

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-[(9*H*-Fluoren-9-ylidene)methyl]furan-2-carbonitrile

Lucia Perašínová,^a* Anita Andicsová,^b Daniel Végh^b and Jozef Kožíšek^a

^aInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and ^bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic Correspondence e-mail: lucia.perasinova@stuba.sk

Received 6 November 2007; accepted 5 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.062; wR factor = 0.179; data-to-parameter ratio = 14.5.

The title compound, $C_{19}H_{11}NO$, is stabilized by one intramolecular C-H···O hydrogen bond. The compound can be synthesized in good yield (49%), by transformation of functional groups [starting with 5-(fluoren-9-ylidenemethyl)furan-2-carbaldehyde]. The flourene and furan ring systems are nearly coplanar, with a dihedral angle of 6.36 (7)°.

Related literature

For a related structure, see: Britten *et al.* (2001). For related literature, see: Allen (2002); Leclerc (2001).

Experimental

Crystal data $C_{19}H_{11}NO$ $M_r = 269.29$

Monoclinic, $P2_1/n$ a = 15.899 (3) Å

b = 5.6109 (11) Å	
c = 15.664 (3) Å	
$\beta = 103.69 (3)^{\circ}$	
V = 1357.6 (5) Å ³	
$\mathbf{Z} = \mathbf{A}$	

Data collection

Oxford Diffraction Gemini R CCD	27628 measured reflections
diffractometer	2746 independent reflections
Absorption correction: analytical	1524 reflections with $I > 2\sigma(I)$
(Clark & Reid, 1995)	$R_{\rm int} = 0.043$
$T_{\min} = 0.921, \ T_{\max} = 0.987$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	190 parameters
$wR(F^2) = 0.179$	H-atom parameters constrained
S = 0.94	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
2746 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C11-H11A···O1	0.93	2.27	3.034 (3)	140

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/2449/05, 1/4453/07 and APVT-20-007304), as well as Structural Funds, Interreg IIIA for financial support in purchasing the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2120).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Britten, J. F., Clements, O. P., Cordes, A. W., Haddon, R. C., Oakley, R. T. & Richardson, J. F. (2001). *Inorg. Chem.* **40**, 6820–6824.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Leclerc, M. (2001). J. Polym. Sci. Part A Polym. Chem. 39, 2867-2873.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.32 \times 0.07 \times 0.05 \text{ mm}$

T = 293 K

supporting information

Acta Cryst. (2008). E64, o273 [https://doi.org/10.1107/S1600536807065798] 5-[(9H-Fluoren-9-ylidene)methyl]furan-2-carbonitrile Lucia Perašínová, Anita Andicsová, Daniel Végh and Jozef Kožíšek

S1. Comment

Our synthetic research efforts have been focused to a set of multi-ring monomer systems based on furan and fluorene. Fluorene containing oligomeres are an important class of electroactive and photoactive materials. These compounds possesses exceptional electrooptical properties for applications in polymer light emitting diodes (PLEDs) and nanocomposite materials with advanced anticorrosive properties (Leclerc, 2001).

In the title compound the O1—C15 [1.359 (2) Å] and O1—C18 [1.381 (2) Å] bond lengths, are in a quite good agreement with similar furan compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002)2-(1,2,3,5-Diselenadiazol-4-yl)-5-cyanofuran (Britten *et al.*, 2001; CSD refcode YIFHUQ) as representative example. The flourene moiety is almost planar with maximun deviation of 0.030 (2)Å for C13. The flourene and furan rings are nearly coplanar with a dihedral angle of 6.36 (7)°. In the crystal structure the molecular packing is stabilized by intramolecular hydrogen bond (Fig. 1).

S2. Experimental

A solution of 5-fluoren-9-ylidenemethyl-furan-2-carbaldehyde (0.0033 mol, 0.91 g), NH₂OH.HCl (0.0039 mol, 0.3 g, 1.12 eq.) in *N*-Methyl-pyrrolidinone (5.5 ml) was heated at 110 - 115°C. Progress of the reaction was followed by TLC and after 8 h the mixture was poured into H₂O (100 ml) and extracted with EtOAc (2 *x* 50 ml). The combined layers EtOAc were dried (Na₂SO₄) and the solvent was evaporated *in vacuo*. Crude product could be purified by collumn chromatography using silikagel Merck 60 in toluene as eluent (40% yield) $R_f = 0,51$ (toluen). *M*.p.: 167–169°C.

¹H NMR (300 MHz, DMSO – d₆, p.p.m.): *δ*= 6.78 (d, 1H, J = 3.6 Hz), 7.15 (s, 1H), 7.31 - 7.29 (m, 1H), 7.45 - 7.33 (m, 4H), 7.72 - 7.66 (m, 3H), 8.51 (d, 1H, J = 7.65 Hz).

¹³C-NMR (75 MHz, DMSO – d₆, p.p.m.) *δ*= 109.99, 111.77, 114.62, 119.80, 119.87, 120.33, 123.91, 125.74, 125.82, 127.20, 127.69, 129.69, 129.23, 129.88, 135.25, 138.06, 139.37, 139.62, 141.75, 156.19.

IR (KBr, cm⁻¹): 3136 (w), 3120 (vw), 3053(w), 2221(s, vC=N), 1716(s, v(C=C)), 1633(*m*), 1611(*m*), 1600(m, v(C=C) aromatic), 1494(s, v(C=C) aromatic), 1469(w), 1448(s), 1354(*m*), 1297(*m*), 1290(*m*), 1274(m, v_{as} (C—O—C)), 1263(*m*), 1198(w), 1180(*m*), 1152(*m*), 1138(w), 1111(*m*), 1098(w), 1029(s, v_s (C—O—C)), 975(*m*), 966(*m*), 941(*m*), 917(*m*), 882(*m*), 871(*m*), 793(vs, v(CCH)), 781(vs, v(CCH)), 772(m, v(CCH)), 737(m, v(CCH)), 728(vs, v(CCH)), 724(vs, v(CCH)), 668(*m*), 645(*m*), 625(*m*), 580(w), 561(w), 524(w), 511(w), 473(*m*), 455(*m*), 442(vw), 432(vw), 401(*m*)

S3. Refinement

H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and $U_{iso}(H) = 1.2$ $U_{eq}(C)$.


```
Figure 1
?
```

Figure 2

The numbering scheme of 5-((9*H*-fluoren-9-ylidene) methyl) furan-2-carbonitrile. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen-bond interactions are indicated by dashed lines.

5-[(9H-Fluoren-9-ylidene)methyl]furan-2-carbonitrile

Crystal data

$C_{19}H_{11}NO$ $M_r = 269.29$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 15.899 (3) Å b = 5.6109 (11) Å c = 15.664 (3) Å	F(000) = 560 $D_x = 1.317 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7057 reflections $\theta = 3.1-29.1^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K
$\beta = 103.69 (3)^{\circ}$ $V = 1357.6 (5) Å^{3}$ Z = 4	Block, yellow $0.32 \times 0.07 \times 0.05 \text{ mm}$
Data collection Oxford Diffraction Gemini R CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Rotation method data acquisition using ω and phi scans Absorption correction: analytical (Clark & Reid, 1995) $T_{\min} = 0.921, T_{\max} = 0.987$	27628 measured reflections 2746 independent reflections 1524 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 4.2^{\circ}$ $h = -19 \rightarrow 19$ $k = -7 \rightarrow 7$ $l = -19 \rightarrow 19$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.179$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 0.94	H-atom parameters constrained
2746 reflections	$w = 1/[\sigma^2(F_o^2) + (0.121P)^2]$
190 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\text{max}} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2007)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	<i>x</i>	У	<i>Z</i>	$U_{\rm iso}$ */ $U_{\rm eq}$	
C1	0.17033 (14)	0.6172 (3)	0.88196 (13)	0.0544 (5)	
C2	0.23065 (15)	0.6471 (4)	0.96102 (15)	0.0680 (6)	
H2A	0.2259	0.7739	0.9978	0.082*	
C3	0.29834 (16)	0.4852 (4)	0.98462 (15)	0.0737 (7)	
H3A	0.3385	0.5046	1.0380	0.088*	
C4	0.30765 (16)	0.2974 (4)	0.93141 (16)	0.0741 (7)	
H4A	0.3537	0.1919	0.9484	0.089*	
C5	0.24829 (15)	0.2672 (4)	0.85303 (15)	0.0651 (6)	
H5A	0.2536	0.1400	0.8166	0.078*	
C6	0.17991 (13)	0.4280 (3)	0.82809 (13)	0.0538 (5)	
C7	0.10829 (13)	0.4398 (3)	0.75032 (13)	0.0521 (5)	
C8	0.08974 (15)	0.2931 (4)	0.67850 (14)	0.0602 (6)	
H8A	0.1248	0.1626	0.6747	0.072*	
С9	0.01799 (15)	0.3426 (4)	0.61169 (14)	0.0660 (6)	
H9A	0.0044	0.2436	0.5627	0.079*	
C10	-0.03397 (15)	0.5382 (4)	0.61677 (14)	0.0686 (6)	
H10A	-0.0818	0.5685	0.5709	0.082*	
C11	-0.01619 (14)	0.6875 (4)	0.68787 (13)	0.0605 (6)	
H11A	-0.0512	0.8188	0.6904	0.073*	
C12	0.05522 (13)	0.6391 (3)	0.75621 (12)	0.0518 (5)	
C13	0.09090 (13)	0.7573 (3)	0.84099 (13)	0.0532 (5)	
C14	0.06414 (15)	0.9425 (3)	0.88210 (14)	0.0599 (6)	
H14A	0.1013	0.9725	0.9365	0.072*	
C15	-0.00743 (14)	1.1057 (3)	0.86312 (14)	0.0577 (6)	

supporting information

C16	-0.02863 (18)	1.2789 (4)	0.91496 (15)	0.0737 (7)
H16A	0.0017	1.3139	0.9720	0.088*
C17	-0.10323 (17)	1.3964 (4)	0.86887 (16)	0.0732 (7)
H17A	-0.1314	1.5227	0.8886	0.088*
C18	-0.12551 (15)	1.2896 (4)	0.79073 (16)	0.0647 (6)
C19	-0.19420 (18)	1.3303 (4)	0.7165 (2)	0.0743 (7)
N1	-0.25096 (16)	1.3660 (4)	0.65689 (17)	0.0953 (7)
01	-0.06784 (9)	1.1091 (2)	0.78554 (9)	0.0624 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0575 (13)	0.0541 (11)	0.0489 (12)	-0.0072 (10)	0.0075 (10)	0.0027 (9)
C2	0.0730 (15)	0.0716 (13)	0.0545 (13)	-0.0084 (12)	0.0054 (12)	-0.0022 (11)
C3	0.0701 (15)	0.0820 (15)	0.0601 (14)	-0.0014 (13)	-0.0021 (12)	0.0087 (13)
C4	0.0673 (16)	0.0750 (15)	0.0735 (16)	0.0064 (12)	0.0036 (13)	0.0144 (13)
C5	0.0609 (14)	0.0672 (13)	0.0650 (14)	0.0063 (11)	0.0102 (12)	0.0039 (10)
C6	0.0540 (12)	0.0550 (11)	0.0524 (12)	-0.0026 (9)	0.0126 (10)	0.0015 (9)
C7	0.0565 (12)	0.0515 (11)	0.0487 (11)	-0.0040 (9)	0.0130 (10)	0.0011 (9)
C8	0.0649 (14)	0.0590 (12)	0.0572 (13)	-0.0001 (10)	0.0156 (11)	-0.0064 (10)
C9	0.0745 (15)	0.0676 (13)	0.0534 (13)	-0.0045 (12)	0.0101 (12)	-0.0116 (10)
C10	0.0710 (15)	0.0762 (14)	0.0521 (13)	0.0013 (12)	0.0015 (11)	-0.0044 (11)
C11	0.0613 (14)	0.0601 (12)	0.0542 (13)	0.0058 (10)	0.0020 (11)	-0.0042 (10)
C12	0.0540 (12)	0.0518 (11)	0.0485 (11)	-0.0052 (9)	0.0099 (10)	0.0009 (9)
C13	0.0578 (13)	0.0519 (10)	0.0478 (11)	-0.0054 (9)	0.0083 (10)	-0.0021 (9)
C14	0.0685 (14)	0.0564 (12)	0.0536 (12)	-0.0046 (10)	0.0119 (11)	-0.0030 (9)
C15	0.0656 (14)	0.0555 (11)	0.0526 (12)	-0.0046 (10)	0.0154 (11)	-0.0029 (9)
C16	0.0938 (19)	0.0651 (13)	0.0619 (14)	0.0079 (13)	0.0179 (13)	-0.0055 (11)
C17	0.0869 (18)	0.0621 (13)	0.0746 (16)	0.0074 (12)	0.0272 (14)	-0.0099 (11)
C18	0.0620 (14)	0.0586 (12)	0.0759 (16)	0.0016 (10)	0.0211 (13)	-0.0007 (11)
C19	0.0684 (17)	0.0674 (14)	0.0895 (19)	0.0048 (12)	0.0233 (15)	-0.0074 (13)
N1	0.0808 (16)	0.0981 (16)	0.0986 (18)	0.0118 (13)	0.0047 (15)	-0.0131 (13)
01	0.0625 (10)	0.0616 (9)	0.0637 (10)	0.0017 (7)	0.0162 (8)	-0.0079 (7)

Geometric parameters (Å, °)

C1—C2	1.386 (3)	C10-C11	1.368 (3)
C1—C6	1.386 (3)	C10—H10A	0.9300
C1—C13	1.497 (3)	C11—C12	1.390 (3)
C2—C3	1.390 (3)	C11—H11A	0.9300
C2—H2A	0.9300	C12—C13	1.473 (3)
C3—C4	1.373 (3)	C13—C14	1.344 (3)
С3—НЗА	0.9300	C14—C15	1.436 (3)
C4—C5	1.370 (3)	C14—H14A	0.9300
C4—H4A	0.9300	C15—O1	1.359 (2)
С5—С6	1.396 (3)	C15—C16	1.359 (3)
С5—Н5А	0.9300	C16—C17	1.399 (3)
C6—C7	1.459 (3)	C16—H16A	0.9300

supporting information

С7—С8	1.369 (3)	C17—C18	1.333 (3)
C7—C12	1.417 (3)	С17—Н17А	0.9300
	1 291 (2)	C_{18} O_{1}	1 291 (2)
	1.301 (3)		1.381 (2)
C8—H8A	0.9300	C18—C19	1.413 (4)
C9—C10	1.387 (3)	C19—N1	1.152 (3)
С9—Н9А	0.9300		
C^2 C^1 C^6	110.0 (2)	C11 C10 U10A	110.2
	119.0 (2)		119.5
C2-C1-C13	130.90 (19)	C9—C10—H10A	119.3
C6—C1—C13	110.13 (18)	C10-C11-C12	118.7 (2)
C1—C2—C3	119.1 (2)	C10-C11-H11A	120.6
C1—C2—H2A	120.4	C12—C11—H11A	120.6
C^2 C^2 $H^2\Lambda$	120.1	C_{11} C_{12} C_{7}	110.62 (19)
$C_3 = C_2 = H_2 A$	120.4		119.02 (18)
C4 - C3 - C2	121.9 (2)	C11-C12-C13	132.57 (18)
С4—С3—Н3А	119.1	C7—C12—C13	107.81 (17)
С2—С3—Н3А	119.1	C14—C13—C12	133.0 (2)
C5—C4—C3	119.2 (2)	C14—C13—C1	122.10 (19)
C5—C4—H4A	120.4	C_{12} C_{13} C_{1}	104 83 (17)
$C_2 = C_4 = H_{4A}$	120.4	C_{12} C_{13} C_{14} C_{15}	104.05(17)
С3—С4—П4А	120.4		130.0 (2)
C4—C5—C6	119.8 (2)	C13—C14—H14A	112.0
С4—С5—Н5А	120.1	C15—C14—H14A	112.0
С6—С5—Н5А	120.1	O1-C15-C16	107.54 (19)
C1—C6—C5	121.0(2)	O1—C15—C14	123.50 (18)
C1 - C6 - C7	107 29 (17)	C16-C15-C14	129 0 (2)
C_{1}^{5} C_{6}^{6} C_{7}^{7}	107.29(17) 121.70(10)	C_{15} C_{16} C_{17}	129.0(2)
$C_{3} = C_{0} = C_{1}$	131.70 (19)		109.2 (2)
C8-C7-C12	120.82 (19)	C15-C16-H16A	125.4
C8—C7—C6	129.27 (19)	C17—C16—H16A	125.4
C12—C7—C6	109.90 (17)	C18—C17—C16	105.7 (2)
C7—C8—C9	118.7 (2)	C18—C17—H17A	127.1
С7—С8—Н8А	120.6	C16—C17—H17A	127.1
C9-C8-H8A	120.6	C17 - C18 - O1	110.3(2)
C^{8} C^{0} C^{10}	120.0	C_{17}^{17} C_{18}^{19} C_{10}^{10}	110.5(2)
	120.78 (19)		132.0 (2)
С8—С9—Н9А	119.6	01 - C18 - C19	117.7 (2)
С10—С9—Н9А	119.6	N1-C19-C18	178.7 (3)
C11—C10—C9	121.3 (2)	C15—O1—C18	107.23 (16)
C6 $C1$ $C2$ $C3$	-0.8(3)	C8 C7 C12 C13	178 00 (18)
$C_0 = C_1 = C_2 = C_3$	0.0(3)	$C_{0} = C_{1} = C_{12} = C_{13}$	1/0.99 (10)
C13 - C1 - C2 - C3	1/8.4 (2)	C6-C/-C12-C13	-1.8(2)
C1—C2—C3—C4	0.6 (3)	C11—C12—C13—C14	3.9 (4)
C2—C3—C4—C5	-0.5 (4)	C7—C12—C13—C14	-175.5 (2)
C3—C4—C5—C6	0.5 (3)	C11—C12—C13—C1	-178.4(2)
C2-C1-C6-C5	0.9 (3)	C7—C12—C13—C1	2.1 (2)
C_{13} C_{1} C_{1} C_{1} C_{1} C_{2} C_{2} C_{2}	-178 45 (18)	C_{2} C_{1} C_{13} C_{14}	-30(3)
$C_{1} = C_{1} = C_{0} = C_{3}$	170.75(10)	$C_{2} - C_{1} - C_{13} - C_{14}$	3.0(3)
	-1/9.90 (18)		1/0.20(18)
C13—C1—C6—C7	0.7 (2)	C2-C1-C13-C12	179.0 (2)
C4—C5—C6—C1	-0.8 (3)	C6-C1-C13-C12	-1.7 (2)
C4—C5—C6—C7	-179.6 (2)	C12—C13—C14—C15	-1.0 (4)
C1—C6—C7—C8	179.8 (2)	C1—C13—C14—C15	-178.4 (2)

1.2 (4)	C12 C14 C15 O1	4.2 (4)
-1.2 (4)	C13 - C14 - C15 - O1	-4.3 (4)
0.7 (2)	C13—C14—C15—C16	175.6 (2)
179.7 (2)	O1—C15—C16—C17	-0.8 (3)
-0.1 (3)	C14—C15—C16—C17	179.3 (2)
-179.15 (19)	C15—C16—C17—C18	0.5 (3)
0.5 (3)	C16—C17—C18—O1	0.0 (3)
-0.2 (3)	C16—C17—C18—C19	-179.5 (2)
-0.5 (3)	C16—C15—O1—C18	0.8 (2)
0.8 (3)	C14—C15—O1—C18	-179.31 (19)
-178.6 (2)	C17—C18—O1—C15	-0.5 (2)
-0.5 (3)	C19—C18—O1—C15	179.08 (19)
178.63 (17)		
	-1.2 (4) 0.7 (2) 179.7 (2) -0.1 (3) -179.15 (19) 0.5 (3) -0.2 (3) -0.5 (3) 0.8 (3) -178.6 (2) -0.5 (3) 178.63 (17)	-1.2 (4) $C13-C14-C15-O1$ $0.7 (2)$ $C13-C14-C15-C16$ $179.7 (2)$ $O1-C15-C16-C17$ $-0.1 (3)$ $C14-C15-C16-C17$ $-179.15 (19)$ $C15-C16-C17-C18$ $0.5 (3)$ $C16-C17-C18-O1$ $-0.2 (3)$ $C16-C17-C18-C19$ $-0.5 (3)$ $C16-C15-O1-C18$ $0.8 (3)$ $C14-C15-O1-C18$ $-178.6 (2)$ $C17-C18-O1-C15$ $-0.5 (3)$ $C19-C18-O1-C15$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11A…O1	0.93	2.27	3.034 (3)	140