organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3α,6α-Bis(eth­oxy­carbon­yl)glycoluril (di­ethyl 2,5-dioxoperhydro­imidazo[4,5-d]imidazole-3a,6a-di­carboxyl­ate)

aKey Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and bSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: yutian830@yahoo.com.cn

(Received 30 October 2007; accepted 6 November 2007; online 6 December 2007)

The title compound, C10H14N4O6, crystallizes with two independent mol­ecules in the asymmetric unit. An extensive network of N—H⋯O and C—H⋯O inter­molecular hydrogen bonds stabilizes the crystal packing. One ethyl group is disordered over two positions; the site occupancy factors are 0.68 and 0.32.

Related literature

For related literature, see: Burnett et al. (2003[Burnett, C. A., Lagona, J., Wu, A. X., Shaw, J. A., Coady, D., Fettinger, J. C., Day, A. I. & Isaacs, L. (2003). Tetrahedron, 59, 1961-1970.]); Chen et al. (2007[Chen, Y. F., She, N. F., Meng, X. G., Yin, G. D., Wu, A. X. & Isaacs, L. (2007). Org. Lett. 9, 1899-1902.]); Himes et al. (1978[Himes, V. L., Hubbard, C. R., Mighell, A. D. & Fatiadi, A. J.(1978). Acta Cryst. B34, 3102-3104.]); Hof et al. (2002[Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Angew. Chem. Int. Ed. 41, 1488-1508.]); Isaacs & Witt (2002[Isaacs, L. & Witt, D. (2002). Angew. Chem. Int. Ed. 41, 1905-1907.]); Kim et al. (2000[Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540-541.]); Li et al. (1994[Li, N., Maluendes, S., Blessing, R. H., Dupuis, M., Moss, G. R. & Detitta, G. T. (1994). J. Am. Chem. Soc. 116, 6494-6507.]); Moon et al. (2003[Moon, K., Chen, W. Z., Ren, T. & Kaifer, A. E. (2003). CrystEngComm, 5, 451-453.]); Rowan et al. (1999[Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006.]); Wang et al. (2006[Wang, Z. G., Zhou, B. H., Chen, Y. F., Yin, G. D., Li, Y. T., Wu, A. X. & Isaacs, L. (2006). J. Org. Chem. 71, 4502-4508.], 2007[Wang, Y.-Z., Gao, M. & Cao, L.-P. (2007). Acta Cryst. E63, o3419.]); Wu et al. (2002[Wu, A. X., Fettinger, J. C. & Isaacs, L. (2002). Tetrahedron, 58, 9769-9777.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N4O6

  • Mr = 286.25

  • Orthorhombic, P b c a

  • a = 15.7555 (13) Å

  • b = 11.2726 (9) Å

  • c = 28.742 (2) Å

  • V = 5104.7 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 292 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 29774 measured reflections

  • 4501 independent reflections

  • 2784 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.197

  • S = 1.00

  • 4501 reflections

  • 385 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.15 2.963 (3) 158
N2—H2⋯O7ii 0.86 2.10 2.927 (3) 162
N3—H3⋯O1iii 0.86 2.11 2.937 (3) 161
N4—H4⋯O8iv 0.86 2.21 2.879 (3) 134
N5—H5⋯O1iv 0.86 2.22 2.870 (3) 133
N6—H6⋯O7v 0.86 2.09 2.925 (3) 164
N7—H7⋯O2ii 0.86 2.16 2.973 (3) 158
N8—H8⋯O8vi 0.86 2.12 2.963 (3) 165
C16—H16C⋯O3vii 0.96 2.51 3.087 (5) 119
C10—H10B⋯O11v 0.96 2.32 3.162 (5) 146
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) -x+1, -y+1, -z; (vi) -x+1, -y, -z; (vii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Glycoluril skeleton moiety (Fig. 3) is an important building block for both molecular and supramolecular chemistry. Its derivatives have been used as the basis for molecular capsules (Hof et al., 2002), molecular clips (Rowan et al., 1999), self-complementary facial amphiphiles (Isaacs et al., 2002), and the cucurbit[n]uril (CB[n]) family (Kim et al., 2000), and its utilization has been explored as a platform for studies of crystal engineering (Wang et al., 2006; Chen et al., 2007). However, relatively few crystal structures are known for glycoluril derivatives without N-substituents. The crystal structures of the reported glycoluril with different substituents exhibit two H-bonded types (Fig. 4). The mode A was found for (R=H) (Li et al., 1994), (R=CH3) (Himes et al., 1978), (I, R=Ph) (Wu et al., 2002), and so on, and the mode B was observed in the (R=Ph) (Moon et al., 2003), (R=COO-n-C3H7) (Wang et al., 2007). Herein, we report the crystal structure of the title compound (I), which exhibits the mode A of hydrogen bonding (Fig. 4).

The molecular structure of (I) (R=COOC2H5) is shown in Fig. 1. Its crystal structure exhibits the eight-membered rings H-bonding motifs (Fig. 4), which are entirely made up of NH···O=C(imidazolone rings) (Table 1). The two-dimension hydrogen bonding network is shown in Fig. 2, In addition, intermolecular C10—H10B···O11, C16—H16C···O3 interactions (Table 1) contribute to the crystal structure stability.

Related literature top

For related literature, see: Burnett et al. (2003); Chen et al. (2007); Himes et al. (1978); Hof et al. (2002); Isaacs & Witt (2002); Kim et al. (2000); Li et al. (1994); Moon et al. (2003); Rowan et al. (1999); Wang et al. (2006, 2007); Wu et al. (2002).

Experimental top

The title compound was synthesized according to literature procedure (Burnett et al., 2003) in 62% isolated yield. Crystals appropriate for data collection were obtained by slow evaporation of CH3OH solution at room temperature.

Refinement top

One ethyl group (C5—C6) was treted as disordered over two orientations with the occupancies refined to 0.683 (15) / 0.317 (15). All H-atoms were positioned geometrically (C—H 0.96, 0.97 Å; N—H 0.86 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq (parent atom).

Structure description top

Glycoluril skeleton moiety (Fig. 3) is an important building block for both molecular and supramolecular chemistry. Its derivatives have been used as the basis for molecular capsules (Hof et al., 2002), molecular clips (Rowan et al., 1999), self-complementary facial amphiphiles (Isaacs et al., 2002), and the cucurbit[n]uril (CB[n]) family (Kim et al., 2000), and its utilization has been explored as a platform for studies of crystal engineering (Wang et al., 2006; Chen et al., 2007). However, relatively few crystal structures are known for glycoluril derivatives without N-substituents. The crystal structures of the reported glycoluril with different substituents exhibit two H-bonded types (Fig. 4). The mode A was found for (R=H) (Li et al., 1994), (R=CH3) (Himes et al., 1978), (I, R=Ph) (Wu et al., 2002), and so on, and the mode B was observed in the (R=Ph) (Moon et al., 2003), (R=COO-n-C3H7) (Wang et al., 2007). Herein, we report the crystal structure of the title compound (I), which exhibits the mode A of hydrogen bonding (Fig. 4).

The molecular structure of (I) (R=COOC2H5) is shown in Fig. 1. Its crystal structure exhibits the eight-membered rings H-bonding motifs (Fig. 4), which are entirely made up of NH···O=C(imidazolone rings) (Table 1). The two-dimension hydrogen bonding network is shown in Fig. 2, In addition, intermolecular C10—H10B···O11, C16—H16C···O3 interactions (Table 1) contribute to the crystal structure stability.

For related literature, see: Burnett et al. (2003); Chen et al. (2007); Himes et al. (1978); Hof et al. (2002); Isaacs & Witt (2002); Kim et al. (2000); Li et al. (1994); Moon et al. (2003); Rowan et al. (1999); Wang et al. (2006, 2007); Wu et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids. Atoms of the minor disorder components are omitted for clarity.
[Figure 2] Fig. 2. The partial hydrogen bonding network in the crystal structure of the title compound. H-bond drawn as dashed lines. 3α,6α- Diethoxylcarbonyl are omitted for simplicity.
[Figure 3] Fig. 3. The glycoluril skeleton moiety.
[Figure 4] Fig. 4. Hydrogen-bonding modes A and B.
diethyl 2,5-dioxoperhydroimidazo[4,5-d]imidazole-3a,6a-dicarboxylate top
Crystal data top
C10H14N4O6F(000) = 2400
Mr = 286.25Dx = 1.490 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2687 reflections
a = 15.7555 (13) Åθ = 2.6–23.5°
b = 11.2726 (9) ŵ = 0.12 mm1
c = 28.742 (2) ÅT = 292 K
V = 5104.7 (7) Å3Block, colourless
Z = 160.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.097
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
φ and ω scansh = 1818
29774 measured reflectionsk = 1113
4501 independent reflectionsl = 3429
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.00
4501 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 0.37 e Å3
6 restraintsΔρmin = 0.42 e Å3
Crystal data top
C10H14N4O6V = 5104.7 (7) Å3
Mr = 286.25Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 15.7555 (13) ŵ = 0.12 mm1
b = 11.2726 (9) ÅT = 292 K
c = 28.742 (2) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2784 reflections with I > 2σ(I)
29774 measured reflectionsRint = 0.097
4501 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0686 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
4501 reflectionsΔρmin = 0.42 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.04208 (19)0.0660 (3)0.18565 (10)0.0315 (8)
C20.0170 (2)0.4006 (3)0.18911 (10)0.0340 (8)
C30.0813 (2)0.2558 (2)0.21072 (10)0.0304 (7)
C40.1717 (2)0.2877 (3)0.22674 (12)0.0458 (9)
C50.3149 (3)0.2426 (8)0.2249 (3)0.048 (2)0.683 (15)
H5A0.32780.23160.25760.058*0.683 (15)
H5B0.32330.32540.21700.058*0.683 (15)
C60.3700 (4)0.1644 (8)0.1953 (4)0.063 (3)0.683 (15)
H6A0.36010.08280.20330.095*0.683 (15)
H6B0.42860.18350.20070.095*0.683 (15)
H6C0.35660.17670.16310.095*0.683 (15)
C5'0.3127 (6)0.169 (2)0.2260 (7)0.082 (7)0.317 (15)
H5'10.31730.08330.22570.098*0.317 (15)
H5'20.32780.19700.25690.098*0.317 (15)
C6'0.3725 (8)0.223 (2)0.1899 (9)0.126 (12)0.317 (15)
H6'10.36410.18390.16050.190*0.317 (15)
H6'20.43020.21220.19970.190*0.317 (15)
H6'30.36070.30590.18660.190*0.317 (15)
C70.0685 (2)0.2544 (2)0.15577 (10)0.0314 (8)
C80.1431 (2)0.2921 (3)0.12516 (13)0.0504 (10)
C90.2477 (3)0.4440 (4)0.11294 (16)0.0836 (15)
H9A0.28280.49320.13290.100*
H9B0.28300.38150.10010.100*
C100.2119 (3)0.5147 (4)0.07577 (17)0.0965 (17)
H10A0.18350.46380.05400.145*
H10B0.25650.55690.06010.145*
H10C0.17210.57040.08850.145*
C110.4936 (2)0.4078 (3)0.06138 (11)0.0347 (8)
C120.52703 (19)0.0688 (3)0.06489 (10)0.0301 (7)
C130.56575 (19)0.2511 (2)0.09612 (10)0.0296 (7)
C140.6371 (2)0.2861 (3)0.12889 (12)0.0420 (9)
C150.7460 (3)0.4299 (4)0.14264 (16)0.0771 (14)
H15A0.76560.37260.16540.093*
H15B0.79440.45440.12410.093*
C160.7102 (3)0.5323 (4)0.16631 (17)0.0867 (16)
H16A0.69130.58920.14370.130*
H16B0.75260.56780.18580.130*
H16C0.66290.50760.18500.130*
C170.5822 (2)0.2525 (2)0.04197 (10)0.0296 (7)
C180.6762 (2)0.2567 (3)0.02697 (11)0.0391 (8)
C190.8066 (2)0.1494 (4)0.02685 (19)0.0847 (16)
H19A0.81210.17220.00560.102*
H19B0.82370.06710.02960.102*
C200.8641 (3)0.2246 (4)0.05570 (17)0.0871 (16)
H20A0.85120.30680.05050.131*
H20B0.92200.20940.04710.131*
H20C0.85610.20600.08800.131*
N10.05846 (16)0.1358 (2)0.22301 (8)0.0332 (7)
H10.05550.11100.25130.040*
N20.04634 (17)0.1327 (2)0.14663 (8)0.0367 (7)
H20.03680.10530.11920.044*
N30.02328 (17)0.3466 (2)0.22512 (9)0.0389 (7)
H30.01480.36500.25380.047*
N40.00082 (17)0.3390 (2)0.14951 (9)0.0377 (7)
H40.02540.34950.12360.045*
N50.49893 (16)0.3389 (2)0.09994 (9)0.0361 (7)
H50.46650.34630.12380.043*
N60.53960 (17)0.3573 (2)0.02693 (9)0.0375 (7)
H60.54280.38530.00090.045*
N70.54036 (16)0.1301 (2)0.10487 (8)0.0341 (7)
H70.53440.10030.13220.041*
N80.54353 (16)0.1409 (2)0.02829 (8)0.0334 (7)
H80.53230.12250.00010.040*
O10.02606 (15)0.04068 (18)0.18682 (7)0.0417 (6)
O20.06149 (16)0.48901 (19)0.19152 (7)0.0439 (6)
O30.18984 (19)0.3785 (3)0.24553 (10)0.0773 (9)
O40.22562 (15)0.2053 (3)0.21459 (10)0.0647 (8)
O50.17702 (17)0.3914 (2)0.14036 (9)0.0619 (8)
O60.1614 (3)0.2417 (2)0.09063 (13)0.1284 (18)
O70.45447 (16)0.50226 (19)0.05859 (8)0.0480 (7)
O80.50442 (15)0.03524 (18)0.06237 (7)0.0413 (6)
O90.6426 (2)0.2439 (2)0.16701 (10)0.0796 (10)
O100.68161 (17)0.3742 (2)0.11215 (9)0.0650 (8)
O110.70598 (17)0.3366 (2)0.00593 (10)0.0706 (9)
O120.71686 (14)0.1612 (2)0.04116 (10)0.0616 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (18)0.0296 (18)0.0250 (18)0.0046 (15)0.0030 (14)0.0008 (14)
C20.048 (2)0.0267 (18)0.0273 (18)0.0013 (15)0.0036 (15)0.0002 (14)
C30.0477 (19)0.0223 (16)0.0212 (17)0.0032 (14)0.0050 (14)0.0020 (13)
C40.054 (2)0.049 (2)0.034 (2)0.011 (2)0.0007 (17)0.0040 (18)
C50.036 (3)0.051 (5)0.056 (4)0.007 (3)0.010 (3)0.007 (4)
C60.032 (4)0.059 (6)0.099 (6)0.007 (3)0.006 (4)0.025 (5)
C5'0.098 (15)0.050 (12)0.098 (14)0.022 (11)0.021 (11)0.007 (11)
C6'0.16 (2)0.080 (18)0.14 (2)0.066 (16)0.005 (16)0.046 (18)
C70.0505 (19)0.0201 (16)0.0237 (18)0.0023 (14)0.0048 (14)0.0012 (13)
C80.080 (3)0.0243 (18)0.047 (2)0.0075 (18)0.028 (2)0.0016 (17)
C90.093 (3)0.084 (3)0.074 (3)0.043 (3)0.018 (3)0.020 (3)
C100.116 (4)0.104 (4)0.070 (3)0.037 (3)0.014 (3)0.021 (3)
C110.051 (2)0.0272 (18)0.0262 (18)0.0004 (16)0.0031 (15)0.0002 (14)
C120.0422 (18)0.0244 (17)0.0236 (17)0.0001 (14)0.0001 (14)0.0021 (13)
C130.0467 (19)0.0227 (16)0.0193 (16)0.0016 (14)0.0029 (14)0.0000 (13)
C140.068 (2)0.0253 (17)0.033 (2)0.0008 (17)0.0117 (18)0.0028 (16)
C150.075 (3)0.091 (3)0.065 (3)0.045 (3)0.010 (2)0.018 (3)
C160.126 (5)0.066 (3)0.068 (3)0.024 (3)0.025 (3)0.002 (3)
C170.0462 (18)0.0217 (16)0.0209 (17)0.0002 (14)0.0021 (14)0.0014 (12)
C180.051 (2)0.036 (2)0.030 (2)0.0069 (17)0.0047 (16)0.0019 (16)
C190.055 (3)0.075 (3)0.124 (4)0.008 (2)0.019 (3)0.028 (3)
C200.054 (3)0.119 (4)0.088 (4)0.010 (3)0.007 (2)0.002 (3)
N10.0568 (17)0.0260 (14)0.0167 (13)0.0072 (12)0.0020 (12)0.0029 (11)
N20.0675 (19)0.0236 (14)0.0190 (14)0.0060 (13)0.0017 (13)0.0022 (11)
N30.0638 (18)0.0330 (16)0.0200 (15)0.0150 (14)0.0035 (13)0.0003 (12)
N40.0609 (18)0.0311 (15)0.0210 (14)0.0071 (13)0.0028 (13)0.0015 (12)
N50.0539 (17)0.0299 (15)0.0244 (15)0.0095 (13)0.0050 (12)0.0032 (12)
N60.0602 (18)0.0292 (15)0.0231 (15)0.0072 (13)0.0018 (13)0.0023 (12)
N70.0615 (18)0.0248 (14)0.0160 (13)0.0035 (13)0.0016 (12)0.0017 (11)
N80.0534 (17)0.0297 (14)0.0170 (13)0.0078 (12)0.0035 (12)0.0005 (11)
O10.0726 (17)0.0228 (12)0.0297 (13)0.0122 (11)0.0029 (11)0.0000 (10)
O20.0629 (16)0.0333 (13)0.0355 (14)0.0145 (12)0.0033 (11)0.0008 (10)
O30.098 (2)0.0696 (19)0.065 (2)0.0339 (17)0.0148 (17)0.0141 (17)
O40.0439 (15)0.079 (2)0.071 (2)0.0037 (15)0.0027 (14)0.0057 (17)
O50.0844 (19)0.0537 (16)0.0475 (16)0.0306 (14)0.0233 (14)0.0021 (13)
O60.202 (4)0.067 (2)0.117 (3)0.056 (2)0.124 (3)0.054 (2)
O70.0780 (18)0.0339 (14)0.0320 (13)0.0195 (13)0.0011 (12)0.0031 (11)
O80.0710 (16)0.0255 (13)0.0273 (12)0.0093 (11)0.0039 (11)0.0007 (10)
O90.133 (3)0.0509 (17)0.0548 (19)0.0262 (17)0.0532 (19)0.0164 (14)
O100.0821 (19)0.0751 (18)0.0378 (15)0.0376 (16)0.0125 (14)0.0008 (14)
O110.0692 (19)0.083 (2)0.0593 (19)0.0114 (16)0.0114 (15)0.0253 (16)
O120.0470 (16)0.0454 (15)0.092 (2)0.0059 (12)0.0072 (14)0.0009 (15)
Geometric parameters (Å, º) top
C1—O11.229 (4)C11—N61.352 (4)
C1—N21.352 (4)C11—N51.357 (4)
C1—N11.356 (4)C12—O81.228 (3)
C2—O21.220 (4)C12—N81.355 (4)
C2—N31.358 (4)C12—N71.357 (4)
C2—N41.362 (4)C13—N71.444 (3)
C3—N31.433 (4)C13—N51.449 (4)
C3—N11.443 (3)C13—C141.519 (4)
C3—C41.541 (5)C13—C171.578 (4)
C3—C71.592 (4)C14—O91.198 (4)
C4—O31.191 (4)C14—O101.308 (4)
C4—O41.307 (4)C15—C161.455 (6)
C5—O41.497 (5)C15—O101.481 (4)
C5—C61.502 (7)C15—H15A0.9700
C5—H5A0.9700C15—H15B0.9700
C5—H5B0.9700C16—H16A0.9600
C6—H6A0.9600C16—H16B0.9600
C6—H6B0.9600C16—H16C0.9600
C6—H6C0.9600C17—N61.426 (4)
C5'—O41.469 (9)C17—N81.452 (3)
C5'—C6'1.527 (10)C17—C181.543 (5)
C5'—H5'10.9700C18—O111.182 (4)
C5'—H5'20.9700C18—O121.317 (4)
C6'—H6'10.9600C19—O121.478 (4)
C6'—H6'20.9600C19—C201.493 (6)
C6'—H6'30.9600C19—H19A0.9700
C7—N21.440 (3)C19—H19B0.9700
C7—N41.442 (4)C20—H20A0.9600
C7—C81.529 (4)C20—H20B0.9600
C8—O61.179 (4)C20—H20C0.9600
C8—O51.314 (4)N1—H10.8600
C9—C101.448 (6)N2—H20.8600
C9—O51.488 (4)N3—H30.8600
C9—H9A0.9700N4—H40.8600
C9—H9B0.9700N5—H50.8600
C10—H10A0.9600N6—H60.8600
C10—H10B0.9600N7—H70.8600
C10—H10C0.9600N8—H80.8600
C11—O71.233 (4)
O1—C1—N2125.2 (3)O9—C14—O10126.8 (3)
O1—C1—N1125.8 (3)O9—C14—C13121.2 (3)
N2—C1—N1108.9 (3)O10—C14—C13111.5 (3)
O2—C2—N3126.2 (3)C16—C15—O10110.3 (4)
O2—C2—N4125.6 (3)C16—C15—H15A109.6
N3—C2—N4108.2 (3)O10—C15—H15A109.6
N3—C3—N1116.1 (3)C16—C15—H15B109.6
N3—C3—C4109.7 (3)O10—C15—H15B109.6
N1—C3—C4112.1 (3)H15A—C15—H15B108.1
N3—C3—C7102.3 (2)C15—C16—H16A109.5
N1—C3—C7101.7 (2)C15—C16—H16B109.5
C4—C3—C7114.6 (2)H16A—C16—H16B109.5
O3—C4—O4125.2 (4)C15—C16—H16C109.5
O3—C4—C3123.9 (3)H16A—C16—H16C109.5
O4—C4—C3110.8 (3)H16B—C16—H16C109.5
O4—C5—C6105.5 (5)N6—C17—N8116.0 (2)
O4—C5—H5A110.6N6—C17—C18110.0 (3)
C6—C5—H5A110.6N8—C17—C18110.7 (2)
O4—C5—H5B110.6N6—C17—C13103.3 (2)
C6—C5—H5B110.6N8—C17—C13100.9 (2)
H5A—C5—H5B108.8C18—C17—C13115.7 (2)
O4—C5'—C6'108.3 (9)O11—C18—O12126.0 (3)
O4—C5'—H5'1110.0O11—C18—C17123.2 (3)
C6'—C5'—H5'1110.0O12—C18—C17110.9 (3)
O4—C5'—H5'2110.0O12—C19—C20112.0 (4)
C6'—C5'—H5'2110.0O12—C19—H19A109.2
H5'1—C5'—H5'2108.4C20—C19—H19A109.2
C5'—C6'—H6'1109.5O12—C19—H19B109.2
C5'—C6'—H6'2109.5C20—C19—H19B109.2
H6'1—C6'—H6'2109.5H19A—C19—H19B107.9
C5'—C6'—H6'3109.5C19—C20—H20A109.5
H6'1—C6'—H6'3109.5C19—C20—H20B109.5
H6'2—C6'—H6'3109.5H20A—C20—H20B109.5
N2—C7—N4115.3 (3)C19—C20—H20C109.5
N2—C7—C8110.3 (3)H20A—C20—H20C109.5
N4—C7—C8108.2 (2)H20B—C20—H20C109.5
N2—C7—C3102.8 (2)C1—N1—C3113.4 (2)
N4—C7—C3102.2 (2)C1—N1—H1123.3
C8—C7—C3118.1 (3)C3—N1—H1123.3
O6—C8—O5126.2 (3)C1—N2—C7113.0 (2)
O6—C8—C7122.6 (3)C1—N2—H2123.5
O5—C8—C7111.0 (3)C7—N2—H2123.5
C10—C9—O5108.6 (4)C2—N3—C3113.5 (2)
C10—C9—H9A110.0C2—N3—H3123.3
O5—C9—H9A110.0C3—N3—H3123.3
C10—C9—H9B110.0C2—N4—C7112.7 (3)
O5—C9—H9B110.0C2—N4—H4123.7
H9A—C9—H9B108.4C7—N4—H4123.7
C9—C10—H10A109.5C11—N5—C13112.0 (2)
C9—C10—H10B109.5C11—N5—H5124.0
H10A—C10—H10B109.5C13—N5—H5124.0
C9—C10—H10C109.5C11—N6—C17112.3 (2)
H10A—C10—H10C109.5C11—N6—H6123.9
H10B—C10—H10C109.5C17—N6—H6123.9
O7—C11—N6125.7 (3)C12—N7—C13112.1 (2)
O7—C11—N5125.4 (3)C12—N7—H7124.0
N6—C11—N5108.9 (3)C13—N7—H7124.0
O8—C12—N8125.7 (3)C12—N8—C17113.0 (2)
O8—C12—N7125.5 (3)C12—N8—H8123.5
N8—C12—N7108.8 (2)C17—N8—H8123.5
N7—C13—N5115.5 (3)C4—O4—C5'138.1 (10)
N7—C13—C14110.0 (2)C4—O4—C5111.0 (4)
N5—C13—C14108.2 (2)C5'—O4—C532.5 (7)
N7—C13—C17103.1 (2)C8—O5—C9117.9 (3)
N5—C13—C17100.8 (2)C14—O10—C15118.2 (3)
C14—C13—C17119.2 (3)C18—O12—C19116.9 (3)
N3—C3—C4—O34.5 (5)C8—C7—N2—C1128.3 (3)
N1—C3—C4—O3134.9 (3)C3—C7—N2—C11.5 (3)
C7—C3—C4—O3109.9 (4)O2—C2—N3—C3170.9 (3)
N3—C3—C4—O4179.0 (3)N4—C2—N3—C39.1 (4)
N1—C3—C4—O448.6 (4)N1—C3—N3—C2112.5 (3)
C7—C3—C4—O466.6 (4)C4—C3—N3—C2119.2 (3)
N3—C3—C7—N2123.9 (2)C7—C3—N3—C22.8 (3)
N1—C3—C7—N23.6 (3)O2—C2—N4—C7167.8 (3)
C4—C3—C7—N2117.5 (3)N3—C2—N4—C712.1 (4)
N3—C3—C7—N44.0 (3)N2—C7—N4—C2120.5 (3)
N1—C3—C7—N4116.3 (2)C8—C7—N4—C2115.5 (3)
C4—C3—C7—N4122.6 (3)C3—C7—N4—C29.8 (3)
N3—C3—C7—C8114.5 (3)O7—C11—N5—C13165.3 (3)
N1—C3—C7—C8125.2 (3)N6—C11—N5—C1313.4 (4)
C4—C3—C7—C84.1 (4)N7—C13—N5—C11127.2 (3)
N2—C7—C8—O620.6 (5)C14—C13—N5—C11109.0 (3)
N4—C7—C8—O6106.4 (5)C17—C13—N5—C1116.9 (3)
C3—C7—C8—O6138.3 (4)O7—C11—N6—C17175.8 (3)
N2—C7—C8—O5165.0 (3)N5—C11—N6—C172.9 (4)
N4—C7—C8—O568.0 (4)N8—C17—N6—C11101.9 (3)
C3—C7—C8—O547.4 (4)C18—C17—N6—C11131.5 (3)
N7—C13—C14—O930.6 (4)C13—C17—N6—C117.4 (3)
N5—C13—C14—O996.5 (4)O8—C12—N7—C13179.4 (3)
C17—C13—C14—O9149.3 (3)N8—C12—N7—C131.2 (3)
N7—C13—C14—O10157.0 (3)N5—C13—N7—C1299.5 (3)
N5—C13—C14—O1075.9 (3)C14—C13—N7—C12137.6 (3)
C17—C13—C14—O1038.3 (4)C17—C13—N7—C129.5 (3)
N7—C13—C17—N6133.5 (2)O8—C12—N8—C17170.5 (3)
N5—C13—C17—N613.9 (3)N7—C12—N8—C178.9 (4)
C14—C13—C17—N6104.2 (3)N6—C17—N8—C12124.7 (3)
N7—C13—C17—N813.3 (3)C18—C17—N8—C12109.1 (3)
N5—C13—C17—N8106.4 (2)C13—C17—N8—C1213.9 (3)
C14—C13—C17—N8135.5 (3)O3—C4—O4—C5'18.8 (11)
N7—C13—C17—C18106.2 (3)C3—C4—O4—C5'164.8 (9)
N5—C13—C17—C18134.2 (3)O3—C4—O4—C53.3 (6)
C14—C13—C17—C1816.0 (4)C3—C4—O4—C5173.1 (4)
N6—C17—C18—O110.3 (4)C6'—C5'—O4—C496 (2)
N8—C17—C18—O11129.2 (3)C6'—C5'—O4—C555.2 (16)
C13—C17—C18—O11116.8 (4)C6—C5—O4—C4160.8 (7)
N6—C17—C18—O12179.1 (3)C6—C5—O4—C5'47.1 (14)
N8—C17—C18—O1251.4 (3)O6—C8—O5—C92.7 (7)
C13—C17—C18—O1262.6 (3)C7—C8—O5—C9176.8 (3)
O1—C1—N1—C3175.7 (3)C10—C9—O5—C884.3 (5)
N2—C1—N1—C34.2 (4)O9—C14—O10—C150.1 (6)
N3—C3—N1—C1114.9 (3)C13—C14—O10—C15171.7 (3)
C4—C3—N1—C1118.0 (3)C16—C15—O10—C1494.1 (4)
C7—C3—N1—C14.8 (3)O11—C18—O12—C194.2 (5)
O1—C1—N2—C7178.5 (3)C17—C18—O12—C19176.4 (3)
N1—C1—N2—C71.4 (4)C20—C19—O12—C1878.4 (5)
N4—C7—N2—C1108.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.152.963 (3)158
N2—H2···O7ii0.862.102.927 (3)162
N3—H3···O1iii0.862.112.937 (3)161
N4—H4···O8iv0.862.212.879 (3)134
N5—H5···O1iv0.862.222.870 (3)133
N6—H6···O7v0.862.092.925 (3)164
N7—H7···O2ii0.862.162.973 (3)158
N8—H8···O8vi0.862.122.963 (3)165
C16—H16C···O3vii0.962.513.087 (5)119
C10—H10B···O11v0.962.323.162 (5)146
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H14N4O6
Mr286.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)15.7555 (13), 11.2726 (9), 28.742 (2)
V3)5104.7 (7)
Z16
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29774, 4501, 2784
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.197, 1.00
No. of reflections4501
No. of parameters385
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.42

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.152.963 (3)158.4
N2—H2···O7ii0.862.102.927 (3)161.5
N3—H3···O1iii0.862.112.937 (3)160.7
N4—H4···O8iv0.862.212.879 (3)134.2
N5—H5···O1iv0.862.222.870 (3)132.6
N6—H6···O7v0.862.092.925 (3)164.0
N7—H7···O2ii0.862.162.973 (3)157.9
N8—H8···O8vi0.862.122.963 (3)165.4
C16—H16C···O3vii0.962.513.087 (5)118.9
C10—H10B···O11v0.962.323.162 (5)145.6
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors are grateful to Central China Normal University for support.

References

First citationBruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, C. A., Lagona, J., Wu, A. X., Shaw, J. A., Coady, D., Fettinger, J. C., Day, A. I. & Isaacs, L. (2003). Tetrahedron, 59, 1961–1970.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Y. F., She, N. F., Meng, X. G., Yin, G. D., Wu, A. X. & Isaacs, L. (2007). Org. Lett. 9, 1899–1902.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHimes, V. L., Hubbard, C. R., Mighell, A. D. & Fatiadi, A. J.(1978). Acta Cryst. B34, 3102–3104.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Angew. Chem. Int. Ed. 41, 1488–1508.  Web of Science CrossRef CAS Google Scholar
First citationIsaacs, L. & Witt, D. (2002). Angew. Chem. Int. Ed. 41, 1905–1907.  CrossRef CAS Google Scholar
First citationKim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540–541.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, N., Maluendes, S., Blessing, R. H., Dupuis, M., Moss, G. R. & Detitta, G. T. (1994). J. Am. Chem. Soc. 116, 6494–6507.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoon, K., Chen, W. Z., Ren, T. & Kaifer, A. E. (2003). CrystEngComm, 5, 451–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationRowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995–1006.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-Z., Gao, M. & Cao, L.-P. (2007). Acta Cryst. E63, o3419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z. G., Zhou, B. H., Chen, Y. F., Yin, G. D., Li, Y. T., Wu, A. X. & Isaacs, L. (2006). J. Org. Chem. 71, 4502–4508.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, A. X., Fettinger, J. C. & Isaacs, L. (2002). Tetrahedron, 58, 9769–9777.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds