metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(benzyl­imino­meth­yl)-4-chloro­phenolato-κ2N,O]nickel(II)

aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: mingtian8001@163.com

(Received 23 October 2007; accepted 31 October 2007; online 18 December 2007)

In the mononuclear centrosymmetric title compound, [Ni(C14H11ClNO)2], the NiII atom, lying on a center of symmetry, is four-coordinated by two O atoms and two N atoms from two Schiff base ligands, forming a slightly distorted square-planar environment. The dihedral angle between the two aromatic rings of the ligand is 72.0 (2)°. No significant hydrogen bonding or ππ stacking inter­actions are observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.]). For related literature, see: Christensen et al. (1997[Christensen, A., Jensen, H. S., McKee, V., McKenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080-6085.]); Costes et al. (2005[Costes, J. P., Lamere, J. F., Lepetit, C., Lacroix, P. G. & Dahan, F. (2005). Inorg. Chem. 44, 1973-1982.]); Hu et al. (2005[Hu, Z.-Q., Li, W.-H., Ding, Y. & Wu, Y. (2005). Acta Cyst. E61, m2526-m2527.]); Liu et al. (2006[Liu, H.-Y., Gao, F., Lu, Z.-S. & Wang, H.-Y. (2006). Acta Cryst. E62, m1306-m1308.]); Wallis & Cummings (1974[Wallis, W. N. & Cummings, S. C. (1974). Inorg. Chem. 13, 991-994.]); Yu (2006[Yu, Y.-Y. (2006). Acta Cryst. E62, m948-m949.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H11ClNO)2]

  • Mr = 548.09

  • Monoclinic, P 21 /c

  • a = 13.6785 (17) Å

  • b = 10.5986 (14) Å

  • c = 8.6560 (13) Å

  • β = 107.529 (2)°

  • V = 1196.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 298 (2) K

  • 0.56 × 0.44 × 0.32 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.587, Tmax = 0.727

  • 5718 measured reflections

  • 2110 independent reflections

  • 1506 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.08

  • 2110 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.817 (2)
Ni1—N1 1.926 (3)
O1—Ni1—O1i 180
O1—Ni1—N1i 87.39 (11)
O1—Ni1—N1 92.61 (11)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT (Version 6.02) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SAINT (Version 6.02) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported a Schiff base nickel(II) complex (Hu et al., 2005). Owing to the nickel complexes derived from Schiff base ligands possess interesting structures and wide applications (Costes et al., 2005; Wallis & Cummings, 1974; Christensen et al., 1997; Liu et al., 2006); Yu, 2006), we report here the crystal structure of a new Schiff base nickel(II) complex, title compound, (I),

Compound (I) is a mononuclear centrosymmetric NiII complex (Fig. 1) The Ni atom, lying on the center of symmetry, is four-coordainated by two O atoms and two N atoms from two Schiff base ligands, forming a slightly distorted square-planar environment (Table 1). The bond lengths and angles of the ligands show normal values (Allen et al., 1987). The dihedral angle between the two aromatic rings of the ligand is 72.0 (2)°. No significant hydrogen bonding or π-π stacking interactions are observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature, see: Christensen et al. (1997); Costes et al. (2005); Hu et al. (2005); Liu et al. (2006); Wallis & Cummings (1974); Yu (2006).

Experimental top

5-Chlorosalicylaldehyde (0.1 mmol, 15.7 mg), Ni(NO3)2.6H2O (0.1 mmol, 29.0 mg) and benzylamine (0.1 mmol, 10.7 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 11 d, brown block-shaped crystals of compound (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 61.30, H 4.0%; calculated for Ni(C14H11ClO)2: C 61.34, H 4.01%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Recently, we have reported a Schiff base nickel(II) complex (Hu et al., 2005). Owing to the nickel complexes derived from Schiff base ligands possess interesting structures and wide applications (Costes et al., 2005; Wallis & Cummings, 1974; Christensen et al., 1997; Liu et al., 2006); Yu, 2006), we report here the crystal structure of a new Schiff base nickel(II) complex, title compound, (I),

Compound (I) is a mononuclear centrosymmetric NiII complex (Fig. 1) The Ni atom, lying on the center of symmetry, is four-coordainated by two O atoms and two N atoms from two Schiff base ligands, forming a slightly distorted square-planar environment (Table 1). The bond lengths and angles of the ligands show normal values (Allen et al., 1987). The dihedral angle between the two aromatic rings of the ligand is 72.0 (2)°. No significant hydrogen bonding or π-π stacking interactions are observed.

For bond-length data, see: Allen et al. (1987). For related literature, see: Christensen et al. (1997); Costes et al. (2005); Hu et al. (2005); Liu et al. (2006); Wallis & Cummings (1974); Yu (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Unlabelled atoms are related to other labelled atoms by the symmetry operation (-x, 1 - y, -z).
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis.
Bis[2-(benzyliminomethyl)-4-chlorophenolato-κ2N,O]nickel(II) top
Crystal data top
[Ni(C14H11ClNO)2]F(000) = 564
Mr = 548.09Dx = 1.521 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1825 reflections
a = 13.6785 (17) Åθ = 2.5–25.2°
b = 10.5986 (14) ŵ = 1.06 mm1
c = 8.6560 (13) ÅT = 298 K
β = 107.529 (2)°Rhombus, green
V = 1196.6 (3) Å30.56 × 0.44 × 0.32 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2110 independent reflections
Radiation source: fine-focus sealed tube1506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1612
Tmin = 0.587, Tmax = 0.727k = 128
5718 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.057P)2 + 0.6708P]
where P = (Fo2 + 2Fc2)/3
2110 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ni(C14H11ClNO)2]V = 1196.6 (3) Å3
Mr = 548.09Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.6785 (17) ŵ = 1.06 mm1
b = 10.5986 (14) ÅT = 298 K
c = 8.6560 (13) Å0.56 × 0.44 × 0.32 mm
β = 107.529 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2110 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1506 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.727Rint = 0.039
5718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.08Δρmax = 0.53 e Å3
2110 reflectionsΔρmin = 0.28 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.00000.0329 (2)
Cl10.48272 (9)0.77502 (16)0.44350 (18)0.0919 (6)
N10.0104 (2)0.6504 (3)0.1288 (3)0.0316 (7)
O10.13607 (19)0.4664 (3)0.0829 (3)0.0472 (7)
C10.0949 (3)0.7006 (4)0.2141 (4)0.0354 (8)
H10.08990.77370.27050.043*
C20.1963 (3)0.6549 (4)0.2309 (4)0.0359 (9)
C30.2107 (3)0.5393 (4)0.1629 (4)0.0365 (9)
C40.3123 (3)0.4982 (4)0.1878 (5)0.0467 (10)
H40.32400.42080.14610.056*
C50.3939 (3)0.5699 (5)0.2720 (5)0.0528 (11)
H50.46030.54180.28550.063*
C60.3779 (3)0.6840 (5)0.3372 (5)0.0520 (11)
C70.2809 (3)0.7283 (4)0.3197 (5)0.0451 (10)
H70.27100.80480.36530.054*
C80.0831 (3)0.7179 (4)0.1351 (4)0.0369 (9)
H8A0.12540.73530.02530.044*
H8B0.06330.79820.18930.044*
C90.1461 (2)0.6457 (3)0.2219 (4)0.0316 (8)
C100.1084 (3)0.5490 (4)0.3262 (4)0.0393 (9)
H100.04110.52250.34380.047*
C110.1688 (3)0.4897 (4)0.4064 (5)0.0469 (10)
H110.14220.42330.47670.056*
C120.2678 (3)0.5281 (4)0.3827 (5)0.0533 (12)
H120.30870.48780.43610.064*
C130.3059 (3)0.6264 (5)0.2799 (5)0.0553 (12)
H130.37250.65440.26510.066*
C140.2457 (3)0.6839 (4)0.1983 (5)0.0458 (10)
H140.27270.74930.12650.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0295 (4)0.0348 (4)0.0367 (4)0.0008 (3)0.0133 (3)0.0002 (3)
Cl10.0415 (7)0.1240 (14)0.1083 (11)0.0314 (7)0.0197 (7)0.0503 (10)
N10.0291 (15)0.0328 (17)0.0363 (16)0.0014 (13)0.0152 (13)0.0075 (13)
O10.0307 (14)0.0475 (19)0.0590 (17)0.0032 (11)0.0070 (13)0.0124 (13)
C10.040 (2)0.031 (2)0.040 (2)0.0020 (16)0.0191 (17)0.0023 (16)
C20.0311 (19)0.043 (2)0.035 (2)0.0034 (17)0.0123 (15)0.0036 (18)
C30.033 (2)0.045 (2)0.035 (2)0.0018 (16)0.0137 (17)0.0024 (17)
C40.035 (2)0.053 (3)0.054 (2)0.0008 (19)0.0156 (18)0.010 (2)
C50.031 (2)0.069 (3)0.059 (3)0.001 (2)0.0156 (19)0.005 (2)
C60.034 (2)0.073 (3)0.050 (2)0.014 (2)0.0137 (18)0.008 (2)
C70.037 (2)0.049 (3)0.051 (2)0.0103 (18)0.0162 (18)0.008 (2)
C80.038 (2)0.032 (2)0.043 (2)0.0018 (16)0.0163 (17)0.0026 (17)
C90.0308 (18)0.033 (2)0.0309 (19)0.0009 (15)0.0095 (15)0.0046 (16)
C100.039 (2)0.037 (2)0.043 (2)0.0046 (17)0.0142 (17)0.0024 (18)
C110.055 (3)0.043 (2)0.047 (2)0.003 (2)0.0222 (19)0.009 (2)
C120.049 (2)0.067 (3)0.053 (2)0.012 (2)0.029 (2)0.001 (2)
C130.035 (2)0.079 (4)0.055 (3)0.005 (2)0.019 (2)0.002 (2)
C140.040 (2)0.055 (3)0.043 (2)0.0121 (19)0.0139 (18)0.010 (2)
Geometric parameters (Å, º) top
Ni1—O11.817 (2)C6—C71.372 (5)
Ni1—O1i1.817 (2)C7—H70.93
Ni1—N1i1.926 (3)C8—C91.510 (5)
Ni1—N11.926 (3)C8—H8A0.97
Cl1—C61.743 (4)C8—H8B0.97
N1—C11.284 (4)C9—C101.361 (5)
N1—C81.480 (4)C9—C141.377 (5)
O1—C31.301 (4)C10—C111.380 (5)
C1—C21.434 (5)C10—H100.93
C1—H10.93C11—C121.369 (6)
C2—C31.399 (5)C11—H110.93
C2—C71.414 (5)C12—C131.367 (6)
C3—C41.409 (5)C12—H120.93
C4—C51.365 (6)C13—C141.378 (6)
C4—H40.93C13—H130.93
C5—C61.379 (6)C14—H140.93
C5—H50.93
O1—Ni1—O1i180C6—C7—C2118.6 (4)
O1—Ni1—N1i87.39 (11)C6—C7—H7120.7
O1i—Ni1—N1i92.61 (11)C2—C7—H7120.7
O1—Ni1—N192.61 (11)N1—C8—C9113.7 (3)
O1i—Ni1—N187.39 (11)N1—C8—H8A108.8
N1i—Ni1—N1180.00 (14)C9—C8—H8A108.8
C1—N1—C8114.6 (3)N1—C8—H8B108.8
C1—N1—Ni1124.9 (2)C9—C8—H8B108.8
C8—N1—Ni1120.5 (2)H8A—C8—H8B107.7
C3—O1—Ni1129.8 (3)C10—C9—C14118.7 (3)
N1—C1—C2126.4 (4)C10—C9—C8123.5 (3)
N1—C1—H1116.8C14—C9—C8117.7 (3)
C2—C1—H1116.8C9—C10—C11120.8 (3)
C3—C2—C7120.9 (3)C9—C10—H10119.6
C3—C2—C1120.5 (3)C11—C10—H10119.6
C7—C2—C1118.5 (4)C12—C11—C10120.3 (4)
O1—C3—C2123.8 (3)C12—C11—H11119.9
O1—C3—C4118.5 (4)C10—C11—H11119.9
C2—C3—C4117.6 (3)C13—C12—C11119.4 (4)
C5—C4—C3121.3 (4)C13—C12—H12120.3
C5—C4—H4119.3C11—C12—H12120.3
C3—C4—H4119.3C12—C13—C14120.1 (4)
C4—C5—C6120.1 (4)C12—C13—H13120.0
C4—C5—H5120.0C14—C13—H13120.0
C6—C5—H5120.0C9—C14—C13120.7 (4)
C7—C6—C5121.4 (4)C9—C14—H14119.6
C7—C6—Cl1118.9 (4)C13—C14—H14119.6
C5—C6—Cl1119.6 (3)
O1—Ni1—N1—C19.0 (3)C4—C5—C6—C70.0 (7)
O1i—Ni1—N1—C1171.0 (3)C4—C5—C6—Cl1179.7 (3)
O1—Ni1—N1—C8171.1 (2)C5—C6—C7—C20.8 (6)
O1i—Ni1—N1—C88.9 (2)Cl1—C6—C7—C2178.9 (3)
N1i—Ni1—O1—C3164.0 (3)C3—C2—C7—C60.4 (5)
N1—Ni1—O1—C316.0 (3)C1—C2—C7—C6179.3 (3)
C8—N1—C1—C2179.6 (3)C1—N1—C8—C9111.5 (3)
Ni1—N1—C1—C20.4 (5)Ni1—N1—C8—C968.5 (3)
N1—C1—C2—C36.1 (6)N1—C8—C9—C1019.2 (5)
N1—C1—C2—C7174.9 (3)N1—C8—C9—C14163.5 (3)
Ni1—O1—C3—C214.1 (5)C14—C9—C10—C110.4 (6)
Ni1—O1—C3—C4168.2 (3)C8—C9—C10—C11177.6 (4)
C7—C2—C3—O1178.5 (3)C9—C10—C11—C120.5 (6)
C1—C2—C3—O10.5 (5)C10—C11—C12—C130.5 (6)
C7—C2—C3—C40.7 (5)C11—C12—C13—C141.5 (7)
C1—C2—C3—C4178.2 (3)C10—C9—C14—C130.7 (6)
O1—C3—C4—C5179.4 (4)C8—C9—C14—C13176.8 (4)
C2—C3—C4—C51.5 (6)C12—C13—C14—C91.6 (7)
C3—C4—C5—C61.1 (6)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C14H11ClNO)2]
Mr548.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.6785 (17), 10.5986 (14), 8.6560 (13)
β (°) 107.529 (2)
V3)1196.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.56 × 0.44 × 0.32
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.587, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
5718, 2110, 1506
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.08
No. of reflections2110
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.28

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Ni1—O11.817 (2)Ni1—N11.926 (3)
O1—Ni1—O1i180O1—Ni1—N192.61 (11)
O1—Ni1—N1i87.39 (11)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Financial support by the Phytochemistry Key Laboratory of Shaanxi province (grant No. 02js40) is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT (Version 6.02) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristensen, A., Jensen, H. S., McKee, V., McKenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080–6085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCostes, J. P., Lamere, J. F., Lepetit, C., Lacroix, P. G. & Dahan, F. (2005). Inorg. Chem. 44, 1973–1982.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, Z.-Q., Li, W.-H., Ding, Y. & Wu, Y. (2005). Acta Cyst. E61, m2526–m2527.  CAS Google Scholar
First citationLiu, H.-Y., Gao, F., Lu, Z.-S. & Wang, H.-Y. (2006). Acta Cryst. E62, m1306–m1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationWallis, W. N. & Cummings, S. C. (1974). Inorg. Chem. 13, 991–994.  CrossRef CAS Web of Science Google Scholar
First citationYu, Y.-Y. (2006). Acta Cryst. E62, m948–m949.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds