C18—C191.381 (7)C65—H65B0.9800
C19—C201.375 (7)C65—H65C0.9800
C19—H190.9500C66—H66A0.9800
C20—H200.9500C66—H66B0.9800
C21—H21A0.9800C66—H66C0.9800
S4—W1—S1110.32 (5)C22—C23—C24121.7 (5)
S4—W1—S3111.68 (5)C22—C23—H23119.2
S1—W1—S3107.85 (4)C24—C23—H23119.2
S4—W1—S2112.53 (5)C25—C24—C23120.5 (5)
S1—W1—S2107.60 (4)C25—C24—H24119.7
S3—W1—S2106.64 (4)C23—C24—H24119.7
Cu1—W1—Cu373.99 (2)O4—C25—C26125.7 (5)
Cu1—W1—Cu273.26 (2)O4—C25—C24115.8 (5)
Cu3—W1—Cu269.40 (2)C26—C25—C24118.4 (5)
Cu2—I1—Cu168.219 (19)C25—C26—C27120.7 (5)
Cu2—I1—Cu364.589 (19)C25—C26—H26119.6
Cu1—I1—Cu365.468 (19)C27—C26—H26119.6
P1—Cu1—S1129.39 (5)C26—C27—C22121.3 (5)
P1—Cu1—S3117.61 (5)C26—C27—H27119.3
S1—Cu1—S3105.38 (5)C22—C27—H27119.3
P1—Cu1—W1159.90 (4)O4—C28—H28A109.5
S1—Cu1—W152.88 (3)O4—C28—H28B109.5
S3—Cu1—W152.86 (3)H28A—C28—H28B109.5
P1—Cu1—I1102.35 (4)O4—C28—H28C109.5
S1—Cu1—I194.84 (4)H28A—C28—H28C109.5
S3—Cu1—I199.94 (4)H28B—C28—H28C109.5
W1—Cu1—I197.05 (2)C34—C29—C30117.8 (4)
P2—Cu2—S2119.96 (5)C34—C29—P2118.8 (4)
P2—Cu2—S1116.90 (5)C30—C29—P2123.4 (4)
S2—Cu2—S1102.45 (5)C31—C30—C29121.1 (5)
P2—Cu2—W1149.55 (4)C31—C30—H30119.5
S2—Cu2—W152.16 (3)C29—C30—H30119.5
S1—Cu2—W151.71 (3)C30—C31—C32120.1 (5)
P2—Cu2—I1108.72 (4)C30—C31—H31119.9
S2—Cu2—I1107.10 (4)C32—C31—H31119.9
S1—Cu2—I199.48 (4)O5—C32—C33125.0 (5)
W1—Cu2—I1101.39 (2)O5—C32—C31114.9 (5)
P3—Cu3—S3120.23 (5)C33—C32—C31120.0 (5)
P3—Cu3—S2121.70 (5)C32—C33—C34119.0 (5)
S3—Cu3—S2103.66 (5)C32—C33—H33120.5
P3—Cu3—W1155.95 (4)C34—C33—H33120.5
S3—Cu3—W152.36 (3)C29—C34—C33122.0 (5)
S2—Cu3—W152.55 (3)C29—C34—H34119.0
P3—Cu3—I1108.41 (4)C33—C34—H34119.0
S3—Cu3—I198.83 (4)O5—C35—H35A109.5
S2—Cu3—I199.84 (4)O5—C35—H35B109.5
W1—Cu3—I195.61 (2)H35A—C35—H35B109.5
W1—S1—Cu173.12 (4)O5—C35—H35C109.5
W1—S1—Cu273.40 (4)H35A—C35—H35C109.5
Cu1—S1—Cu289.22 (5)H35B—C35—H35C109.5
W1—S2—Cu373.37 (4)C41—C36—C37117.7 (4)
W1—S2—Cu273.56 (4)C41—C36—P2123.2 (4)
Cu3—S2—Cu284.60 (5)C37—C36—P2119.2 (4)
W1—S3—Cu172.92 (4)C38—C37—C36121.2 (4)
W1—S3—Cu373.75 (4)C38—C37—H37119.4
Cu1—S3—Cu390.82 (5)C36—C37—H37119.4
C1—P1—C8104.1 (2)C37—C38—C39120.4 (4)
C1—P1—C15105.7 (2)C37—C38—H38119.8
C8—P1—C15102.5 (2)C39—C38—H38119.8
C1—P1—Cu1111.77 (16)O6—C39—C40124.7 (4)
C8—P1—Cu1116.08 (16)O6—C39—C38115.8 (4)
C15—P1—Cu1115.46 (16)C40—C39—C38119.5 (4)
C22—P2—C36103.2 (2)C41—C40—C39120.0 (5)
C22—P2—C29107.7 (2)C41—C40—H40120.0
C36—P2—C29104.1 (2)C39—C40—H40120.0
C22—P2—Cu2112.87 (16)C40—C41—C36121.2 (5)
C36—P2—Cu2117.92 (15)C40—C41—H41119.4
C29—P2—Cu2110.30 (15)C36—C41—H41119.4
C43—P3—C50106.3 (2)O6—C42—H42A109.5
C43—P3—C57101.1 (2)O6—C42—H42B109.5
C50—P3—C57104.2 (2)H42A—C42—H42B109.5
C43—P3—Cu3115.25 (16)O6—C42—H42C109.5
C50—P3—Cu3115.59 (16)H42A—C42—H42C109.5
C57—P3—Cu3112.84 (16)H42B—C42—H42C109.5
C4—O1—C7117.8 (4)C48—C43—C44117.9 (4)
C11—O2—C14117.3 (5)C48—C43—P3124.4 (4)
C18—O3—C21117.4 (4)C44—C43—P3117.7 (4)
C25—O4—C28118.8 (4)C45—C44—C43121.2 (5)
C32—O5—C35117.4 (4)C45—C44—H44119.4
C39—O6—C42117.4 (4)C43—C44—H44119.4
C46—O7—C49118.3 (4)C44—C45—C46120.5 (5)
C53—O8—C56116.9 (4)C44—C45—H45119.7
C60—O9—C63118.7 (4)C46—C45—H45119.7
C64—N1—C66123.9 (9)O7—C46—C47125.0 (4)
C64—N1—C65116.2 (9)O7—C46—C45115.9 (4)
C66—N1—C65119.9 (8)C47—C46—C45119.1 (4)
C2—C1—C6117.7 (4)C46—C47—C48119.6 (5)
C2—C1—P1118.9 (4)C46—C47—H47120.2
C6—C1—P1123.4 (4)C48—C47—H47120.2
C3—C2—C1121.2 (5)C43—C48—C47121.6 (4)
C3—C2—H2119.4C43—C48—H48119.2
C1—C2—H2119.4C47—C48—H48119.2
C2—C3—C4120.5 (5)O7—C49—H49A109.5
C2—C3—H3119.8O7—C49—H49B109.5
C4—C3—H3119.8H49A—C49—H49B109.5
O1—C4—C5124.8 (5)O7—C49—H49C109.5
O1—C4—C3115.3 (5)H49A—C49—H49C109.5
C5—C4—C3119.9 (4)H49B—C49—H49C109.5
C4—C5—C6119.6 (5)C55—C50—C51117.7 (4)
C4—C5—H5120.2C55—C50—P3119.2 (4)
C6—C5—H5120.2C51—C50—P3123.0 (4)
C5—C6—C1121.1 (5)C52—C51—C50121.5 (5)
C5—C6—H6119.5C52—C51—H51119.3
C1—C6—H6119.5C50—C51—H51119.3
O1—C7—H7A109.5C51—C52—C53119.4 (5)
O1—C7—H7B109.5C51—C52—H52120.3
H7A—C7—H7B109.5C53—C52—H52120.3
O1—C7—H7C109.5C54—C53—O8124.4 (5)
H7A—C7—H7C109.5C54—C53—C52120.2 (5)
H7B—C7—H7C109.5O8—C53—C52115.4 (5)
C13—C8—C9118.3 (5)C53—C54—C55119.7 (5)
C13—C8—P1121.9 (4)C53—C54—H54120.1
C9—C8—P1119.8 (4)C55—C54—H54120.1
C10—C9—C8120.2 (5)C50—C55—C54121.5 (5)
C10—C9—H9119.9C50—C55—H55119.3
C8—C9—H9119.9C54—C55—H55119.3
C11—C10—C9120.5 (5)O8—C56—H56A109.5
C11—C10—H10119.8O8—C56—H56B109.5
C9—C10—H10119.8H56A—C56—H56B109.5
O2—C11—C10115.7 (5)O8—C56—H56C109.5
O2—C11—C12124.1 (5)H56A—C56—H56C109.5
C10—C11—C12120.2 (5)H56B—C56—H56C109.5
C11—C12—C13118.8 (5)C62—C57—C58118.3 (5)
C11—C12—H12120.6C62—C57—P3120.0 (4)
C13—C12—H12120.6C58—C57—P3121.7 (4)
C8—C13—C12121.9 (5)C59—C58—C57120.5 (5)
C8—C13—H13119.1C59—C58—H58119.8
C12—C13—H13119.1C57—C58—H58119.8
O2—C14—H14A109.5C58—C59—C60120.8 (5)
O2—C14—H14B109.5C58—C59—H59119.6
H14A—C14—H14B109.5C60—C59—H59119.6
O2—C14—H14C109.5O9—C60—C59116.3 (5)
H14A—C14—H14C109.5O9—C60—C61123.9 (5)
H14B—C14—H14C109.5C59—C60—C61119.8 (5)
C16—C15—C20118.0 (4)C60—C61—C62119.2 (5)
C16—C15—P1124.3 (4)C60—C61—H61120.4
C20—C15—P1117.6 (4)C62—C61—H61120.4
C17—C16—C15121.5 (5)C57—C62—C61121.4 (5)
C17—C16—H16119.2C57—C62—H62119.3
C15—C16—H16119.2C61—C62—H62119.3
C16—C17—C18119.8 (5)O9—C63—H63A109.5
C16—C17—H17120.1O9—C63—H63B109.5
C18—C17—H17120.1H63A—C63—H63B109.5
O3—C18—C19125.4 (5)O9—C63—H63C109.5
O3—C18—C17115.3 (4)H63A—C63—H63C109.5
C19—C18—C17119.3 (5)H63B—C63—H63C109.5
C20—C19—C18120.2 (5)O10—C64—N1121.9 (14)
C20—C19—H19119.9O10—C64—H64119.0
C18—C19—H19119.9N1—C64—H64119.0
C19—C20—C15121.2 (5)N1—C65—H65A109.5
C19—C20—H20119.4N1—C65—H65B109.5
C15—C20—H20119.4H65A—C65—H65B109.5
O3—C21—H21A109.5N1—C65—H65C109.5
O3—C21—H21B109.5H65A—C65—H65C109.5
H21A—C21—H21B109.5H65B—C65—H65C109.5
O3—C21—H21C109.5N1—C66—H66A109.5
H21A—C21—H21C109.5N1—C66—H66B109.5
H21B—C21—H21C109.5H66A—C66—H66B109.5
C23—C22—C27117.2 (5)N1—C66—H66C109.5
C23—C22—P2119.5 (4)H66A—C66—H66C109.5
C27—C22—P2123.2 (4)H66B—C66—H66C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C64—H64···O10i0.952.623.126 (13)114
C55—H55···I10.952.963.888 (5)164
C49—H49B···I1ii0.983.303.864 (5)119
C42—H42B···S2iii0.982.853.650 (5)139
C38—H38···S4iv0.952.883.646 (5)138
C34—H34···S20.952.963.860 (5)158
C23—H23···S10.952.883.794 (5)162
C17—H17···O2iv0.952.493.437 (7)177
C9—H9···O7v0.952.513.273 (6)137
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu3WIS4(C21H21O3P)3]·C3H7NO
Mr1759.75
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)10.5383 (11), 18.5135 (16), 19.3412 (19)
α, β, γ (°)68.869 (5), 84.706 (6), 80.605 (6)
V3)3470.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.25
Crystal size (mm)0.60 × 0.28 × 0.17
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.248, 0.575
No. of measured, independent and
observed [I > 2σ(I)] reflections
34152, 12730, 11088
Rint0.042
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.088, 1.14
No. of reflections12730
No. of parameters814
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 1.44

Computer programs: CrystalClear (Rigaku, 2000), SHELXTL (Sheldrick, 2000), SHELXTL (Sheldrick, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C64—H64···O10i0.952.623.126 (13)113.7
C55—H55···I10.952.963.888 (5)164.4
C49—H49B···I1ii0.983.303.864 (5)118.8
C42—H42B···S2iii0.982.853.650 (5)139.2
C38—H38···S4iv0.952.883.646 (5)138.3
C34—H34···S20.952.963.860 (5)158.0
C23—H23···S10.952.883.794 (5)161.9
C17—H17···O2iv0.952.493.437 (7)176.5
C9—H9···O7v0.952.513.273 (6)137.3
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+2, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 50472048) and the Program for New Century Excellent Talents in Universities (NCET-05-0499) is acknowledged.

References

First citationHow, H. W., Xin, X. Q. & Shi, S. (1996). Coord. Chem. Rev. 153, 25–56.  Google Scholar
First citationNiu, Y. Y., Zheng, H. G., Hou, H. W. & Xin, X. Q. (2004). Coord. Chem. Rev. 248, 169–183.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShi, S., Ji, W., Tang, S. H., Lang, J. P. & Xin, X. Q. (1994). J. Am. Chem. Soc. 116, 3615–3616.  CrossRef CAS Web of Science Google Scholar
First citationZhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111–141.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds