organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­phenyl 4-chloro­benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 November 2007; accepted 22 November 2007; online 6 December 2007)

The crystal structure of the title compound, C14H11ClO2, is similar to those of phenyl benzoate, 4-methyl­phenyl benzoate and 4-methyl­phenyl 4-methyl­benzoate. The dihedral angle between the phenyl and benzene rings is 51.86 (4)°. The mol­ecules crystallize in planes parallel to ([\overline{1}]02).

Related literature

For related literature, see: Adams & Morsi (1976[Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345-1347.]); Gowda, Foro, Babitha & Fuess (2007a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3801.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3867.],c[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007c). Acta Cryst. E63, o3876.],d[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007d). Acta Cryst. E63, o3877.],e[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007e). Acta Cryst. E63, o4286.]); Gowda, Foro, Nayak & Fuess (2007a[Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007a). Acta Cryst. E63, o3507.],b[Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007b). Acta Cryst. E63, o3563.]); Nayak & Gowda (2007[Nayak, R. & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClO2

  • Mr = 246.68

  • Monoclinic, P 21 /c

  • a = 14.6932 (4) Å

  • b = 11.3269 (3) Å

  • c = 7.2386 (2) Å

  • β = 101.050 (3)°

  • V = 1182.37 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 (2) K

  • 0.40 × 0.28 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.887, Tmax = 0.976

  • 17127 measured reflections

  • 2407 independent reflections

  • 1889 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.04

  • 2407 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 4-methylphenyl 4-chlorobenzoate (4MP4CBA) has been determined, as part of a study of substituent effects on the structures of industrially significant compounds (Gowda, Foro, Babitha & Fuess, 2007a, 2007b; Gowda, Foro, Nayak & Fuess, 2007a, 2007b). The structure of 4MP4CBA (Fig. 1) resembles those of phenyl benzoate (PBA)(Adams & Morsi, 1976), 4-methylphenyl benzoate (4MPBA) (Gowda, Foro, Nayak & Fuess, 2007b), 4-methylphenyl 4-methylbenzoate (4MP4MBA)(Gowda, Foro, Babitha & Fuess, 2007b) and other aryl benzoates (Gowda, Foro, Babitha & Fuess, 2007a; Gowda, Foro, Nayak & Fuess, 2007a). The bond parameters in 4MP4CBA are similar to those in PBA, 4MPBA, 4MP4MBA and other benzoates (Gowda, Foro, Babitha & Fuess, 2007a, 2007b; Gowda, Foro, Nayak & Fuess, 2007a, 2007b). The molecules in the title compound are packed into plane parallel to (-1 0 2) (Fig. 2).

Related literature top

For related literature, see: Adams & Morsi (1976); Gowda, Foro, Babitha & Fuess (2007a,b,c,d,e); Gowda, Foro, Nayak & Fuess (2007a,b); Nayak & Gowda (2007).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2007). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms of the methyl groups were positioned with idealized geometry using a riding model with C—H = 0.98 Å. The other H atoms were located in difference map and their positions refined.

Structure description top

In the present work, the structure of 4-methylphenyl 4-chlorobenzoate (4MP4CBA) has been determined, as part of a study of substituent effects on the structures of industrially significant compounds (Gowda, Foro, Babitha & Fuess, 2007a, 2007b; Gowda, Foro, Nayak & Fuess, 2007a, 2007b). The structure of 4MP4CBA (Fig. 1) resembles those of phenyl benzoate (PBA)(Adams & Morsi, 1976), 4-methylphenyl benzoate (4MPBA) (Gowda, Foro, Nayak & Fuess, 2007b), 4-methylphenyl 4-methylbenzoate (4MP4MBA)(Gowda, Foro, Babitha & Fuess, 2007b) and other aryl benzoates (Gowda, Foro, Babitha & Fuess, 2007a; Gowda, Foro, Nayak & Fuess, 2007a). The bond parameters in 4MP4CBA are similar to those in PBA, 4MPBA, 4MP4MBA and other benzoates (Gowda, Foro, Babitha & Fuess, 2007a, 2007b; Gowda, Foro, Nayak & Fuess, 2007a, 2007b). The molecules in the title compound are packed into plane parallel to (-1 0 2) (Fig. 2).

For related literature, see: Adams & Morsi (1976); Gowda, Foro, Babitha & Fuess (2007a,b,c,d,e); Gowda, Foro, Nayak & Fuess (2007a,b); Nayak & Gowda (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound.
4-Methylphenyl 4-chlorobenzoate top
Crystal data top
C14H11ClO2F(000) = 512
Mr = 246.68Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 5716 reflections
a = 14.6932 (4) Åθ = 2.2–26.9°
b = 11.3269 (3) ŵ = 0.31 mm1
c = 7.2386 (2) ÅT = 100 K
β = 101.050 (3)°Prism, colourless
V = 1182.37 (6) Å30.40 × 0.28 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2407 independent reflections
Radiation source: Enhance (Mo) X-ray Source1889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.4012 pixels mm-1θmax = 26.4°, θmin = 2.3°
Rotation method data acquisition using ω scans.h = 1818
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1314
Tmin = 0.887, Tmax = 0.976l = 99
17127 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.873P]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H11ClO2V = 1182.37 (6) Å3
Mr = 246.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6932 (4) ŵ = 0.31 mm1
b = 11.3269 (3) ÅT = 100 K
c = 7.2386 (2) Å0.40 × 0.28 × 0.08 mm
β = 101.050 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2407 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1889 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.976Rint = 0.023
17127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 1.04 e Å3
2407 reflectionsΔρmin = 0.29 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39495 (3)0.43951 (5)0.00266 (7)0.03131 (16)
O10.06211 (8)0.40950 (10)0.28512 (17)0.0203 (3)
O20.02463 (9)0.23571 (11)0.40524 (18)0.0264 (3)
C10.27915 (12)0.40681 (16)0.0929 (2)0.0204 (4)
C20.25731 (12)0.30158 (16)0.1886 (2)0.0214 (4)
H20.30450.24730.20430.026*
C30.16463 (12)0.27738 (15)0.2611 (2)0.0193 (4)
H30.14810.20580.32750.023*
C40.09585 (11)0.35718 (15)0.2371 (2)0.0172 (3)
C50.11937 (12)0.46239 (15)0.1393 (2)0.0184 (4)
H50.07230.51670.12240.022*
C60.21182 (12)0.48738 (15)0.0668 (2)0.0196 (4)
H60.22870.55880.00020.024*
C70.00171 (12)0.32497 (15)0.3186 (2)0.0188 (4)
C80.15790 (11)0.38716 (16)0.3334 (2)0.0185 (4)
C90.19650 (12)0.28504 (15)0.2769 (2)0.0197 (4)
H90.15830.22450.21230.024*
C100.29215 (12)0.27312 (15)0.3169 (2)0.0208 (4)
H100.31930.20280.28060.025*
C110.34947 (12)0.36115 (16)0.4084 (2)0.0222 (4)
C120.30820 (12)0.46299 (16)0.4619 (2)0.0224 (4)
H120.34620.52440.52430.027*
C130.21257 (12)0.47634 (15)0.4254 (2)0.0199 (4)
H130.18510.54600.46330.024*
C140.45367 (13)0.34475 (18)0.4483 (3)0.0327 (5)
H14A0.46830.26030.45810.049*
H14B0.48050.38400.56690.049*
H14C0.47970.37940.34570.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0190 (2)0.0368 (3)0.0365 (3)0.00206 (19)0.00115 (18)0.0060 (2)
O10.0181 (6)0.0181 (6)0.0245 (6)0.0002 (5)0.0033 (5)0.0019 (5)
O20.0240 (7)0.0247 (7)0.0303 (7)0.0022 (5)0.0044 (5)0.0110 (6)
C10.0170 (8)0.0249 (9)0.0192 (9)0.0012 (7)0.0032 (7)0.0033 (7)
C20.0224 (9)0.0220 (9)0.0200 (9)0.0038 (7)0.0049 (7)0.0003 (7)
C30.0254 (9)0.0158 (8)0.0168 (8)0.0002 (7)0.0043 (7)0.0003 (7)
C40.0206 (8)0.0167 (8)0.0149 (8)0.0011 (7)0.0052 (6)0.0018 (7)
C50.0221 (8)0.0160 (8)0.0184 (8)0.0012 (7)0.0070 (7)0.0010 (7)
C60.0239 (9)0.0168 (8)0.0190 (8)0.0033 (7)0.0062 (7)0.0012 (7)
C70.0215 (8)0.0184 (9)0.0171 (8)0.0022 (7)0.0051 (7)0.0016 (7)
C80.0183 (8)0.0209 (9)0.0167 (8)0.0008 (7)0.0047 (7)0.0041 (7)
C90.0252 (9)0.0173 (9)0.0166 (8)0.0010 (7)0.0043 (7)0.0000 (7)
C100.0265 (9)0.0178 (9)0.0200 (8)0.0031 (7)0.0087 (7)0.0009 (7)
C110.0221 (9)0.0234 (9)0.0226 (9)0.0010 (7)0.0080 (7)0.0037 (7)
C120.0241 (9)0.0200 (9)0.0231 (9)0.0041 (7)0.0045 (7)0.0005 (7)
C130.0239 (9)0.0166 (8)0.0205 (9)0.0013 (7)0.0074 (7)0.0002 (7)
C140.0221 (9)0.0310 (11)0.0448 (12)0.0012 (8)0.0061 (8)0.0015 (9)
Geometric parameters (Å, º) top
Cl1—C11.7414 (17)C8—C131.380 (2)
O1—C71.359 (2)C8—C91.384 (2)
O1—C81.407 (2)C9—C101.386 (2)
O2—C71.203 (2)C9—H90.9500
C1—C21.385 (3)C10—C111.389 (3)
C1—C61.385 (3)C10—H100.9500
C2—C31.390 (2)C11—C121.392 (3)
C2—H20.9500C11—C141.514 (2)
C3—C41.391 (2)C12—C131.387 (2)
C3—H30.9500C12—H120.9500
C4—C51.395 (2)C13—H130.9500
C4—C71.487 (2)C14—H14A0.9800
C5—C61.388 (2)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—H60.9500
C7—O1—C8119.05 (13)C13—C8—O1116.77 (15)
C2—C1—C6122.14 (16)C9—C8—O1121.61 (15)
C2—C1—Cl1119.12 (14)C8—C9—C10118.44 (16)
C6—C1—Cl1118.74 (14)C8—C9—H9120.8
C1—C2—C3118.36 (16)C10—C9—H9120.8
C1—C2—H2120.8C9—C10—C11121.84 (16)
C3—C2—H2120.8C9—C10—H10119.1
C2—C3—C4120.50 (16)C11—C10—H10119.1
C2—C3—H3119.8C10—C11—C12118.09 (16)
C4—C3—H3119.8C10—C11—C14120.10 (16)
C3—C4—C5120.19 (16)C12—C11—C14121.81 (17)
C3—C4—C7117.33 (15)C13—C12—C11121.12 (17)
C5—C4—C7122.48 (15)C13—C12—H12119.4
C6—C5—C4119.67 (16)C11—C12—H12119.4
C6—C5—H5120.2C8—C13—C12119.11 (16)
C4—C5—H5120.2C8—C13—H13120.4
C1—C6—C5119.14 (16)C12—C13—H13120.4
C1—C6—H6120.4C11—C14—H14A109.5
C5—C6—H6120.4C11—C14—H14B109.5
O2—C7—O1123.92 (15)H14A—C14—H14B109.5
O2—C7—C4124.41 (15)C11—C14—H14C109.5
O1—C7—C4111.66 (14)H14A—C14—H14C109.5
C13—C8—C9121.39 (16)H14B—C14—H14C109.5
C6—C1—C2—C30.4 (3)C3—C4—C7—O1179.72 (14)
Cl1—C1—C2—C3179.45 (13)C5—C4—C7—O10.1 (2)
C1—C2—C3—C40.2 (3)C7—O1—C8—C13134.88 (16)
C2—C3—C4—C50.2 (3)C7—O1—C8—C950.6 (2)
C2—C3—C4—C7179.97 (15)C13—C8—C9—C100.8 (3)
C3—C4—C5—C60.3 (2)O1—C8—C9—C10174.97 (14)
C7—C4—C5—C6179.89 (15)C8—C9—C10—C111.1 (3)
C2—C1—C6—C50.2 (3)C9—C10—C11—C120.6 (3)
Cl1—C1—C6—C5179.59 (13)C9—C10—C11—C14179.67 (17)
C4—C5—C6—C10.1 (3)C10—C11—C12—C130.2 (3)
C8—O1—C7—O27.9 (2)C14—C11—C12—C13179.55 (17)
C8—O1—C7—C4172.71 (14)C9—C8—C13—C120.0 (3)
C3—C4—C7—O20.9 (3)O1—C8—C13—C12174.50 (15)
C5—C4—C7—O2179.27 (17)C11—C12—C13—C80.5 (3)

Experimental details

Crystal data
Chemical formulaC14H11ClO2
Mr246.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.6932 (4), 11.3269 (3), 7.2386 (2)
β (°) 101.050 (3)
V3)1182.37 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.40 × 0.28 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.887, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
17127, 2407, 1889
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.04
No. of reflections2407
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek 2003) and ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationAdams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007c). Acta Cryst. E63, o3876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007d). Acta Cryst. E63, o3877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007e). Acta Cryst. E63, o4286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007a). Acta Cryst. E63, o3507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007b). Acta Cryst. E63, o3563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62. In the press.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds