organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di-tert-butyl-4-(di­methyl­amino­meth­yl)phenol

aChemistry and Biology College, Yantai University, Yantai 264005, People's Republic of China, and bLibrary of Yantai University, Yantai University, Yantai 264005, People's Republic of China
*Correspondence e-mail: zengtaotj@126.com

(Received 20 November 2007; accepted 2 December 2007; online 6 December 2007)

The title compound, C17H29NO, is an important hindered phenol derivative. The asymmetric unit contains two mol­ecules. Molecules inter­act through O—H⋯N hydrogen bonds to form a tetramer arranged around a twofold rotation axis.

Related literature

For related literature, see: Ciba-Geigy AG (1978[Ciba-Geigy AG (1978). Swiss Patent CH597 297.]); Eggensperger et al. (1974[Eggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent 3 950 382.], 1976[Eggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent 3 856 846.]); Yamazaki & Seguchi (1997[Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. Part A Polym. Chem. 35, 2431-2439.]). For the synthesis, see: Coffield (1965[Coffield, T. H. (1965). US Patent 3 208 859.]); Coffield & Mich (1965[Coffield, T. H. & Mich, F. (1965). US Patent 3 225 099.]); Rieker et al. (1968[Rieker, A., Kaufmann, H., Brück, D., Workman, R. & Müller, E. (1968). Tetrahedron, 24, 103-115.]).

[Scheme 1]

Experimental

Crystal data
  • C17H29NO

  • Mr = 263.41

  • Monoclinic, C 2

  • a = 28.731 (9) Å

  • b = 8.912 (3) Å

  • c = 16.112 (5) Å

  • β = 122.965 (5)°

  • V = 3461.4 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.989

  • 6903 measured reflections

  • 3752 independent reflections

  • 2317 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 0.99

  • 3752 reflections

  • 359 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.85 2.20 2.836 (3) 132
O2—H2⋯N1i 0.86 2.26 2.933 (3) 135
Symmetry code: (i) -x+2, y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hindered phenol antioxidants are widely used in polymers and lubricants. It could protect polymers by increasing both their process stability and long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997). Moreover, ester of 3,5-di-tert-butyl-4-hydroxyphenol acetic acid is one important kind of antioxidant derivative. An important route to prepare these compounds is to react an α-halo ester compound with the title compound in the presence of a strong base (Eggensperger et al., 1974, 1976; Eggensperger et al., 1976; Ciba-Geigy AG, 1978). The title compound is ususlly called a Mannich base. The title compound was prepared from 4-bromomethyl-2,6-di-tert-butyl-phenol and N,N-dimethylamine.It can also be easily obtained by a Mannich reaction from 2,6-di-tert-butylphenol,formaldehyde and dimethylamine (Coffield, 1965; Coffield & Mich, 1965).

The asymmetric unit of the title compound contains two molecules which are linked by a weak O—H···N hydrogen bond (Fig. 1). Each pseudo dimer interacts with a symmetry related one to build up like a crown arranged around axis parallele to the b axis through O—H··· hydrogen bonds (Table 1, Fig. 2).

Related literature top

For related literature, see: Ciba-Geigy AG (1978); Eggensperger et al. (1974, 1976); Yamazaki & Seguchi (1997).

For synthesis, see: Coffield (1965); Coffield & Mich (1965); Rieker et al. (1968).

Experimental top

The 4-bromomethyl-2,6-di-tert-butyl-phenol was synthesized according to the method described by Rieker(Rieker et al.,1968). Dimethylamine (2.7 g, 0.06 mol) and 4-bromomethyl-2,6-di-tert-butyl-phenol (9.0 g, 0.03 mol) were added, with stirring to THF(60 ml)at 273 K. The reaction mixture was stirred at 273 K for a further 2 h. The solvent THF was evaporated under reduced pressure and the residual was washed with water (30 ml). The product (7.39 g) was obtained in a yield of 93.6%. Suitable crystals were obtained by slow evaporation of a mixture of ethyl acetate and ethanol.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyle) with Uiso(H) = 1.2(aromatic) or 1.5(methyle)Ueq(C). H atoms of hydroxyle group were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (1) Å) with Uiso(H) = 1.5Ueq(O). In the final stage of refinement, they were treated as riding on their parent O atoms.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

Hindered phenol antioxidants are widely used in polymers and lubricants. It could protect polymers by increasing both their process stability and long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997). Moreover, ester of 3,5-di-tert-butyl-4-hydroxyphenol acetic acid is one important kind of antioxidant derivative. An important route to prepare these compounds is to react an α-halo ester compound with the title compound in the presence of a strong base (Eggensperger et al., 1974, 1976; Eggensperger et al., 1976; Ciba-Geigy AG, 1978). The title compound is ususlly called a Mannich base. The title compound was prepared from 4-bromomethyl-2,6-di-tert-butyl-phenol and N,N-dimethylamine.It can also be easily obtained by a Mannich reaction from 2,6-di-tert-butylphenol,formaldehyde and dimethylamine (Coffield, 1965; Coffield & Mich, 1965).

The asymmetric unit of the title compound contains two molecules which are linked by a weak O—H···N hydrogen bond (Fig. 1). Each pseudo dimer interacts with a symmetry related one to build up like a crown arranged around axis parallele to the b axis through O—H··· hydrogen bonds (Table 1, Fig. 2).

For related literature, see: Ciba-Geigy AG (1978); Eggensperger et al. (1974, 1976); Yamazaki & Seguchi (1997).

For synthesis, see: Coffield (1965); Coffield & Mich (1965); Rieker et al. (1968).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the two crystallygraphically independent molecules with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the crown formed by the assembly of four molecules through O—H···N hydrogen bonds. Dashed lines indicate the hydrogen bonds.H atoms not involved in hydrogen bonding have been omitted for clarity.
2,6-Di-tert-butyl-4-(dimethylaminomethyl)phenol top
Crystal data top
C17H29NOF(000) = 1168
Mr = 263.41Dx = 1.011 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2365 reflections
a = 28.731 (9) Åθ = 2.4–21.0°
b = 8.912 (3) ŵ = 0.06 mm1
c = 16.112 (5) ÅT = 294 K
β = 122.965 (5)°Block, colourless
V = 3461.4 (19) Å30.24 × 0.22 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3752 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3529
Tmin = 0.978, Tmax = 0.989k = 1111
6903 measured reflectionsl = 020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
3752 reflections(Δ/σ)max = 0.001
359 parametersΔρmax = 0.12 e Å3
3 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H29NOV = 3461.4 (19) Å3
Mr = 263.41Z = 8
Monoclinic, C2Mo Kα radiation
a = 28.731 (9) ŵ = 0.06 mm1
b = 8.912 (3) ÅT = 294 K
c = 16.112 (5) Å0.24 × 0.22 × 0.20 mm
β = 122.965 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3752 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2317 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.989Rint = 0.040
6903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.99Δρmax = 0.12 e Å3
3752 reflectionsΔρmin = 0.18 e Å3
359 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.96396 (9)0.0075 (3)0.26691 (14)0.0632 (7)
H10.97750.08980.26290.076*
O21.20963 (9)0.0785 (3)0.24701 (16)0.0604 (6)
H21.19900.15260.20690.073*
N10.76397 (10)0.2845 (3)0.13626 (17)0.0531 (7)
N21.05111 (10)0.2181 (3)0.37179 (17)0.0466 (6)
C10.91498 (12)0.0341 (3)0.1819 (2)0.0442 (7)
C20.89225 (12)0.0421 (3)0.0907 (2)0.0442 (7)
C30.84136 (12)0.0109 (4)0.0118 (2)0.0478 (8)
H30.82530.03770.04880.057*
C40.81353 (12)0.1321 (4)0.0193 (2)0.0486 (8)
C50.83809 (12)0.2039 (4)0.1103 (2)0.0488 (8)
H50.81980.28500.11630.059*
C60.88894 (12)0.1598 (3)0.1930 (2)0.0445 (8)
C70.91528 (13)0.2442 (4)0.2931 (2)0.0503 (8)
C80.91655 (15)0.1407 (4)0.3709 (2)0.0657 (10)
H8A0.93890.05420.38080.099*
H8B0.87950.10930.34810.099*
H8C0.93200.19400.43220.099*
C90.97393 (13)0.3002 (4)0.3292 (3)0.0663 (10)
H9A0.98810.35770.38870.099*
H9B0.97260.36210.27920.099*
H9C0.99780.21580.34240.099*
C100.88150 (15)0.3852 (4)0.2835 (3)0.0685 (10)
H10A0.89840.43380.34670.103*
H10B0.84430.35650.26140.103*
H10C0.88080.45300.23650.103*
C110.92034 (13)0.1804 (4)0.0773 (2)0.0517 (8)
C120.97975 (13)0.1438 (4)0.1057 (2)0.0610 (9)
H12A0.99480.22850.09130.091*
H12B1.00250.12140.17510.091*
H12C0.97890.05850.06840.091*
C130.91972 (15)0.3122 (4)0.1393 (3)0.0674 (10)
H13A0.88210.33470.11800.101*
H13B0.94030.28460.20800.101*
H13C0.93640.39900.13050.101*
C140.88828 (15)0.2344 (5)0.0307 (2)0.0774 (11)
H14A0.88670.15500.07240.116*
H14B0.85130.26230.05070.116*
H14C0.90680.31950.03640.116*
C150.75856 (13)0.1836 (4)0.0695 (2)0.0594 (9)
H15A0.73730.09610.10660.071*
H15B0.73790.23490.04630.071*
C160.78926 (17)0.4270 (4)0.0877 (3)0.0712 (11)
H16A0.79270.49020.13230.107*
H16B0.82530.40870.02960.107*
H16C0.76630.47570.06940.107*
C170.70858 (14)0.3107 (5)0.2253 (3)0.0816 (12)
H17A0.68560.35980.20710.122*
H17B0.69220.21640.25630.122*
H17C0.71180.37300.27060.122*
C181.17964 (12)0.0384 (3)0.2871 (2)0.0412 (7)
C191.20150 (11)0.0867 (3)0.3518 (2)0.0404 (7)
C201.17375 (11)0.1308 (4)0.3964 (2)0.0458 (7)
H201.18800.21080.44060.055*
C211.12606 (12)0.0621 (4)0.3786 (2)0.0446 (7)
C221.10584 (12)0.0591 (4)0.3143 (2)0.0441 (7)
H221.07390.10670.30230.053*
C231.13113 (12)0.1136 (3)0.2665 (2)0.0412 (7)
C241.10825 (12)0.2547 (3)0.2001 (2)0.0483 (8)
C251.05452 (14)0.3120 (4)0.1893 (3)0.0717 (10)
H25A1.02680.23480.16050.108*
H25B1.04140.39910.14750.108*
H25C1.06200.33790.25330.108*
C261.15096 (15)0.3832 (4)0.2467 (3)0.0664 (10)
H26A1.15870.40530.31140.100*
H26B1.13620.47090.20580.100*
H26C1.18460.35340.25200.100*
C271.09303 (14)0.2209 (4)0.0937 (2)0.0634 (10)
H27A1.12590.19380.09560.095*
H27B1.07680.30850.05320.095*
H27C1.06700.13950.06640.095*
C281.25469 (11)0.1685 (3)0.3744 (2)0.0468 (8)
C291.30491 (13)0.0619 (5)0.4262 (2)0.0657 (10)
H29A1.33820.11730.44670.099*
H29B1.30760.01790.48300.099*
H29C1.30030.01590.38110.099*
C301.24665 (13)0.2338 (4)0.2788 (2)0.0596 (9)
H30A1.24130.15330.23480.089*
H30B1.21470.29810.24730.089*
H30C1.27890.29040.29470.089*
C311.26844 (15)0.3037 (5)0.4444 (3)0.0738 (11)
H31A1.30060.35460.45470.111*
H31B1.23760.37170.41520.111*
H31C1.27570.26880.50670.111*
C321.09783 (13)0.1136 (4)0.4303 (2)0.0552 (9)
H32A1.12520.16220.49190.066*
H32B1.08430.02610.44660.066*
C331.06835 (14)0.3538 (4)0.3442 (3)0.0620 (9)
H33A1.09600.40560.40290.093*
H33B1.08350.32660.30590.093*
H33C1.03680.41810.30570.093*
C341.02793 (14)0.2575 (5)0.4305 (3)0.0706 (11)
H34A0.99680.32330.39290.106*
H34B1.01610.16800.44700.106*
H34C1.05570.30720.49020.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0632 (14)0.0591 (14)0.0435 (12)0.0226 (12)0.0135 (11)0.0036 (11)
O20.0607 (14)0.0630 (14)0.0759 (15)0.0133 (12)0.0490 (12)0.0255 (13)
N10.0567 (16)0.0494 (16)0.0451 (14)0.0094 (14)0.0225 (13)0.0080 (13)
N20.0505 (15)0.0470 (15)0.0540 (14)0.0018 (13)0.0359 (13)0.0041 (13)
C10.0402 (17)0.0464 (19)0.0407 (16)0.0025 (15)0.0185 (14)0.0058 (15)
C20.0463 (18)0.0427 (18)0.0411 (17)0.0050 (15)0.0222 (15)0.0025 (15)
C30.0455 (18)0.0478 (19)0.0395 (16)0.0097 (15)0.0162 (15)0.0009 (14)
C40.0409 (17)0.054 (2)0.0487 (18)0.0009 (16)0.0227 (15)0.0098 (16)
C50.0469 (18)0.0479 (18)0.058 (2)0.0057 (15)0.0327 (17)0.0112 (16)
C60.0457 (18)0.0461 (19)0.0457 (17)0.0019 (15)0.0276 (16)0.0043 (15)
C70.0529 (19)0.050 (2)0.0565 (19)0.0006 (16)0.0356 (16)0.0011 (16)
C80.080 (3)0.071 (2)0.055 (2)0.004 (2)0.0430 (19)0.0030 (19)
C90.063 (2)0.065 (2)0.076 (2)0.0129 (19)0.0405 (19)0.015 (2)
C100.080 (2)0.063 (2)0.072 (2)0.010 (2)0.048 (2)0.003 (2)
C110.0546 (19)0.0449 (18)0.0439 (17)0.0024 (16)0.0193 (15)0.0038 (15)
C120.065 (2)0.062 (2)0.0564 (19)0.0093 (19)0.0335 (17)0.0006 (18)
C130.071 (2)0.044 (2)0.072 (2)0.0013 (18)0.029 (2)0.0050 (18)
C140.084 (3)0.065 (2)0.056 (2)0.006 (2)0.0209 (19)0.014 (2)
C150.0464 (19)0.065 (2)0.058 (2)0.0038 (17)0.0227 (16)0.0119 (18)
C160.101 (3)0.049 (2)0.070 (2)0.006 (2)0.050 (2)0.0000 (18)
C170.070 (2)0.093 (3)0.060 (2)0.028 (2)0.021 (2)0.019 (2)
C180.0420 (17)0.0431 (17)0.0387 (15)0.0036 (14)0.0220 (14)0.0010 (14)
C190.0360 (16)0.0428 (18)0.0347 (15)0.0041 (13)0.0144 (13)0.0039 (13)
C200.0453 (18)0.0444 (17)0.0399 (16)0.0064 (15)0.0182 (14)0.0009 (14)
C210.0435 (18)0.0500 (19)0.0414 (16)0.0099 (16)0.0238 (14)0.0088 (15)
C220.0419 (17)0.0453 (18)0.0465 (16)0.0054 (15)0.0248 (15)0.0100 (15)
C230.0392 (16)0.0386 (17)0.0423 (16)0.0044 (14)0.0199 (14)0.0079 (13)
C240.0528 (18)0.0432 (18)0.0509 (17)0.0055 (16)0.0296 (15)0.0011 (15)
C250.075 (2)0.059 (2)0.089 (3)0.023 (2)0.050 (2)0.012 (2)
C260.080 (2)0.0441 (19)0.076 (2)0.0067 (19)0.043 (2)0.0042 (19)
C270.067 (2)0.067 (2)0.0489 (19)0.016 (2)0.0262 (17)0.0066 (18)
C280.0370 (16)0.0526 (19)0.0404 (17)0.0061 (15)0.0144 (14)0.0058 (15)
C290.0404 (18)0.081 (3)0.062 (2)0.0071 (18)0.0188 (16)0.013 (2)
C300.0496 (18)0.061 (2)0.059 (2)0.0088 (18)0.0236 (17)0.0061 (18)
C310.063 (2)0.074 (3)0.076 (2)0.021 (2)0.032 (2)0.028 (2)
C320.062 (2)0.061 (2)0.0483 (18)0.0064 (18)0.0341 (17)0.0044 (17)
C330.052 (2)0.049 (2)0.081 (2)0.0040 (17)0.0329 (18)0.0002 (19)
C340.073 (2)0.086 (3)0.072 (2)0.003 (2)0.052 (2)0.020 (2)
Geometric parameters (Å, º) top
O1—C11.377 (3)C16—H16B0.9600
O1—H10.8495C16—H16C0.9600
O2—C181.376 (3)C17—H17A0.9600
O2—H20.8557C17—H17B0.9600
N1—C161.461 (4)C17—H17C0.9600
N1—C171.470 (4)C18—C231.413 (4)
N1—C151.474 (4)C18—C191.419 (4)
N2—C331.465 (4)C19—C201.389 (4)
N2—C341.466 (4)C19—C281.547 (4)
N2—C321.477 (4)C20—C211.381 (4)
C1—C61.411 (4)C20—H200.9300
C1—C21.415 (4)C21—C221.387 (4)
C2—C31.398 (4)C21—C321.515 (4)
C2—C111.552 (5)C22—C231.403 (4)
C3—C41.387 (4)C22—H220.9300
C3—H30.9300C23—C241.547 (4)
C4—C51.390 (4)C24—C261.542 (4)
C4—C151.514 (4)C24—C251.543 (4)
C5—C61.395 (4)C24—C271.551 (4)
C5—H50.9300C25—H25A0.9600
C6—C71.552 (4)C25—H25B0.9600
C7—C91.536 (4)C25—H25C0.9600
C7—C81.541 (4)C26—H26A0.9600
C7—C101.543 (5)C26—H26B0.9600
C8—H8A0.9600C26—H26C0.9600
C8—H8B0.9600C27—H27A0.9600
C8—H8C0.9600C27—H27B0.9600
C9—H9A0.9600C27—H27C0.9600
C9—H9B0.9600C28—C291.540 (4)
C9—H9C0.9600C28—C301.543 (4)
C10—H10A0.9600C28—C311.547 (5)
C10—H10B0.9600C29—H29A0.9600
C10—H10C0.9600C29—H29B0.9600
C11—C141.537 (4)C29—H29C0.9600
C11—C121.542 (4)C30—H30A0.9600
C11—C131.549 (5)C30—H30B0.9600
C12—H12A0.9600C30—H30C0.9600
C12—H12B0.9600C31—H31A0.9600
C12—H12C0.9600C31—H31B0.9600
C13—H13A0.9600C31—H31C0.9600
C13—H13B0.9600C32—H32A0.9700
C13—H13C0.9600C32—H32B0.9700
C14—H14A0.9600C33—H33A0.9600
C14—H14B0.9600C33—H33B0.9600
C14—H14C0.9600C33—H33C0.9600
C15—H15A0.9700C34—H34A0.9600
C15—H15B0.9700C34—H34B0.9600
C16—H16A0.9600C34—H34C0.9600
C1—O1—H1114.8H17A—C17—H17B109.5
C18—O2—H2119.8N1—C17—H17C109.5
C16—N1—C17110.1 (3)H17A—C17—H17C109.5
C16—N1—C15111.0 (2)H17B—C17—H17C109.5
C17—N1—C15108.7 (3)O2—C18—C23123.8 (2)
C33—N2—C34110.2 (3)O2—C18—C19114.1 (2)
C33—N2—C32112.0 (2)C23—C18—C19122.1 (3)
C34—N2—C32108.3 (2)C20—C19—C18117.0 (3)
O1—C1—C6114.4 (2)C20—C19—C28121.1 (3)
O1—C1—C2123.2 (3)C18—C19—C28121.9 (3)
C6—C1—C2122.4 (3)C21—C20—C19123.4 (3)
C3—C2—C1116.4 (3)C21—C20—H20118.3
C3—C2—C11120.5 (3)C19—C20—H20118.3
C1—C2—C11123.1 (3)C20—C21—C22117.8 (3)
C4—C3—C2123.5 (3)C20—C21—C32121.2 (3)
C4—C3—H3118.3C22—C21—C32121.0 (3)
C2—C3—H3118.3C21—C22—C23123.3 (3)
C3—C4—C5117.6 (3)C21—C22—H22118.4
C3—C4—C15120.6 (3)C23—C22—H22118.4
C5—C4—C15121.8 (3)C22—C23—C18116.5 (3)
C4—C5—C6123.0 (3)C22—C23—C24120.6 (3)
C4—C5—H5118.5C18—C23—C24122.8 (3)
C6—C5—H5118.5C26—C24—C25106.9 (3)
C5—C6—C1117.0 (3)C26—C24—C23109.9 (2)
C5—C6—C7121.4 (3)C25—C24—C23111.7 (3)
C1—C6—C7121.6 (3)C26—C24—C27110.7 (3)
C9—C7—C8110.5 (3)C25—C24—C27106.1 (3)
C9—C7—C10105.9 (3)C23—C24—C27111.3 (3)
C8—C7—C10107.7 (3)C24—C25—H25A109.5
C9—C7—C6111.4 (2)C24—C25—H25B109.5
C8—C7—C6109.7 (2)H25A—C25—H25B109.5
C10—C7—C6111.5 (3)C24—C25—H25C109.5
C7—C8—H8A109.5H25A—C25—H25C109.5
C7—C8—H8B109.5H25B—C25—H25C109.5
H8A—C8—H8B109.5C24—C26—H26A109.5
C7—C8—H8C109.5C24—C26—H26B109.5
H8A—C8—H8C109.5H26A—C26—H26B109.5
H8B—C8—H8C109.5C24—C26—H26C109.5
C7—C9—H9A109.5H26A—C26—H26C109.5
C7—C9—H9B109.5H26B—C26—H26C109.5
H9A—C9—H9B109.5C24—C27—H27A109.5
C7—C9—H9C109.5C24—C27—H27B109.5
H9A—C9—H9C109.5H27A—C27—H27B109.5
H9B—C9—H9C109.5C24—C27—H27C109.5
C7—C10—H10A109.5H27A—C27—H27C109.5
C7—C10—H10B109.5H27B—C27—H27C109.5
H10A—C10—H10B109.5C29—C28—C30111.1 (3)
C7—C10—H10C109.5C29—C28—C19110.6 (3)
H10A—C10—H10C109.5C30—C28—C19110.5 (2)
H10B—C10—H10C109.5C29—C28—C31107.1 (2)
C14—C11—C12106.7 (3)C30—C28—C31105.9 (3)
C14—C11—C13106.5 (3)C19—C28—C31111.5 (3)
C12—C11—C13111.6 (3)C28—C29—H29A109.5
C14—C11—C2111.7 (3)C28—C29—H29B109.5
C12—C11—C2111.5 (3)H29A—C29—H29B109.5
C13—C11—C2108.8 (2)C28—C29—H29C109.5
C11—C12—H12A109.5H29A—C29—H29C109.5
C11—C12—H12B109.5H29B—C29—H29C109.5
H12A—C12—H12B109.5C28—C30—H30A109.5
C11—C12—H12C109.5C28—C30—H30B109.5
H12A—C12—H12C109.5H30A—C30—H30B109.5
H12B—C12—H12C109.5C28—C30—H30C109.5
C11—C13—H13A109.5H30A—C30—H30C109.5
C11—C13—H13B109.5H30B—C30—H30C109.5
H13A—C13—H13B109.5C28—C31—H31A109.5
C11—C13—H13C109.5C28—C31—H31B109.5
H13A—C13—H13C109.5H31A—C31—H31B109.5
H13B—C13—H13C109.5C28—C31—H31C109.5
C11—C14—H14A109.5H31A—C31—H31C109.5
C11—C14—H14B109.5H31B—C31—H31C109.5
H14A—C14—H14B109.5N2—C32—C21114.4 (2)
C11—C14—H14C109.5N2—C32—H32A108.7
H14A—C14—H14C109.5C21—C32—H32A108.7
H14B—C14—H14C109.5N2—C32—H32B108.7
N1—C15—C4113.8 (3)C21—C32—H32B108.7
N1—C15—H15A108.8H32A—C32—H32B107.6
C4—C15—H15A108.8N2—C33—H33A109.5
N1—C15—H15B108.8N2—C33—H33B109.5
C4—C15—H15B108.8H33A—C33—H33B109.5
H15A—C15—H15B107.7N2—C33—H33C109.5
N1—C16—H16A109.5H33A—C33—H33C109.5
N1—C16—H16B109.5H33B—C33—H33C109.5
H16A—C16—H16B109.5N2—C34—H34A109.5
N1—C16—H16C109.5N2—C34—H34B109.5
H16A—C16—H16C109.5H34A—C34—H34B109.5
H16B—C16—H16C109.5N2—C34—H34C109.5
N1—C17—H17A109.5H34A—C34—H34C109.5
N1—C17—H17B109.5H34B—C34—H34C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.852.202.836 (3)132
O2—H2···N1i0.862.262.933 (3)135
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC17H29NO
Mr263.41
Crystal system, space groupMonoclinic, C2
Temperature (K)294
a, b, c (Å)28.731 (9), 8.912 (3), 16.112 (5)
β (°) 122.965 (5)
V3)3461.4 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6903, 3752, 2317
Rint0.040
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 0.99
No. of reflections3752
No. of parameters359
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.852.202.836 (3)132.2
O2—H2···N1i0.862.262.933 (3)135.0
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Start Foundation for Doctors (HY07116) of Yantai University.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCiba-Geigy AG (1978). Swiss Patent CH597 297.  Google Scholar
First citationCoffield, T. H. (1965). US Patent 3 208 859.  Google Scholar
First citationCoffield, T. H. & Mich, F. (1965). US Patent 3 225 099.  Google Scholar
First citationEggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent 3 950 382.  Google Scholar
First citationEggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent 3 856 846.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRieker, A., Kaufmann, H., Brück, D., Workman, R. & Müller, E. (1968). Tetrahedron, 24, 103–115.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. Part A Polym. Chem. 35, 2431–2439.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds