organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­droxy-2-methylquinoline

aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 November 2007; accepted 26 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, C10H9NO, contains two independent mol­ecules which are linked by a pair of O—H⋯N hydrogen bonds into a hydrogen-bonded dimer.

Related literature

Aluminium derivatives of 2-methyl-8-hydroxy­quinoline are light-emitting compounds. For their crystal structures, see: Iijima & Yamamoto (2006[Iijima, T. & Yamamoto, T. (2006). J. Organomet. Chem. 691, 5016-5023. Publ.]); Kushi & Fernando (1970[Kushi, Y. & Fernando, Q. (1970). J. Am. Chem. Soc. 92, 91-96.]); Rajeswaran et al. (2007[Rajeswaran, M., Place, D. W., Bakos, V. W., Deaton, J. C., Brown, C. T. & Lenhard, W. C. (2007). Acta Cryst. E63, m54-m56.]); Toulokhonova et al. (2002[Toulokhonova, I. S., Guzei, I. A., Kavana, M. & West, R. (2002). Main Group Met. Chem. 25, 489-495.]); Yamaguchi et al. (2002a[Yamaguchi, I., Iijima, T. & Yamamoto, T. (2002a). J. Organomet. Chem. 654, 229-232.],b[Yamaguchi, I., Iijima, T. & Yamamoto, T. (2002b). J. Organomet. Chem. 658, 281.]); Yuchi et al. (2003[Yuchi, A., Hiramatsu, H., Ohara, M. & Ohata, N. (2003). Anal. Sci. 19, 1177-1181.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO

  • Mr = 159.18

  • Orthorhombic, P b c a

  • a = 12.6542 (5) Å

  • b = 10.9976 (6) Å

  • c = 23.6264 (10) Å

  • V = 3288.0 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 (2) K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.979

  • 30335 measured reflections

  • 3769 independent reflections

  • 2055 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.188

  • S = 1.10

  • 3769 reflections

  • 228 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.86 (3) 2.17 (2) 2.884 (2) 140 (3)
O2—H2O⋯N1 0.85 (3) 2.19 (2) 2.912 (2) 142 (3)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2007[Westrip, S. P. (2007). publCIF. In preparation.]).

Supporting information


Comment top

The asymmetric unit of the title compound contains two molecules; the corresponding bond lengths and angles of these two molecules agree with each other. In the solid state, the two independent molecules exist as O—H···N hydrogen-bonded dimer; the mean planes through the non-hydrogen atoms of the two molecules form a dihedral angle of 77.98 (5)°.

Related literature top

Aluminium derivatives of 2-methyl-8-hydroxyquinoline are light-emitting compounds. For their crystal structures, see: Iijima & Yamamoto (2006); Kushi & Fernando (1970); Rajeswaran et al. (2007); Toulokhonova et al. (2002); Yamaguchi et al. (2002); Yuchi et al. (2003).

Experimental top

Commercially available 2-methyl-8-hydroxyquinoline was recrystallized from diethyl ether.

Refinement top

Carbon- and oxygen-bound H atoms were placed in calculated positions [C—H 0.93–0.96 Å and Uiso(H) = 1.2–1.5Ueq(C)], and were included in the refinement in the riding-model approximation. The hydroxyl H-atoms were located in a difference Fourier map, and were refined with a O—H distance restraint of 0.85 (1) Å.

Structure description top

The asymmetric unit of the title compound contains two molecules; the corresponding bond lengths and angles of these two molecules agree with each other. In the solid state, the two independent molecules exist as O—H···N hydrogen-bonded dimer; the mean planes through the non-hydrogen atoms of the two molecules form a dihedral angle of 77.98 (5)°.

Aluminium derivatives of 2-methyl-8-hydroxyquinoline are light-emitting compounds. For their crystal structures, see: Iijima & Yamamoto (2006); Kushi & Fernando (1970); Rajeswaran et al. (2007); Toulokhonova et al. (2002); Yamaguchi et al. (2002); Yuchi et al. (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO(Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the hydrogen-bonded dimeric structure. Displacement ellipsoids are drawn at the 50% probability level.
8-Hydroxy-2-methylquinoline top
Crystal data top
C10H9NOF(000) = 1344
Mr = 159.18Dx = 1.286 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 15421 reflections
a = 12.6542 (5) Åθ = 3.0–27.5°
b = 10.9976 (6) ŵ = 0.08 mm1
c = 23.6264 (10) ÅT = 295 K
V = 3288.0 (3) Å3Block, colourless
Z = 160.30 × 0.25 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3769 independent reflections
Radiation source: fine-focus sealed tube2055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω–scansh = 1616
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.975, Tmax = 0.979l = 3026
30335 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.1035P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3769 reflectionsΔρmax = 0.22 e Å3
228 parametersΔρmin = 0.21 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (13)
Crystal data top
C10H9NOV = 3288.0 (3) Å3
Mr = 159.18Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 12.6542 (5) ŵ = 0.08 mm1
b = 10.9976 (6) ÅT = 295 K
c = 23.6264 (10) Å0.30 × 0.25 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3769 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2055 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.979Rint = 0.047
30335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.22 e Å3
3769 reflectionsΔρmin = 0.21 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75378 (11)0.58979 (15)0.60707 (6)0.0612 (4)
H1O0.712 (2)0.644 (2)0.6204 (12)0.117 (11)*
O20.49093 (12)0.60686 (17)0.66008 (6)0.0703 (5)
H2O0.534 (2)0.650 (3)0.6411 (12)0.127 (12)*
N10.58151 (11)0.69189 (15)0.55393 (6)0.0467 (4)
N20.66746 (12)0.72562 (15)0.70068 (7)0.0501 (4)
C10.64032 (13)0.60751 (17)0.52540 (7)0.0440 (4)
C20.72545 (14)0.55220 (19)0.55461 (8)0.0474 (5)
C30.78109 (15)0.4604 (2)0.52974 (9)0.0544 (5)
H30.83510.42220.54960.065*
C40.75763 (16)0.4235 (2)0.47477 (9)0.0580 (6)
H40.79580.36010.45860.070*
C50.67994 (15)0.4782 (2)0.44415 (8)0.0563 (5)
H50.66710.45460.40700.068*
C60.61901 (14)0.57120 (19)0.46936 (8)0.0483 (5)
C70.53480 (15)0.6315 (2)0.44188 (8)0.0574 (6)
H70.51830.61260.40460.069*
C80.47827 (16)0.7167 (2)0.46992 (9)0.0577 (6)
H80.42360.75730.45170.069*
C90.50225 (14)0.74416 (19)0.52701 (8)0.0511 (5)
C100.43762 (18)0.8347 (2)0.55908 (10)0.0708 (7)
H10A0.45100.82600.59890.106*
H10B0.36400.82080.55170.106*
H10C0.45630.91540.54730.106*
C110.60152 (14)0.66840 (18)0.73818 (8)0.0482 (5)
C120.51288 (15)0.6056 (2)0.71618 (8)0.0540 (5)
C130.44816 (16)0.5426 (2)0.75192 (9)0.0651 (6)
H130.39030.50080.73740.078*
C140.4678 (2)0.5401 (3)0.81019 (10)0.0758 (7)
H140.42300.49630.83380.091*
C150.5506 (2)0.6003 (3)0.83250 (9)0.0727 (7)
H150.56240.59810.87130.087*
C160.61957 (15)0.6667 (2)0.79724 (8)0.0563 (5)
C170.70723 (18)0.7335 (2)0.81663 (9)0.0686 (7)
H170.72140.73780.85520.082*
C180.77087 (17)0.7914 (2)0.77952 (9)0.0663 (6)
H180.82830.83600.79260.080*
C190.75035 (15)0.7842 (2)0.72081 (9)0.0548 (5)
C200.82399 (19)0.8427 (2)0.67981 (10)0.0756 (7)
H20A0.80210.82390.64190.113*
H20B0.89430.81260.68590.113*
H20C0.82300.92920.68520.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0610 (8)0.0722 (11)0.0505 (8)0.0135 (7)0.0151 (7)0.0101 (7)
O20.0653 (9)0.0976 (14)0.0480 (8)0.0233 (9)0.0058 (7)0.0011 (8)
N10.0446 (8)0.0474 (10)0.0480 (9)0.0003 (7)0.0025 (7)0.0011 (7)
N20.0519 (9)0.0510 (10)0.0472 (9)0.0005 (7)0.0025 (7)0.0006 (7)
C10.0424 (9)0.0459 (11)0.0436 (10)0.0044 (8)0.0001 (8)0.0012 (8)
C20.0453 (10)0.0522 (13)0.0447 (10)0.0002 (8)0.0032 (8)0.0014 (9)
C30.0496 (10)0.0569 (14)0.0569 (12)0.0058 (9)0.0013 (9)0.0021 (10)
C40.0551 (11)0.0561 (13)0.0629 (13)0.0015 (10)0.0084 (10)0.0107 (10)
C50.0572 (11)0.0649 (15)0.0468 (11)0.0067 (10)0.0012 (9)0.0092 (10)
C60.0469 (10)0.0535 (12)0.0444 (10)0.0077 (9)0.0015 (8)0.0006 (8)
C70.0580 (11)0.0683 (15)0.0457 (11)0.0061 (10)0.0076 (9)0.0024 (10)
C80.0523 (11)0.0643 (14)0.0565 (12)0.0021 (10)0.0112 (9)0.0088 (11)
C90.0456 (10)0.0498 (12)0.0580 (12)0.0007 (9)0.0035 (9)0.0054 (9)
C100.0630 (12)0.0677 (17)0.0816 (16)0.0154 (11)0.0038 (11)0.0077 (13)
C110.0507 (10)0.0497 (12)0.0443 (10)0.0064 (9)0.0006 (8)0.0018 (8)
C120.0521 (10)0.0619 (14)0.0482 (11)0.0001 (9)0.0016 (9)0.0026 (9)
C130.0565 (12)0.0762 (17)0.0625 (14)0.0072 (11)0.0075 (10)0.0017 (12)
C140.0747 (15)0.087 (2)0.0660 (15)0.0006 (13)0.0227 (12)0.0095 (13)
C150.0825 (16)0.090 (2)0.0458 (12)0.0035 (14)0.0082 (11)0.0029 (12)
C160.0632 (12)0.0614 (14)0.0441 (10)0.0094 (10)0.0013 (9)0.0026 (10)
C170.0759 (14)0.0834 (18)0.0465 (12)0.0016 (13)0.0129 (11)0.0078 (11)
C180.0664 (13)0.0716 (17)0.0608 (13)0.0041 (12)0.0157 (11)0.0100 (11)
C190.0539 (11)0.0508 (13)0.0595 (12)0.0017 (9)0.0057 (10)0.0016 (10)
C200.0762 (15)0.0700 (17)0.0804 (16)0.0200 (12)0.0057 (12)0.0064 (13)
Geometric parameters (Å, º) top
O1—C21.355 (2)C9—C101.494 (3)
O1—H1O0.86 (3)C10—H10A0.96
O2—C121.354 (2)C10—H10B0.96
O2—H2O0.85 (3)C10—H10C0.96
N1—C91.319 (2)C11—C161.414 (3)
N1—C11.367 (2)C11—C121.416 (3)
N2—C191.320 (2)C12—C131.365 (3)
N2—C111.370 (2)C13—C141.399 (3)
C1—C61.409 (2)C13—H130.93
C1—C21.417 (2)C14—C151.348 (3)
C2—C31.364 (3)C14—H140.93
C3—C41.393 (3)C15—C161.410 (3)
C3—H30.93C15—H150.93
C4—C51.361 (3)C16—C171.407 (3)
C4—H40.93C17—C181.350 (3)
C5—C61.412 (3)C17—H170.930
C5—H50.93C18—C191.413 (3)
C6—C71.413 (3)C18—H180.93
C7—C81.352 (3)C19—C201.490 (3)
C7—H70.93C20—H20A0.96
C8—C91.415 (3)C20—H20B0.96
C8—H80.93C20—H20C0.96
C2—O1—H1O113 (2)H10A—C10—H10C109.5
C12—O2—H2O113 (2)H10B—C10—H10C109.5
C9—N1—C1118.15 (16)N2—C11—C16123.07 (17)
C19—N2—C11118.38 (17)N2—C11—C12117.97 (17)
N1—C1—C6123.48 (16)C16—C11—C12118.93 (18)
N1—C1—C2117.72 (16)O2—C12—C13119.17 (19)
C6—C1—C2118.79 (17)O2—C12—C11121.11 (18)
O1—C2—C3118.90 (17)C13—C12—C11119.72 (19)
O1—C2—C1121.06 (17)C12—C13—C14120.8 (2)
C3—C2—C1120.04 (18)C12—C13—H13119.6
C2—C3—C4120.50 (18)C14—C13—H13119.6
C2—C3—H3119.8C15—C14—C13120.9 (2)
C4—C3—H3119.8C15—C14—H14119.6
C5—C4—C3121.4 (2)C13—C14—H14119.6
C5—C4—H4119.3C14—C15—C16120.3 (2)
C3—C4—H4119.3C14—C15—H15119.8
C4—C5—C6119.38 (19)C16—C15—H15119.8
C4—C5—H5120.3C17—C16—C15124.4 (2)
C6—C5—H5120.3C17—C16—C11116.22 (19)
C1—C6—C5119.80 (17)C15—C16—C11119.33 (19)
C1—C6—C7116.30 (18)C18—C17—C16120.33 (19)
C5—C6—C7123.90 (19)C18—C17—H17119.8
C8—C7—C6119.93 (19)C16—C17—H17119.8
C8—C7—H7120.0C17—C18—C19120.1 (2)
C6—C7—H7120.0C17—C18—H18119.9
C7—C8—C9120.10 (18)C19—C18—H18119.9
C7—C8—H8120.0N2—C19—C18121.8 (2)
C9—C8—H8120.0N2—C19—C20118.26 (18)
N1—C9—C8121.96 (19)C18—C19—C20119.95 (19)
N1—C9—C10117.50 (18)C19—C20—H20A109.5
C8—C9—C10120.53 (18)C19—C20—H20B109.5
C9—C10—H10A109.5H20A—C20—H20B109.5
C9—C10—H10B109.5C19—C20—H20C109.5
H10A—C10—H10B109.5H20A—C20—H20C109.5
C9—C10—H10C109.5H20B—C20—H20C109.5
C9—N1—C1—C61.7 (3)C19—N2—C11—C161.6 (3)
C9—N1—C1—C2179.80 (17)C19—N2—C11—C12179.91 (18)
N1—C1—C2—O16.1 (3)N2—C11—C12—O23.1 (3)
C6—C1—C2—O1175.38 (17)C16—C11—C12—O2178.49 (19)
N1—C1—C2—C3174.58 (17)N2—C11—C12—C13176.9 (2)
C6—C1—C2—C33.9 (3)C16—C11—C12—C131.5 (3)
O1—C2—C3—C4176.79 (19)O2—C12—C13—C14179.4 (2)
C1—C2—C3—C42.5 (3)C11—C12—C13—C140.6 (4)
C2—C3—C4—C50.7 (3)C12—C13—C14—C150.4 (4)
C3—C4—C5—C62.5 (3)C13—C14—C15—C160.3 (4)
N1—C1—C6—C5176.28 (17)C14—C15—C16—C17179.2 (2)
C2—C1—C6—C52.2 (3)C14—C15—C16—C110.7 (4)
N1—C1—C6—C73.0 (3)N2—C11—C16—C173.4 (3)
C2—C1—C6—C7178.55 (17)C12—C11—C16—C17178.32 (19)
C4—C5—C6—C11.0 (3)N2—C11—C16—C15176.7 (2)
C4—C5—C6—C7178.21 (19)C12—C11—C16—C151.6 (3)
C1—C6—C7—C81.5 (3)C15—C16—C17—C18177.9 (2)
C5—C6—C7—C8177.73 (19)C11—C16—C17—C182.2 (3)
C6—C7—C8—C91.0 (3)C16—C17—C18—C190.6 (4)
C1—N1—C9—C81.0 (3)C11—N2—C19—C181.4 (3)
C1—N1—C9—C10179.00 (17)C11—N2—C19—C20177.9 (2)
C7—C8—C9—N12.4 (3)C17—C18—C19—N22.5 (4)
C7—C8—C9—C10177.6 (2)C17—C18—C19—C20176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.86 (3)2.17 (2)2.884 (2)140 (3)
O2—H2O···N10.85 (3)2.19 (2)2.912 (2)142 (3)

Experimental details

Crystal data
Chemical formulaC10H9NO
Mr159.18
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)12.6542 (5), 10.9976 (6), 23.6264 (10)
V3)3288.0 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.975, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
30335, 3769, 2055
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.188, 1.10
No. of reflections3769
No. of parameters228
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO(Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.86 (3)2.17 (2)2.884 (2)140 (3)
O2—H2O···N10.85 (3)2.19 (2)2.912 (2)142 (3)
 

Acknowledgements

The authors thank Shahid Beheshti University, the Heilongjiang Province Natural Science Foundation (grant No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036), and the University of Malaya for supporting this work.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIijima, T. & Yamamoto, T. (2006). J. Organomet. Chem. 691, 5016–5023. Publ.  Web of Science CSD CrossRef CAS Google Scholar
First citationKushi, Y. & Fernando, Q. (1970). J. Am. Chem. Soc. 92, 91–96.  CSD CrossRef CAS Web of Science Google Scholar
First citationRajeswaran, M., Place, D. W., Bakos, V. W., Deaton, J. C., Brown, C. T. & Lenhard, W. C. (2007). Acta Cryst. E63, m54–m56.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationToulokhonova, I. S., Guzei, I. A., Kavana, M. & West, R. (2002). Main Group Met. Chem. 25, 489–495.  CAS Google Scholar
First citationWestrip, S. P. (2007). publCIF. In preparation.  Google Scholar
First citationYamaguchi, I., Iijima, T. & Yamamoto, T. (2002a). J. Organomet. Chem. 654, 229–232.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamaguchi, I., Iijima, T. & Yamamoto, T. (2002b). J. Organomet. Chem. 658, 281.  Web of Science CrossRef Google Scholar
First citationYuchi, A., Hiramatsu, H., Ohara, M. & Ohata, N. (2003). Anal. Sci. 19, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds