organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(2-hy­droxy­ethyl­amino)phen­yl] sulfone

aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and bDepartment of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
*Correspondence e-mail: chenguofeng@mail.hbu.edu.cn

(Received 12 November 2007; accepted 27 November 2007; online 6 December 2007)

The title compound, C16H20N2O4S, exhibits a V-shape structure with a dihedral angle of 77.5 (11)° formed by the two benzenel rings. The mol­ecular packing is stabilized by intra­molecular and inter­molecular hydrogen bonds as well as ππ [3.738 (3) Å] and C—H⋯π inter­actions.

Related literature

For related literature, see: Shahsafi et al. (1987[Shahsafi, M. A., Meshkatalsadat, M. H. & Parekh, H. (1987). Indian J. Chem. 26B, 803-807.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N2O4S

  • Mr = 336.40

  • Monoclinic, C 2/c

  • a = 25.643 (17) Å

  • b = 8.118 (6) Å

  • c = 15.340 (11) Å

  • β = 102.989 (12)°

  • V = 3112 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 294 (2) K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.966

  • 7793 measured reflections

  • 2742 independent reflections

  • 1982 reflections with I > 2σ

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.03

  • 2742 reflections

  • 218 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3 0.93 2.59 2.919 (3) 101
C10—H10⋯O2 0.93 2.57 2.915 (3) 102
C7—H7⋯O3 0.93 2.47 2.854 (3) 105
O1—H1⋯O3i 0.82 1.87 2.683 (3) 175
O1—H1⋯S1i 0.82 2.88 3.638 (2) 154
O4—H4⋯O2ii 0.82 2.13 2.945 (3) 177
N1—H1C⋯O4iii 0.892 (10) 2.185 (11) 3.066 (3) 169 (2)
N2—H2C⋯O1iv 0.895 (10) 2.027 (11) 2.917 (3) 172 (2)
C10—H10⋯Cg2 0.93 2.97 3.762(4) 144
Symmetry codes: (i) [-x, y+1, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{1\over2}, y+{1\over2}, -z+{1\over2}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of diphenyl sulphone are used as precursors in the organic synthesis. Several derivatives of aminosulphones have been shown to possess strong tuberculostatic, antileprotic and anticonvulsant activities (Shahsafi, et al., 1987). The crystal structure determination of the title compound, (I), was carried out in order to elucidate its molecular conformation.

The V-shape structure of the molecule is supported by the two phenyl rings with a dihedral angle of 77.5 (11)°.

The molecular packing is stabilized by intramolecular and intermolecular hydrogen bonds (Table 1) as well as weak π-π and C—H..π interactions.

Related literature top

For related literature, see: Shahsafi et al. (1987).

Experimental top

The title compound, (I), was synthesized by the reaction of 4,4'-dichlorodiphenyl sulfone (5.74 g, 0.02 mol) with 2-aminoethanol (9.76 g, 0.16 mol). The mixture was refluxed for 6 h and cooled to room temperature. After dilution with water, it was filtered off, washed thoroughly with water, and recrystallized from dimethylformamide and water (4:1 v/v) to give the product as fine white needles (5.5 g, yield 81.8%). The pure product (0.1 g) was dissolved in 15 ml dimethylformamide and water (4:1 v/v). Single crystals were obtained from this solution by slow evaporation over a period of 7 days at room temperature (m.p. 464–466 K).

Refinement top

The H atom involved in the hydrogen bonds was found in difference Fourier maps. All other H atoms were positioned geometrically and refined using a during refinement, fix at O–H distances of 0.82 Å and its Uiso value was set at 1.2 Ueq (O). H atoms bonded to C atoms were included in the refinement in the riding model approximation, with C–H = 0.93 Å. and Uiso (H) = 1.2 Ueq (C atom).

Structure description top

The derivatives of diphenyl sulphone are used as precursors in the organic synthesis. Several derivatives of aminosulphones have been shown to possess strong tuberculostatic, antileprotic and anticonvulsant activities (Shahsafi, et al., 1987). The crystal structure determination of the title compound, (I), was carried out in order to elucidate its molecular conformation.

The V-shape structure of the molecule is supported by the two phenyl rings with a dihedral angle of 77.5 (11)°.

The molecular packing is stabilized by intramolecular and intermolecular hydrogen bonds (Table 1) as well as weak π-π and C—H..π interactions.

For related literature, see: Shahsafi et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering Scheme; displacement ellipsoids were drawn at the 30% probability level.
Bis[4-(2-hydroxyethylamino)phenyl] sulfone top
Crystal data top
C16H20N2O4SF(000) = 1424
Mr = 336.40Dx = 1.436 Mg m3
Monoclinic, C2/cMelting point: 465(1) K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.643 (17) ÅCell parameters from 2679 reflections
b = 8.118 (6) Åθ = 2.6–26.4°
c = 15.340 (11) ŵ = 0.23 mm1
β = 102.989 (12)°T = 294 K
V = 3112 (4) Å3Needle, colorless
Z = 80.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2742 independent reflections
Radiation source: fine-focus sealed tube1982 reflections with I > 2σ
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2630
Tmin = 0.953, Tmax = 0.966k = 99
7793 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.055P)2 + 1.5895P]
where P = (Fo2 + 2Fc2)/3
2742 reflections(Δ/σ)max = 0.005
218 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H20N2O4SV = 3112 (4) Å3
Mr = 336.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.643 (17) ŵ = 0.23 mm1
b = 8.118 (6) ÅT = 294 K
c = 15.340 (11) Å0.20 × 0.18 × 0.16 mm
β = 102.989 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2742 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1982 reflections with I > 2σ
Tmin = 0.953, Tmax = 0.966Rint = 0.033
7793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
2742 reflectionsΔρmin = 0.35 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13804 (2)0.13061 (7)0.27577 (4)0.0437 (2)
O10.11464 (7)0.7991 (2)0.07807 (12)0.0614 (5)
H10.11530.84960.12410.092*
O20.16477 (7)0.1933 (2)0.36085 (10)0.0575 (5)
O30.11181 (7)0.0265 (2)0.27233 (11)0.0551 (5)
O40.37876 (7)0.1123 (3)0.00979 (13)0.0656 (5)
H40.36590.16330.04600.098*
N10.02318 (8)0.5964 (3)0.09390 (13)0.0496 (5)
N20.29293 (8)0.0802 (3)0.05074 (14)0.0479 (5)
C10.06999 (11)0.8469 (3)0.04713 (18)0.0605 (7)
H1A0.06670.96590.05040.073*
H1B0.07490.81500.01510.073*
C20.01965 (10)0.7710 (3)0.09995 (18)0.0541 (7)
H2A0.01060.80890.07710.065*
H2B0.01400.80450.16210.065*
C30.01441 (8)0.4931 (3)0.13841 (14)0.0395 (5)
C40.06235 (9)0.5465 (3)0.19253 (16)0.0455 (6)
H4A0.06920.65880.19960.055*
C50.09948 (9)0.4366 (3)0.23534 (16)0.0452 (6)
H50.13140.47430.27120.054*
C60.09002 (8)0.2708 (3)0.22587 (14)0.0370 (5)
C70.04241 (9)0.2161 (3)0.17295 (15)0.0436 (6)
H70.03580.10360.16640.052*
C80.00543 (9)0.3235 (3)0.13085 (15)0.0449 (6)
H80.02670.28440.09610.054*
C90.18453 (8)0.1155 (3)0.21042 (14)0.0380 (5)
C100.23154 (9)0.2043 (3)0.23028 (15)0.0441 (6)
H100.23890.27290.28010.053*
C110.26711 (9)0.1918 (3)0.17704 (16)0.0450 (6)
H110.29890.25100.19140.054*
C120.25677 (9)0.0920 (3)0.10144 (14)0.0378 (5)
C130.20852 (8)0.0063 (3)0.08150 (15)0.0407 (5)
H130.20020.05930.03050.049*
C140.17353 (9)0.0173 (3)0.13568 (15)0.0424 (6)
H140.14180.04230.12210.051*
C150.28658 (9)0.0244 (3)0.02587 (15)0.0465 (6)
H15A0.25950.02140.07430.056*
H15B0.27450.13210.01150.056*
C160.33752 (10)0.0418 (4)0.05525 (17)0.0554 (7)
H16A0.33130.10960.10870.066*
H16B0.34890.06610.07090.066*
H1C0.0542 (6)0.548 (3)0.0693 (15)0.053 (7)*
H2C0.3197 (7)0.153 (2)0.0623 (15)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0429 (3)0.0529 (4)0.0352 (3)0.0069 (3)0.0084 (2)0.0087 (3)
O10.0496 (10)0.0687 (12)0.0647 (12)0.0064 (9)0.0100 (9)0.0226 (10)
O20.0570 (10)0.0800 (13)0.0318 (9)0.0134 (10)0.0023 (8)0.0028 (8)
O30.0590 (10)0.0523 (10)0.0570 (11)0.0009 (9)0.0190 (9)0.0179 (8)
O40.0422 (10)0.0902 (15)0.0653 (12)0.0090 (10)0.0144 (9)0.0052 (11)
N10.0434 (12)0.0531 (13)0.0481 (12)0.0080 (11)0.0016 (10)0.0008 (10)
N20.0427 (11)0.0510 (12)0.0521 (12)0.0059 (10)0.0150 (10)0.0089 (10)
C10.0681 (18)0.0621 (17)0.0520 (16)0.0196 (15)0.0147 (14)0.0100 (14)
C20.0517 (15)0.0544 (16)0.0578 (16)0.0082 (13)0.0157 (12)0.0068 (13)
C30.0367 (12)0.0505 (14)0.0329 (12)0.0077 (11)0.0113 (10)0.0001 (10)
C40.0424 (13)0.0445 (14)0.0500 (14)0.0024 (11)0.0111 (11)0.0014 (11)
C50.0362 (12)0.0540 (15)0.0442 (13)0.0014 (11)0.0064 (10)0.0011 (11)
C60.0331 (11)0.0470 (13)0.0325 (11)0.0049 (10)0.0103 (9)0.0036 (10)
C70.0421 (13)0.0457 (14)0.0436 (13)0.0019 (12)0.0110 (11)0.0027 (11)
C80.0359 (12)0.0553 (15)0.0413 (13)0.0018 (11)0.0043 (10)0.0075 (11)
C90.0347 (11)0.0411 (12)0.0361 (12)0.0082 (10)0.0034 (9)0.0048 (10)
C100.0430 (13)0.0439 (14)0.0426 (13)0.0038 (11)0.0040 (10)0.0037 (11)
C110.0371 (12)0.0441 (13)0.0518 (15)0.0028 (11)0.0060 (11)0.0040 (12)
C120.0361 (11)0.0375 (12)0.0386 (12)0.0050 (10)0.0059 (10)0.0038 (10)
C130.0358 (12)0.0420 (13)0.0414 (13)0.0036 (10)0.0024 (10)0.0050 (11)
C140.0316 (11)0.0459 (13)0.0472 (13)0.0030 (10)0.0034 (10)0.0023 (11)
C150.0424 (13)0.0533 (15)0.0428 (13)0.0017 (11)0.0073 (11)0.0014 (11)
C160.0544 (15)0.0697 (18)0.0444 (14)0.0022 (14)0.0158 (12)0.0033 (13)
Geometric parameters (Å, º) top
S1—O21.4249 (18)C4—H4A0.9300
S1—O31.4371 (19)C5—C61.370 (3)
S1—C61.724 (2)C5—H50.9300
S1—C91.726 (2)C6—C71.379 (3)
O1—C11.390 (3)C7—C81.342 (3)
O1—H10.8200C7—H70.9300
O4—C161.402 (3)C8—H80.9300
O4—H40.8200C9—C141.373 (3)
N1—C31.343 (3)C9—C101.379 (3)
N1—C21.422 (3)C10—C111.358 (3)
N1—H1C0.892 (10)C10—H100.9300
N2—C121.341 (3)C11—C121.390 (3)
N2—C151.429 (3)C11—H110.9300
N2—H2C0.895 (10)C12—C131.393 (3)
C1—C21.494 (4)C13—C141.356 (3)
C1—H1A0.9700C13—H130.9300
C1—H1B0.9700C14—H140.9300
C2—H2A0.9700C15—C161.481 (3)
C2—H2B0.9700C15—H15A0.9700
C3—C41.389 (3)C15—H15B0.9700
C3—C81.396 (3)C16—H16A0.9700
C4—C51.361 (3)C16—H16B0.9700
O2—S1—O3118.39 (11)C7—C6—S1119.89 (18)
O2—S1—C6108.63 (11)C8—C7—C6120.7 (2)
O3—S1—C6106.71 (11)C8—C7—H7119.7
O2—S1—C9107.72 (11)C6—C7—H7119.7
O3—S1—C9107.12 (11)C7—C8—C3121.0 (2)
C6—S1—C9107.85 (11)C7—C8—H8119.5
C1—O1—H1109.5C3—C8—H8119.5
C16—O4—H4109.5C14—C9—C10119.6 (2)
C3—N1—C2124.2 (2)C14—C9—S1119.16 (18)
C3—N1—H1C114.2 (16)C10—C9—S1121.22 (18)
C2—N1—H1C120.3 (16)C11—C10—C9120.0 (2)
C12—N2—C15123.6 (2)C11—C10—H10120.0
C12—N2—H2C115.9 (15)C9—C10—H10120.0
C15—N2—H2C119.8 (15)C10—C11—C12121.2 (2)
O1—C1—C2112.2 (2)C10—C11—H11119.4
O1—C1—H1A109.2C12—C11—H11119.4
C2—C1—H1A109.2N2—C12—C11119.9 (2)
O1—C1—H1B109.2N2—C12—C13122.2 (2)
C2—C1—H1B109.2C11—C12—C13117.9 (2)
H1A—C1—H1B107.9C14—C13—C12120.7 (2)
N1—C2—C1109.9 (2)C14—C13—H13119.7
N1—C2—H2A109.7C12—C13—H13119.7
C1—C2—H2A109.7C13—C14—C9120.7 (2)
N1—C2—H2B109.7C13—C14—H14119.7
C1—C2—H2B109.7C9—C14—H14119.7
H2A—C2—H2B108.2N2—C15—C16111.2 (2)
N1—C3—C4123.1 (2)N2—C15—H15A109.4
N1—C3—C8119.2 (2)C16—C15—H15A109.4
C4—C3—C8117.7 (2)N2—C15—H15B109.4
C5—C4—C3120.9 (2)C16—C15—H15B109.4
C5—C4—H4A119.6H15A—C15—H15B108.0
C3—C4—H4A119.6O4—C16—C15113.5 (2)
C4—C5—C6120.3 (2)O4—C16—H16A108.9
C4—C5—H5119.8C15—C16—H16A108.9
C6—C5—H5119.8O4—C16—H16B108.9
C5—C6—C7119.4 (2)C15—C16—H16B108.9
C5—C6—S1120.64 (18)H16A—C16—H16B107.7
C3—N1—C2—C1175.9 (2)O2—S1—C9—C14161.83 (17)
O1—C1—C2—N160.4 (3)O3—S1—C9—C1433.5 (2)
C2—N1—C3—C43.1 (3)C6—S1—C9—C1481.1 (2)
C2—N1—C3—C8176.8 (2)O2—S1—C9—C1020.3 (2)
N1—C3—C4—C5179.1 (2)O3—S1—C9—C10148.70 (18)
C8—C3—C4—C51.0 (3)C6—S1—C9—C1096.8 (2)
C3—C4—C5—C60.2 (3)C14—C9—C10—C111.3 (3)
C4—C5—C6—C70.4 (3)S1—C9—C10—C11179.14 (18)
C4—C5—C6—S1177.07 (17)C9—C10—C11—C120.9 (3)
O2—S1—C6—C537.3 (2)C15—N2—C12—C11177.4 (2)
O3—S1—C6—C5166.02 (17)C15—N2—C12—C132.2 (3)
C9—S1—C6—C579.2 (2)C10—C11—C12—N2179.1 (2)
O2—S1—C6—C7145.26 (17)C10—C11—C12—C130.5 (3)
O3—S1—C6—C716.6 (2)N2—C12—C13—C14178.0 (2)
C9—S1—C6—C798.25 (19)C11—C12—C13—C141.6 (3)
C5—C6—C7—C80.0 (3)C12—C13—C14—C91.2 (3)
S1—C6—C7—C8177.44 (17)C10—C9—C14—C130.3 (3)
C6—C7—C8—C30.9 (3)S1—C9—C14—C13178.15 (17)
N1—C3—C8—C7178.8 (2)C12—N2—C15—C16166.6 (2)
C4—C3—C8—C71.4 (3)N2—C15—C16—O461.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.932.592.919 (3)101
C10—H10···O20.932.572.915 (3)102
C7—H7···O30.932.472.854 (3)105
O1—H1···O3i0.821.872.683 (3)175
O1—H1···S1i0.822.883.638 (2)154
O4—H4···O2ii0.822.132.945 (3)177
N1—H1C···O4iii0.89 (1)2.19 (1)3.066 (3)169 (2)
N2—H2C···O1iv0.90 (1)2.03 (1)2.917 (3)172 (2)
C10—H10···Cg2v0.932.973.762 (4)144
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H20N2O4S
Mr336.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)25.643 (17), 8.118 (6), 15.340 (11)
β (°) 102.989 (12)
V3)3112 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.966
No. of measured, independent and
observed (I > 2σ) reflections
7793, 2742, 1982
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.03
No. of reflections2742
No. of parameters218
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.932.592.919 (3)101.2
C10—H10···O20.932.572.915 (3)102.2
C7—H7···O30.932.472.854 (3)104.5
O1—H1···O3i0.821.872.683 (3)175.3
O1—H1···S1i0.822.883.638 (2)154.2
O4—H4···O2ii0.822.132.945 (3)176.8
N1—H1C···O4iii0.892 (10)2.185 (11)3.066 (3)169 (2)
N2—H2C···O1iv0.895 (10)2.027 (11)2.917 (3)172 (2)
C10—H10···Cg2v0.932.973.762 (4)144.00
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShahsafi, M. A., Meshkatalsadat, M. H. & Parekh, H. (1987). Indian J. Chem. 26B, 803–807.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds