Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3*H*-2,1-Benzoxaborole-1-spiro-4'-(5-oxa-3a-aza-4-borapyrene)

Beck Robin, Gregg Buell, Paul Kiprof and Victor N. Nemykin*

Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA

Correspondence e-mail: vnemykin@d.umn.edu

Received 22 November 2007; accepted 12 December 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.008 Å; R factor = 0.068; wR factor = 0.093; data-to-parameter ratio = 8.2.

In the title compound, $C_{20}H_{14}BNO_2$, the B atom has a tetrahedral geometry with two short B–O and two long B–C and B–N bonds, revealing a significant difference between C_{ar} –O–B and C_{alkyl} –O–B bond distances. Intermolecular Ar–H···O hydrogen bonds and strong π – π interactions (3.368 Å) between aromatic cores of neighbouring molecules result in hexagonal channels along the crystallographic *c* axis, which are potentially accessible for small molecules.

Related literature

For the general synthesis and applications of benzoboroxoles, see: Nicolaou *et al.* (1998, 1999); Tan *et al.* (2001); Benkovic *et al.* (2005); Baker *et al.* (2006); Alexander *et al.* (1999). For the crystal structures of benzoboroxoles, see: Tan *et al.* (2001); Sporzynski *et al.* (2005); Coghlan *et al.* (2005); Arcus *et al.* (1993); Murafuji *et al.* (1999); Zhdankin *et al.* (1999); Yamamoto *et al.* (2005); Gunasekera *et al.* (2007).

For related literature, see: Allen (2002); Prince (1982); Watkin (1994).

Experimental

Crystal data

 C_2

M

Tr

a :

c =

0H14BNO2	
r = 311.13	
igonal, R3	
= 33.079 (5) Å	
= 7.358 (5) Å	
$= 6973 (5) Å^3$	
= 33.079 (5) Å = 7.358 (5) Å = 6973 (5) Å ³	

Data collection

Rigaku AFC-7 <i>R</i> diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\rm min} = 0.96, \ T_{\rm max} = 0.99$
3564 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	218 parameters
$wR(F^2) = 0.093$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
1779 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Z = 18

Mo $K\alpha$ radiation

 $0.58 \times 0.12 \times 0.07~\text{mm}$

3 standard reflections every 150 reflections

intensity decay: none

3564 independent reflections 1558 reflections with $I > 2.0\sigma(I)$

 $\mu = 0.09 \text{ mm}^-$ T = 295 K

Table 1

Selected bond lengths (Å).

B1-O2	1.479 (6)	B1-O1	1.432 (6)
B1-N1	1.646 (6)	B1-C1	1.602 (7)

Table 2	
Hydrogen bond geometry	1

Hydrogen-bond geometry (A, \circ) .

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $C9-H16\cdots O2^i$ 0.93 2.59 3.490 (8)
 163

 Symmetry code: (i) $x - y + \frac{1}{3}, x - \frac{1}{3}, -z + \frac{2}{3}.$

Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997); cell refinement: WinAFC (Rigaku/MSC, 2000); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Generous support from the Department of Chemistry and Biochemistry, University of Minnesota Duluth, is greatly appreciated. X-ray data were collected at the University of Minnesota Duluth X-ray crystallography facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EM2005).

References

- Alexander, C., Smith, C. R., Whitcombe, M. J. & Vulfson, E. N. (1999). J. Am. Chem. Soc. 121, 6640–6651.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Arcus, V. L., Main, L. & Nicholson, B. K. (1993). J. Organomet. Chem. 460, 139–147.

- Baker, S. J., Zhang, Y. K., Akama, T., Lau, A., Zhou, H., Hernandez, V., Mao, W., Alley, M. R. K., Sanders, V. & Plattner, J. J. (2006). *J. Med. Chem.* 49, 4447–4450.
- Benkovic, S. J., Baker, S. J., Alley, M. R. K., Woo, Y. H., Zhang, Y. K., Akama, T., Mao, W., Baboval, J., Rajagopalan, P. T. R., Wall, M., Kahng, L. S., Tavassoli, A. & Shapiro, L. (2005). J. Med. Chem. 48, 7468–7476.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Coghlan, S. W., Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2005). J. Organomet. Chem. 690, 4784–4794.
- Gunasekera, D. S., Gerold, D. J., Aalderks, N. S., Chandra, J. S., Maanu, C. A., Kiprof, P., Zhdankin, V. V. & Reddy, M. V. R. (2007). *Tetrahedron*, 63, 9401– 9405.
- Murafuji, T., Sugihara, Y., Moriya, T., Mikata, Y. & Yano, S. (1999). New J. Chem. 23, 683–685.
- Nicolaou, K. C., Li, H., Boody, C. N. C., Ramanjulu, J. M., Yue, T. Y., Natarajan, S., Chu, X. J., Brase, S. & Rubsam, F. (1999). *Chem. Eur. J.* 5, 2584–2601.
- Nicolaou, K. C., Natarajan, S., Li, H., Jain, N. F., Hughes, R., Solomon, M. E., Ramanjulu, J. M., Boddy, C. N. C. & Takayanagi, M. (1998). Angew. Chem. Int. Ed. 37, 2708–2714.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Rigaku/MSC (1997). AFC-7R Diffractometer Control Software. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Rigaku/MSC (2000). WinAFC. Version 1.0.2. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Rigaku/MSC (2004). TEXSAN. Version 10.3b. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sporzynski, A., Lewandowski, R., Rogowska, P. & Cyranski, M. K. (2005). Appl. Organomet. Chem. 19, 1202–1203.
- Tan, Y. L., White, A. J. P., Widdowson, D. A., Wilhelm, R. & Williams, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3269–3280.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
- Yamamoto, Y., Ishii, J., Nishiyama, H. & Itoh, K. (2005). J. Am. Chem. Soc. 127, 9625–9631.
- Zhdankin, V. V., Persichini, P. J. III, Zhang, L., Fix, S. & Kiprof, P. (1999). *Tetrahedron Lett.* **40**, 6705–6708.

supporting information

Acta Cryst. (2008). E64, o314–o315 [https://doi.org/10.1107/S1600536807066731]

3H-2,1-Benzoxaborole-1-spiro-4'-(5-oxa-3a-aza-4-borapyrene)

Beck Robin, Gregg Buell, Paul Kiprof and Victor N. Nemykin

S1. Comment

Benzoboroxoles are useful synthons for cross-coupling reactions (Nicolaou *et al.*, 1998; Nicolaou *et al.*, 1999; Tan *et al.*, 2001) and are utilized in a wide variety of applications in medicinal (Benkovic *et al.*, 2005; Baker *et al.*, 2006) and materials (Alexander *et al.*, 1999) chemistry.

The number of known structures of boroxoles and their adducts with a tetrahedral boron atom is very small (CSD 2007; Tan *et al.* 2001; Sporzynski *et al.*, 2005; Coghlan *et al.*, 2005; Arcus *et al.*, 1993; Murafuji *et al.*, 1999; Zhdankin *et al.*, 1999; Yamamoto *et al.*, 2005; Gunasekera *et al.*, 2007). 10-(benzo[c][1,2]oxaborol-1(*3H*)-yloxy)benzo[h]quinoline, **I**, (Fig. 1) is the first known structure of a boroxole derivative in which the boron atom is coordinated to two oxygen, one carbon, and one nitrogen atoms and has a tetrahedral geometry. The B1—O1 and B1—O2 distances, in spite of their similar nature, are quite different (Table 1) and, probably reflect the difference in the electron density on the phenolic and benzylic type oxygen atoms. The B1—C1 and B1—N1 bond distances are significantly longer than boron-oxygen bond distances with B1—N1 being the longest.

The molecules of I are linked together into two-dimensional polymeric units by weak C(ar)—H···O hydrogen bonds (Table 2) formed between the H16 aryl hydrogen atom and the phenolic oxygen O2 of a neighboring molecule at (x-y + 1/3, x - 1/3, -z + 2/3), generated by a translation along threefold screw axis (Fig. 2). This two-dimensional polymeric chain forms small hexagonal channels oriented along the *c* axis.The hexagonal channels are further stabilized by strong π - π interactions between molecules related by inversion with the shortest C···C contacts being between C10 and C20ⁱⁱ (3.368 Å; symmetry operator ii = 1 - x, 1 - y, 1 - z).

S2. Experimental

The title compound was prepared by the reaction between equivalent amounts of benzoboroxole and 10-hydroxybenzo[*h*]quinoline in dry hexane under an argon atmosphere. Crystals suitable for X-ray analysis were grown by slow diffusion of pentane into a methylenechloride solution of **I**. Selected data for title compound: Analysis calculated for $C_{20}H_{14}BNO_2$; C, 77.20%; H, 4.54%; N, 4.5%. Found C, 73.41%; H, 4.59%; N, 4.19% (Note: %C found is low because of the formation of highly stable boron carbide during the combustion process). ¹H NMR (CDCl₃): δ 5.2 (d, 2H), 5.3 (d, 2H). ¹¹B NMR (CDCl₃): δ 11.14. ¹³C NMR (CDCl₃) δ 159, 155.9, 148.8, 42.3, 139.6, 134.5, 132.8, 130.6, 128.4, 127.8, 126.5, 123.4, 121.5, 120.8, 117.9, 116.9, 72.3. A bsorption $\lambda_{max} = 248$, 303, and 413 nm.

S3. Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged. All H atoms were placed in calculated positions with C—H distances of 0.93 (aromatic) and 0.98 Å (alkyl). All hydrogen atoms were refined with $U_{iso}(H) = 1.3U_{eq}$ of their respective carrier atom using riding constraints.

Figure 1

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Figure 2

Unit cell representation showing the small hexagonal channels along c axis. Hexagonal channels are labeled in red with 'Ch'.

3H-2,1-Benzoxaborole-1-spiro-4'-(5-oxa-3a-aza-4-borapyrene)

Crystal data

C₂₀H₁₄BNO₂ $M_r = 311.13$ Trigonal, R3Hall symbol: -R 3 a = 33.079 (5) Å c = 7.358 (5) Å V = 6973 (5) Å³ Z = 18F(000) = 2916

Data collection

Serial diffractometer Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.96, T_{\max} = 0.99$ 3564 measured reflections 3564 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.093$ S = 1.071779 reflections 218 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $D_{\rm x} = 1.334 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15-18^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 295 KNeedle, yellow $0.58 \times 0.12 \times 0.07 \text{ mm}$

1558 reflections with $I > 2.0\sigma(I)$ $R_{int} = 0.000$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = 0 \rightarrow 42$ $k = -36 \rightarrow 36$ $l = 0 \rightarrow 9$ 3 standard reflections every 150 reflections intensity decay: 0.0%

Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A₀*T₀(x) + A₁*T₁(x) ··· + A_{n-1}]*T_{n-1}(x)] where A_i are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)²]² A_i are: 6.52 6.79 1.78 (Δ/σ)_{max} = 0.000267 $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³ Extinction correction: Larson (1970), Equation 22 Extinction coefficient: 269 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
B1	0.60386 (17)	0.50314 (19)	0.3431 (8)	0.0461	
N1	0.54645 (12)	0.47492 (12)	0.3338 (5)	0.0441	
01	0.61889 (10)	0.50681 (11)	0.1583 (4)	0.0556	
O2	0.61678 (10)	0.54880 (11)	0.4258 (5)	0.0557	
C1	0.62617 (15)	0.47612 (16)	0.4450 (7)	0.0470	
C2	0.62919 (18)	0.46446 (19)	0.6229 (7)	0.0641	
C3	0.65528 (19)	0.4431 (2)	0.6641 (8)	0.0738	
C4	0.67847 (17)	0.43392 (18)	0.5313 (8)	0.0612	
C5	0.67633 (15)	0.44539 (16)	0.3534 (7)	0.0536	
C6	0.64948 (15)	0.46632 (15)	0.3118 (7)	0.0453	

supporting information

C7	0.64298 (16)	0.48142 (17)	0.1297 (7)	0.0549
C8	0.52178 (17)	0.42836 (16)	0.3387 (7)	0.0556
С9	0.47493 (17)	0.40339 (17)	0.2966 (7)	0.0615
C10	0.45304 (16)	0.42688 (17)	0.2430 (7)	0.0568
C11	0.47733 (16)	0.47560 (17)	0.2342 (7)	0.0465
C12	0.52458 (15)	0.49909 (15)	0.2852 (6)	0.0420
C13	0.45737 (18)	0.5029 (2)	0.1721 (7)	0.0611
C14	0.48327 (19)	0.5502 (2)	0.1649 (7)	0.0603
C15	0.53031 (18)	0.57485 (17)	0.2257 (7)	0.0524
C16	0.55138 (15)	0.54933 (15)	0.2865 (6)	0.0441
C17	0.5559 (2)	0.62379 (19)	0.2316 (8)	0.0699
C18	0.5997 (2)	0.64575 (19)	0.3060 (9)	0.0767
C19	0.62077 (18)	0.62144 (17)	0.3711 (8)	0.0655
C20	0.59680 (16)	0.57271 (16)	0.3584 (7)	0.0492
H11	0.6135	0.4706	0.7139	0.0862*
H12	0.6569	0.4352	0.7841	0.1024*
H13	0.6955	0.4194	0.5614	0.0794*
H14	0.6922	0.4396	0.2624	0.0612*
H15	0.5372	0.4125	0.3718	0.0623*
H16	0.4586	0.3710	0.3045	0.0698*
H17	0.4215	0.4107	0.2128	0.0625*
H71	0.6732	0.5015	0.0712	0.0750*
H72	0.6242	0.4541	0.0528	0.0750*
H131	0.4263	0.4879	0.1352	0.0773*
H141	0.4698	0.5669	0.1193	0.0818*
H171	0.5430	0.6412	0.1877	0.0923*
H181	0.6162	0.6782	0.3100	0.0853*
H191	0.6501	0.6370	0.4249	0.0712*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
B1	0.033 (3)	0.048 (3)	0.056 (4)	0.020 (3)	0.000 (3)	0.000 (3)
N1	0.033 (2)	0.039 (2)	0.060 (3)	0.0174 (18)	0.0013 (19)	-0.0006 (19)
O1	0.049 (2)	0.060(2)	0.063 (2)	0.0316 (19)	0.0060 (18)	0.0093 (18)
O2	0.0365 (18)	0.046 (2)	0.083 (3)	0.0192 (16)	-0.0066 (17)	-0.0093 (18)
C1	0.034 (3)	0.048 (3)	0.057 (3)	0.019 (2)	-0.002(2)	-0.007(2)
C2	0.060 (3)	0.086 (4)	0.061 (4)	0.048 (3)	0.000 (3)	0.000 (3)
C3	0.077 (4)	0.105 (5)	0.063 (4)	0.062 (4)	-0.002 (3)	0.007 (3)
C4	0.053 (3)	0.072 (4)	0.071 (4)	0.041 (3)	-0.006 (3)	-0.002 (3)
C5	0.039 (3)	0.054 (3)	0.068 (4)	0.024 (3)	0.004 (3)	-0.002 (3)
C6	0.035 (3)	0.042 (3)	0.054 (3)	0.016 (2)	0.002 (2)	-0.004 (2)
C7	0.050 (3)	0.056 (3)	0.063 (4)	0.030 (3)	0.009 (3)	-0.001 (3)
C8	0.048 (3)	0.038 (3)	0.080 (4)	0.022 (2)	0.006 (3)	0.003 (3)
C9	0.047 (3)	0.041 (3)	0.084 (4)	0.012 (3)	0.004 (3)	-0.007 (3)
C10	0.034 (3)	0.055 (3)	0.069 (4)	0.013 (3)	-0.003 (3)	-0.010 (3)
C11	0.039 (3)	0.051 (3)	0.051 (3)	0.024 (2)	0.001 (2)	-0.006 (2)
C12	0.036 (3)	0.044 (3)	0.048 (3)	0.021 (2)	0.001 (2)	-0.004 (2)

supporting information

C13	0.045 (3)	0.081 (4)	0.067 (4)	0.039 (3)	-0.005 (3)	-0.005 (3)	
C14	0.068 (4)	0.072 (4)	0.063 (4)	0.052 (3)	0.007 (3)	0.007 (3)	
C15	0.056 (3)	0.056 (3)	0.055 (3)	0.036 (3)	0.010(3)	0.005 (3)	
C16	0.040 (3)	0.040 (3)	0.055 (3)	0.021 (2)	0.006 (2)	-0.002 (2)	
C17	0.079 (4)	0.054 (4)	0.093 (5)	0.045 (3)	0.023 (4)	0.015 (3)	
C18	0.081 (4)	0.041 (3)	0.110 (5)	0.032 (3)	0.031 (4)	0.010 (3)	
C19	0.048 (3)	0.043 (3)	0.092 (5)	0.013 (3)	0.014 (3)	-0.009 (3)	
C20	0.043 (3)	0.040 (3)	0.065 (3)	0.022 (2)	0.007 (2)	-0.004 (2)	

Geometric parameters (Å, °)

O2—C20	1.354 (5)	C3—H12	0.930	
B1—O2	1.479 (6)	C4—C5	1.374 (7)	
C20—C16	1.405 (6)	C4—H13	0.930	
C20—C19	1.399 (6)	C5—H14	0.930	
C16—C12	1.440 (6)	C8—C9	1.378 (6)	
C16—C15	1.410 (6)	C8—H15	0.930	
C12—N1	1.367 (5)	C9—C10	1.359 (6)	
C12—C11	1.405 (6)	C9—H16	0.930	
B1—N1	1.646 (6)	C10—C11	1.397 (6)	
N1—C8	1.335 (5)	C10—H17	0.930	
B1—O1	1.432 (6)	C11—C13	1.434 (6)	
B1—C1	1.602 (7)	C13—C14	1.358 (7)	
O1—C7	1.433 (5)	C13—H131	0.930	
C7—C6	1.482 (6)	C14—C15	1.420 (7)	
C7—H71	0.980	C14—H141	0.930	
С7—Н72	0.980	C15—C17	1.403 (7)	
C6—C1	1.382 (6)	C17—C18	1.368 (7)	
C6—C5	1.406 (6)	C17—H171	0.930	
C1—C2	1.382 (6)	C18—C19	1.387 (7)	
C2—C3	1.396 (7)	C18—H181	0.930	
C2—H11	0.930	C19—H191	0.930	
C3—C4	1.366 (7)			
C20—O2—B1	118.0 (4)	C4—C3—H12	120.0	
O2—C20—C16	121.1 (4)	C3—C4—C5	120.5 (5)	
O2—C20—C19	119.2 (5)	C3—C4—H13	119.7	
C16—C20—C19	119.6 (5)	C5—C4—H13	119.8	
C20-C16-C12	120.6 (4)	C6—C5—C4	118.4 (5)	
C20-C16-C15	120.2 (4)	C6—C5—H14	120.5	
C12—C16—C15	119.1 (4)	C4—C5—H14	121.1	
C16—C12—N1	118.2 (4)	N1—C8—C9	122.8 (5)	
C16—C12—C11	120.8 (4)	N1—C8—H15	117.9	
N1—C12—C11	120.9 (4)	C9—C8—H15	119.3	
C12—N1—B1	118.5 (4)	C8—C9—C10	118.9 (5)	
C12—N1—C8	119.0 (4)	C8—C9—H16	120.6	
B1—N1—C8	121.3 (4)	C10—C9—H16	120.5	
N1—B1—O2	105.0 (4)	C9—C10—C11	120.6 (4)	

N1—B1—O1	105.2 (4)	С9—С10—Н17	120.3
O2—B1—O1	113.1 (4)	C11—C10—H17	119.0
N1—B1—C1	115.2 (4)	C12—C11—C10	117.7 (4)
O2—B1—C1	113.5 (4)	C12—C11—C13	118.2 (5)
O1—B1—C1	104.7 (4)	C10—C11—C13	124.1 (5)
B1	111.2 (4)	C11—C13—C14	120.9 (5)
O1—C7—C6	106.4 (4)	C11—C13—H131	119.4
O1—C7—H71	110.0	C14—C13—H131	119.7
С6—С7—Н71	110.8	C13—C14—C15	121.9 (5)
O1—C7—H72	110.0	C13—C14—H141	119.0
С6—С7—Н72	110.1	C15—C14—H141	119.1
H71—C7—H72	109.5	C14—C15—C16	118.9 (5)
C7—C6—C1	111.7 (4)	C14—C15—C17	121.9 (5)
C7—C6—C5	126.6 (4)	C16—C15—C17	119.1 (5)
C1—C6—C5	121.6 (5)	C15—C17—C18	119.6 (5)
B1—C1—C6	105.4 (4)	C15—C17—H171	120.2
B1—C1—C2	135.8 (5)	C18—C17—H171	120.2
C6—C1—C2	118.7 (4)	C17—C18—C19	122.4 (5)
C1—C2—C3	119.8 (5)	C17—C18—H181	118.6
C1—C2—H11	119.6	C19—C18—H181	119.0
C3—C2—H11	120.6	C20—C19—C18	119.0 (5)
C2—C3—C4	121.0 (5)	C20-C19-H191	120.0
C2—C3—H12	119.0	C18—C19—H191	120.9

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C9—H16…O2 ⁱ	0.93	2.59	3.490 (8)	163

Symmetry code: (i) x-y+1/3, x-1/3, -z+2/3.