

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-(1,3-Dioxolan-2-ylmethyl)-1,3-dimethylpurine-2.6(1H.3H)-dione trichloroacetic acid solvate

Xiang-Xiang Wu,^a Zhan Shu,^b Lin-Lin Ma,^b Zhe-Wu Ding^b and Zhi-Min Jin^b*

^aCollege of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and ^bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: apharm@sina.com

Received 23 October 2007; accepted 14 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.072; wR factor = 0.167; data-to-parameter ratio = 13.1.

In the title compound, C₁₁H₁₄N₄O₄·C₂HCl₃O₂, the dioxolane ring adopts an envelope conformation. Doxophylline [7-(1,3-dioxolan-2-yl-methyl)-1,3-dimethyl-3,7-dihydro-1Hpurine-2,6-dione] and trichloroacetic acid molecules are linked by $O-H \cdots N$ and $C-H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Chen et al. (2006, 2007); Feng et al. (2007); Franzone et al. (1981); Li et al. (1995); Villani et al. (1997).

Experimental

Crystal data C11H14N4O4·C2HCl3O2 $M_r = 429.64$

Triclinic, P1 a = 5.656 (3) Å

b = 10.825 (5) A	
c = 14.962 (7) Å	
$\alpha = 93.217 \ (9)^{\circ}$	
$\beta = 91.090 \ (8)^{\circ}$	
$\gamma = 101.725 \ (9)^{\circ}$	
V = 895.1 (8) Å ³	

Data collection

Bruker APEX area-detector	4717 measured reflections
diffractometer	3124 independent reflections
Absorption correction: multi-scan	2915 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.015$
$T_{\min} = 0.818, \ T_{\max} = 0.912$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.073$	238 parameters
$wR(F^2) = 0.167$	H-atom parameters constrained
S = 1.15	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
3124 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$06 - H6 \cdots N4$ $C5 - H5 \cdots O5$ $C7 - H7 \cdots O1^{i}$ $C10 - H10B \cdots O2^{ii}$	0.82 0.93 0.98 0.96	1.82 2.48 2.44 2.51	2.635 (4) 3.079 (5) 3.410 (5) 3.351 (3)	176 123 171 147

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x, -y, -z + 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2059).

References

- Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z.-H., Tu, B. & Jin, Z.-M. (2007). Acta Cryst. E63, o2676-o2677.
- Chen, H. X., Tu, B., Shu, Z., Ma, X. J. & Jin, Z. M. (2007). Acta Cryst. E63, 0726-0727.
- Feng, W.-J., Ma, X.-J., Shu, Z. & Jin, Z.-M. (2007). Acta Cryst. E63, 03609.
- Franzone, J. S., Reboani, C. & Fonzo, D. (1981). Farmacol. Sci. 36, 201-219.
- Li, C. H., Luo, Z. & Li, Z. H. (1995). Chin. J. Pharm. 26, 385-386.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Villani, F., De Maria, P., Ronchi, E. & Galimberti, M. (1997). Int. J. Clin. Pharmacol. Ther. 35, 107-111.

Mo $K\alpha$ radiation

 $\mu = 0.55 \text{ mm}^{-1}$

T = 293 (2) K $0.38 \times 0.28 \times 0.17~\text{mm}$

Z = 2

supporting information

Acta Cryst. (2008). E64, o347 [https://doi.org/10.1107/S1600536807067025]

7-(1,3-Dioxolan-2-ylmethyl)-1,3-dimethylpurine-2,6(1*H*,3*H*)-dione trichloroacetic acid solvate

Xiang-Xiang Wu, Zhan Shu, Lin-Lin Ma, Zhe-Wu Ding and Zhi-Min Jin

S1. Comment

Doxophylline, 2-(7'-theophyllinemethyl)1,3-dioxolane, is a theophylline derivative which shows interesting bronchodilating activity (Franzone *et al.*, 1981; Villani *et al.*, 1997). Previously, we have reported some compounds containing doxophylline (Chen *et al.*, 2006; Chen *et al.*, 2007; Feng *et al.*, 2007).

Association of one doxophylline and one trichloroacetic acid molecule leads to the title compound (Fig. 1). The geometric features of the purine ring system are similar to those in doxophylline (Chen *et al.*, 2006;Chen *et al.*, 2007; Feng *et al.*, 2007).

As shown in Fig. 2, the O6—H6…N4 hydrogen bond between trichloroacetic acid and doxophylline molecule is one of the essential forces in crystal formation. In addition the weak hydrogen bonds of C7—H7…O1ⁱ, C10—H10B…O2ⁱⁱ and C5 —H5…O5 help to increase the stability of the crystal (Table 2 & Fig. 2).

S2. Experimental

Doxophylline was synthesized according with a published procedure (Li *et al.*, 1995), from theophylline by subsitution, oxidation and condensation. Trichloroacetic acid (10 mmol) was added to a solution of doxophylline (10 mm l) in ethanol (20 ml). The mixture was heated to boiling and a clear solution was obtained. Crystals of the title compound were formed by gradual evaporation of ethanol over a period of one week at 293 K.

S3. Refinement

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.82 (hydroxy), 0.93 (C5—H5), 0.96 (methyl), 0.97 (methylene) and 0.98Å (methine), with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$ and $U_{iso}(H) = 1.5 U_{eq}(O)$.

Figure 1

A view of the asymmetric unit with atomic labelling, showing 30% probability displacement ellipsoids. Hydrogen bonds are illustrated in broken lines.

Figure 2

A view of a portion of the crystal packing. Hydrogen bonds are illustrated in broken lines.

7-(1,3-Dioxolan-2-ylmethyl)-1,3-dimethylpurine-2,6(1H,3H)-dione trichloroacetic acid solvate

Crystal data	
$C_{11}H_{14}N_4O_4 \cdot C_2HCl_3O_2$	a = 5.656 (3) Å
$M_r = 429.64$	b = 10.825 (5) Å
Triclinic, $P\overline{1}$	c = 14.962 (7) Å

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.4 - 24.7^{\circ}$

 $\mu = 0.55 \text{ mm}^{-1}$

Block, colorless

 $0.38 \times 0.28 \times 0.17 \text{ mm}$

T = 293 K

Cell parameters from 1931 reflections

 $a = 93.217 (9)^{\circ}$ $\beta = 91.090 (8)^{\circ}$ $\gamma = 101.725 (9)^{\circ}$ $V = 895.1 (8) \text{ Å}^{3}$ Z = 2 F(000) = 440 $D_{x} = 1.594 \text{ Mg m}^{-3}$

Data collection

Bruker APEX area-detector	4717 measured reflections
diffractometer	3124 independent reflections
Radiation source: fine-focus sealed tube	2915 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.015$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(SADABS; Bruker, 2000)	$k = -12 \rightarrow 10$
$T_{\min} = 0.818, \ T_{\max} = 0.912$	$l = -16 \rightarrow 17$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.073$ Hydrogen site location: inferred from $wR(F^2) = 0.167$ neighbouring sites *S* = 1.15 H-atom parameters constrained 3124 reflections $w = 1/[\sigma^2(F_o^2) + (0.0594P)^2 + 1.1669P]$ 238 parameters where $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	1.5096 (2)	0.72892 (10)	0.71995 (10)	0.0764 (4)
Cl2	1.8985 (2)	0.61490 (16)	0.77278 (12)	0.1021 (6)
C13	1.7335 (3)	0.59298 (13)	0.58909 (10)	0.0997 (6)
01	0.3256 (5)	-0.0373 (3)	0.80906 (17)	0.0546 (7)
O2	0.3073 (6)	0.0976 (3)	0.5250 (2)	0.0733 (9)
O3	0.4973 (4)	0.1851 (3)	0.96858 (18)	0.0602 (8)
O4	0.8810 (5)	0.2918 (3)	0.99418 (19)	0.0623 (8)
05	1.4500 (7)	0.4439 (4)	0.7965 (2)	0.1070 (15)
O6	1.3136 (5)	0.4325 (3)	0.65695 (18)	0.0636 (8)
H6	1.2045	0.3777	0.6741	0.095*
N1	0.3188 (5)	0.0331 (3)	0.66788 (19)	0.0419 (7)
N2	0.6381 (6)	0.1835 (3)	0.61213 (18)	0.0449 (7)
N3	0.8290 (5)	0.1395 (3)	0.83050 (18)	0.0405 (7)
N4	0.9777 (5)	0.2545 (3)	0.71822 (18)	0.0430 (7)
C1	0.4252 (6)	0.0310 (3)	0.7528 (2)	0.0393 (8)
C2	0.4147 (7)	0.1040 (4)	0.5965 (2)	0.0478 (9)
C3	0.7539 (6)	0.1868 (3)	0.6938 (2)	0.0366 (7)
C4	0.6551 (6)	0.1155 (3)	0.7615 (2)	0.0359 (7)
C5	1.0141 (6)	0.2218 (3)	0.8011 (2)	0.0453 (9)

supporting information

C6	0.8182 (7)	0.0864 (4)	0.9184 (2)	0.0503 (9)
C7	0.7322 (7)	0.1697 (4)	0.9889 (2)	0.0556 (10)
C8	0.4837 (8)	0.3052 (6)	1.0101 (4)	0.0819 (16)
С9	0.7308 (9)	0.3811 (5)	1.0075 (4)	0.0873 (16)
C10	0.0798 (7)	-0.0510 (4)	0.6519 (3)	0.0571 (10)
C11	0.7596 (9)	0.2537 (4)	0.5391 (3)	0.0668 (12)
C12	1.4565 (7)	0.4789 (4)	0.7231 (3)	0.0495 (9)
C13	1.6453 (7)	0.5977 (4)	0.7006 (3)	0.0510 (9)
Н5	1.1551	0.2535	0.8350	0.054*
H6A	0.9776	0.0744	0.9360	0.060*
H6B	0.7100	0.0042	0.9144	0.060*
H7	0.7354	0.1325	1.0470	0.067*
H8A	0.4326	0.2969	1.0714	0.098*
H8B	0.3708	0.3438	0.9774	0.098*
H9A	0.7445	0.4373	0.9588	0.105*
H9B	0.7747	0.4312	1.0634	0.105*
H10A	0.0989	-0.1371	0.6447	0.086*
H10B	0.0050	-0.0289	0.5986	0.086*
H10C	-0.0200	-0.0418	0.7020	0.086*
H11A	0.8042	0.3418	0.5577	0.100*
H11B	0.6521	0.2428	0.4875	0.100*
H11C	0.9019	0.2223	0.5242	0.100*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0576 (7)	0.0484 (6)	0.1235 (11)	0.0101 (5)	0.0154 (6)	0.0069 (6)
C12	0.0387 (6)	0.1176 (12)	0.1433 (14)	-0.0071 (7)	-0.0153 (7)	0.0424 (10)
C13	0.1202 (12)	0.0764 (9)	0.0881 (9)	-0.0186 (8)	0.0608 (9)	0.0041 (7)
01	0.0479 (15)	0.0548 (16)	0.0536 (16)	-0.0104 (12)	0.0042 (12)	0.0136 (13)
O2	0.072 (2)	0.090 (2)	0.0536 (17)	0.0053 (17)	-0.0215 (15)	0.0125 (16)
O3	0.0333 (14)	0.082 (2)	0.0569 (16)	-0.0045 (13)	0.0028 (12)	-0.0057 (15)
O4	0.0353 (14)	0.079 (2)	0.0644 (18)	-0.0036 (14)	-0.0027 (12)	-0.0114 (15)
05	0.104 (3)	0.112 (3)	0.075 (2)	-0.056 (2)	-0.026 (2)	0.045 (2)
06	0.0586 (18)	0.069 (2)	0.0498 (16)	-0.0202 (14)	0.0089 (13)	0.0087 (14)
N1	0.0351 (15)	0.0415 (16)	0.0468 (17)	0.0035 (12)	-0.0024 (12)	0.0012 (13)
N2	0.0542 (18)	0.0444 (17)	0.0354 (15)	0.0063 (14)	0.0030 (13)	0.0088 (13)
N3	0.0389 (16)	0.0432 (16)	0.0365 (15)	0.0000 (13)	0.0013 (12)	0.0077 (12)
N4	0.0443 (17)	0.0416 (16)	0.0383 (16)	-0.0031 (13)	0.0063 (12)	0.0038 (12)
C1	0.0368 (18)	0.0346 (17)	0.0459 (19)	0.0054 (14)	0.0054 (15)	0.0030 (15)
C2	0.047 (2)	0.050 (2)	0.045 (2)	0.0095 (17)	-0.0058 (16)	0.0038 (16)
C3	0.0375 (18)	0.0328 (17)	0.0380 (17)	0.0035 (14)	0.0047 (14)	0.0021 (13)
C4	0.0342 (17)	0.0352 (17)	0.0378 (17)	0.0054 (13)	0.0032 (13)	0.0033 (14)
C5	0.0369 (19)	0.050 (2)	0.044 (2)	-0.0031 (16)	0.0009 (15)	0.0002 (16)
C6	0.047 (2)	0.056 (2)	0.047 (2)	0.0045 (17)	-0.0028 (16)	0.0192 (17)
C7	0.045 (2)	0.081 (3)	0.038 (2)	0.000 (2)	-0.0019 (16)	0.0173 (19)
C8	0.048 (3)	0.111 (4)	0.079 (3)	0.006 (3)	-0.002 (2)	-0.024 (3)
C9	0.056 (3)	0.091 (4)	0.107 (4)	0.005 (3)	-0.005 (3)	-0.022 (3)

supporting information

C10	0.042 (2)	0.056 (2)	0.068 (3)	0.0014 (18)	-0.0051 (18)	-0.005 (2)
C11	0.082 (3)	0.073 (3)	0.041 (2)	0.002 (2)	0.007 (2)	0.019 (2)
C12	0.043 (2)	0.048 (2)	0.054 (2)	-0.0007 (17)	0.0092 (17)	0.0112 (18)
C13	0.038 (2)	0.050 (2)	0.063 (2)	0.0029 (17)	0.0123 (17)	0.0080 (18)

Geometric parameters (Å, °)

Cl1—C13	1.760 (4)	N4—C5	1.331 (5)	
Cl2—C13	1.750 (4)	N4—C3	1.359 (4)	
Cl3—C13	1.752 (4)	C1—C4	1.429 (5)	
01—C1	1.222 (4)	C4—C3	1.366 (5)	
O2—C2	1.212 (4)	С5—Н5	0.9300	
O3—C7	1.402 (5)	C6—C7	1.501 (6)	
О3—С8	1.426 (6)	C6—H6A	0.9700	
O4—C7	1.413 (5)	C6—H6B	0.9700	
О4—С9	1.419 (6)	С7—Н7	0.9800	
O5—C12	1.181 (5)	C8—C9	1.472 (7)	
O6—C12	1.278 (5)	C8—H8A	0.9700	
О6—Н6	0.8200	C8—H8B	0.9700	
N1—C1	1.398 (4)	С9—Н9А	0.9700	
N1—C2	1.403 (5)	С9—Н9В	0.9700	
N1-C10	1.475 (5)	C10—H10A	0.9600	
N2—C3	1.371 (4)	C10—H10B	0.9600	
N2—C2	1.384 (5)	C10—H10C	0.9600	
N2—C11	1.468 (5)	C11—H11A	0.9600	
N3—C5	1.330 (4)	C11—H11B	0.9600	
N3—C4	1.388 (4)	C11—H11C	0.9600	
N3—C6	1.462 (4)	C12—C13	1.553 (5)	
C1—N1—C2	127.5 (3)	O3—C8—H8A	110.8	
C1—N1—C10	115.6 (3)	O3—C8—H8B	110.8	
C2-N1-C10	116.9 (3)	O4—C7—C6	110.6 (3)	
C2—N2—C11	120.1 (3)	O4—C7—H7	109.5	
C3—N2—C2	119.3 (3)	O4—C9—C8	105.2 (4)	
C3—N2—C11	120.4 (3)	O4—C9—H9A	110.7	
C3—C4—N3	105.3 (3)	O4—C9—H9B	110.7	
C3—C4—C1	123.0 (3)	O5—C12—O6	126.9 (4)	
C4—N3—C6	128.3 (3)	O5—C12—C13	119.8 (4)	
C4—C3—N2	122.3 (3)	O6—C12—C13	113.1 (3)	
C5—N3—C4	106.2 (3)	N1-C1-C4	111.3 (3)	
C5—N3—C6	125.5 (3)	N1-C10-H10A	109.5	
C5—N4—C3	104.1 (3)	N1-C10-H10B	109.5	
С6—С7—Н7	109.5	N1-C10-H10C	109.5	
С7—О3—С8	104.9 (3)	N2-C2-N1	116.6 (3)	
С7—О4—С9	108.0 (3)	N2—C11—H11A	109.5	
С7—С6—Н6А	109.1	N2—C11—H11B	109.5	
С7—С6—Н6В	109.1	N2—C11—H11C	109.5	
С8—С9—Н9А	110.7	N3—C4—C1	131.6 (3)	

С8—С9—Н9В	110.7	N3—C5—N4	113.3 (3)
С9—С8—Н8А	110.8	N3—C5—H5	123.3
С9—С8—Н8В	110.8	N3—C6—C7	112.3 (3)
С12—О6—Н6	109.5	N3—C6—H6A	109.1
C12—C13—Cl2	109.4 (3)	N3—C6—H6B	109.1
C12—C13—Cl3	113.0 (3)	N4—C3—C4	111.1 (3)
Cl2—C13—Cl3	109.9 (2)	N4—C3—N2	126.6 (3)
C12—C13—Cl1	107.0 (3)	N4—C5—H5	123.3
Cl2—C13—Cl1	108.7 (2)	H6A—C6—H6B	107.9
Cl3—C13—Cl1	108.6 (2)	H8A—C8—H8B	108.9
01—C1—N1	121.5 (3)	H9A—C9—H9B	108.8
O1—C1—C4	127.2 (3)	H10A-C10-H10B	109.5
O2—C2—N2	121.3 (4)	H10A-C10-H10C	109.5
O2—C2—N1	122.1 (4)	H10B-C10-H10C	109.5
O3—C7—O4	106.5 (3)	H11A—C11—H11B	109.5
O3—C7—C6	111.3 (3)	H11A—C11—H11C	109.5
O3—C7—H7	109.5	H11B—C11—H11C	109.5
O3—C8—C9	104.8 (4)		
C1-C4-C3-N4	-177.2 (3)	C9—O4—C7—O3	19.5 (4)
C1—C4—C3—N2	0.6 (5)	C9—O4—C7—C6	140.7 (4)
C1—N1—C2—O2	179.3 (4)	C10—N1—C1—O1	0.6 (5)
C1—N1—C2—N2	-1.6 (5)	C10—N1—C1—C4	-179.9 (3)
C2-N1-C1-01	-178.2 (3)	C10—N1—C2—O2	0.4 (6)
C2—N1—C1—C4	1.2 (5)	C10—N1—C2—N2	179.5 (3)
C2—N2—C3—N4	176.5 (3)	C11—N2—C3—N4	2.5 (5)
C2—N2—C3—C4	-1.0 (5)	C11—N2—C3—C4	-175.0 (4)
C3—N2—C2—O2	-179.5 (4)	C11—N2—C2—O2	-5.5 (6)
C3—N2—C2—N1	1.4 (5)	C11—N2—C2—N1	175.4 (3)
C3—N4—C5—N3	-0.4 (4)	N1-C1-C4-C3	-0.7 (5)
C4—N3—C5—N4	-0.1 (4)	N1-C1-C4-N3	-176.0 (3)
C4—N3—C6—C7	-94.6 (4)	N3—C4—C3—N4	-0.9 (4)
C5—N3—C6—C7	85.8 (4)	N3—C4—C3—N2	177.0 (3)
C5—N3—C4—C3	0.6 (4)	N3—C6—C7—O3	61.6 (4)
C5—N3—C4—C1	176.4 (4)	N3—C6—C7—O4	-56.6 (4)
C5—N4—C3—C4	0.8 (4)	O1—C1—C4—C3	178.8 (3)
C5—N4—C3—N2	-176.9 (3)	O1—C1—C4—N3	3.5 (6)
C6—N3—C5—N4	179.6 (3)	O3—C8—C9—O4	-19.2 (6)
C6—N3—C4—C3	-179.2 (3)	O5—C12—C13—Cl2	27.5 (5)
C6—N3—C4—C1	-3.3 (6)	O5—C12—C13—Cl3	150.4 (4)
C7—O3—C8—C9	31.3 (5)	O5-C12-C13-Cl1	-90.1 (5)
C7—O4—C9—C8	0.1 (5)	O6—C12—C13—Cl2	-155.6 (3)
C8—O3—C7—O4	-31.7 (4)	O6—C12—C13—Cl3	-32.7 (4)
C8—O3—C7—C6	-152.3 (4)	O6—C12—C13—Cl1	86.8 (4)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O6—H6…N4	0.82	1.82	2.635 (4)	176
С5—Н5…О5	0.93	2.48	3.079 (5)	123
C7—H7···O1 ⁱ	0.98	2.44	3.410 (5)	171
C10—H10 <i>B</i> ····O2 ⁱⁱ	0.96	2.51	3.351 (3)	147

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+1.