metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(picolinato N-oxide-κ2O,O′)zinc(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 31 August 2007; accepted 5 September 2007; online 6 December 2007)

In the title compound, [Zn(C6H4NO3)2(H2O)2], the Zn atom is located on a centre of inversion and shows a distorted octa­hedral coordination geometry. Two aqua ligands occupy the axial positions and four O atoms of the two chelating picolinic acid N-oxide ligands are located in the equatorial plane. Inter­molecular hydrogen bonds between aqua ligands and organic ligands link mol­ecules into a two-dimensional arrangement.

Related literature

For related literature, see: Bayot et al. (2006[Bayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390-1394.]); Ciurtin et al. (2003[Ciurtin, D. M., Smith, M. D. & Loye, H.-C. (2003). Polyhedron, 22, 3043-3049.]); Lawrence et al. (1999[Lawrence, R. G., Jones, C. J. & Kresinski, R. A. (1999). Inorg. Chim. Acta, 285, 283-289.]); Meinrath et al. (2006[Meinrath, G., Lis, S. & Bohme, U. (2006). J. Alloys Compd. 408, 962-969.]); Shan et al. (2002[Shan, X., Ellern, A. & Espenson, J. H. (2002). Inorg. Chem. 41, 7136-7142.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-51.]); Yang et al. (2004[Yang, B.-P., Mao, J.-G. & Dong, Z.-C. (2004). Inorg. Chem. Commun. 7, 104-106.]); Zafar et al. (2000[Zafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. & Hamilton, A. D. (2000). Tetrahedron, 56, 8419-8427.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H4NO3)2(H2O)2]

  • Mr = 377.63

  • Monoclinic, P 21 /c

  • a = 6.6837 (5) Å

  • b = 15.7376 (13) Å

  • c = 6.9935 (6) Å

  • β = 115.3700 (10)°

  • V = 664.67 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 298 (2) K

  • 0.21 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.674, Tmax = 0.733

  • 3515 measured reflections

  • 1170 independent reflections

  • 1033 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.149

  • S = 1.15

  • 1170 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O3 2.049 (3)
Zn1—O2 2.059 (3)
Zn1—O1W 2.143 (3)
O3—Zn1—O2 86.46 (11)
O3—Zn1—O1Wi 89.79 (11)
O2—Zn1—O1Wi 88.93 (12)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O1ii 0.90 1.98 2.753 (4) 143
O1W—H1WA⋯O1iii 0.90 2.20 2.742 (4) 118
Symmetry codes: (ii) -x, -y+1, -z+1; (iii) x+1, y, z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1999[Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decade, much attention has been paid to the design and synthesis of self-assembling systems with organic ligands containing N and O donors (Bayot et al., 2006; Ciurtin et al., 2003; Steiner, 2002; Zafar et al., 2000). Picolinic acid N-oxide (PANO) is one such ligand and several crystal structures of complexes containing the PANO ligand have been reported (Yang et al., 2004; Shan et al., 2002; Lawrence et al., 1999; Meinrath et al., 2006). We report here the synthesis and crystal structure of the title complex, (I) (Fig. 1). In (I), the Zn atom is located on a crystallographic inversion centre and adopts a distorted octahedral coordination geometry. The coordination environment is defined by two pyridine N-oxide oxygen donors and two oxygen donors from the carboxylate groups located in the equatorial plane and two aqua O-atom donors located in the axial positions (Fig. 1). Selected bond lengths and angles are shown in Table 1. Intermolecular O1W—H1WA···O1, O1W—H1WB···O1 hydrogen bonds between water molecules and carboxylate groups connect the molecules of (I) into a two-dimensional network (Table 2 and Fig. 2).

Related literature top

For related literature, see: Bayot et al. (2006); Ciurtin et al. (2003); Lawrence et al. (1999); Meinrath et al. (2006); Shan et al. (2002); Steiner (2002); Yang et al. (2004); Zafar et al. (2000).

Experimental top

All chemicals were obtained from commercial sources and used without further purification. The title compound was prepared by the direct reaction of Zn(OOCCH3)2.2H2O (22.1 mg, 0.1 mmol) and picolinic acid N-oxide (13.9 mg, 0.1 mmol) in water solution. Colourless block-shaped single crystals were obtained by slow evaporation at room temperature for about three weeks.

Refinement top

Positional parameters of all H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Structure description top

In the past decade, much attention has been paid to the design and synthesis of self-assembling systems with organic ligands containing N and O donors (Bayot et al., 2006; Ciurtin et al., 2003; Steiner, 2002; Zafar et al., 2000). Picolinic acid N-oxide (PANO) is one such ligand and several crystal structures of complexes containing the PANO ligand have been reported (Yang et al., 2004; Shan et al., 2002; Lawrence et al., 1999; Meinrath et al., 2006). We report here the synthesis and crystal structure of the title complex, (I) (Fig. 1). In (I), the Zn atom is located on a crystallographic inversion centre and adopts a distorted octahedral coordination geometry. The coordination environment is defined by two pyridine N-oxide oxygen donors and two oxygen donors from the carboxylate groups located in the equatorial plane and two aqua O-atom donors located in the axial positions (Fig. 1). Selected bond lengths and angles are shown in Table 1. Intermolecular O1W—H1WA···O1, O1W—H1WB···O1 hydrogen bonds between water molecules and carboxylate groups connect the molecules of (I) into a two-dimensional network (Table 2 and Fig. 2).

For related literature, see: Bayot et al. (2006); Ciurtin et al. (2003); Lawrence et al. (1999); Meinrath et al. (2006); Shan et al. (2002); Steiner (2002); Yang et al. (2004); Zafar et al. (2000).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry operation (A): [1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Diaquabis(picolinato N-oxide-κ2O,O')zinc(II) top
Crystal data top
[Zn(C6H4NO3)2(H2O)2]F(000) = 384
Mr = 377.63Dx = 1.887 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.6837 (5) Åθ = 7.5–15°
b = 15.7376 (13) ŵ = 1.90 mm1
c = 6.9935 (6) ÅT = 298 K
β = 115.370 (1)°Block, colourless
V = 664.67 (9) Å30.21 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1170 independent reflections
Radiation source: fine-focus sealed tube1033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10 pixels mm-1θmax = 25.0°, θmin = 2.6°
φ and ω scansh = 77
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
k = 1817
Tmin = 0.674, Tmax = 0.733l = 68
3515 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0918P)2 + 1.2258P]
where P = (Fo2 + 2Fc2)/3
1170 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Zn(C6H4NO3)2(H2O)2]V = 664.67 (9) Å3
Mr = 377.63Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.6837 (5) ŵ = 1.90 mm1
b = 15.7376 (13) ÅT = 298 K
c = 6.9935 (6) Å0.21 × 0.18 × 0.16 mm
β = 115.370 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1170 independent reflections
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
1033 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.733Rint = 0.019
3515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.15Δρmax = 0.56 e Å3
1170 reflectionsΔρmin = 0.90 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.0252 (3)
O1W0.4917 (5)0.43468 (18)0.7653 (4)0.0222 (7)
H1WA0.62910.41700.85150.033*
H1WB0.44230.47020.83650.033*
O10.1745 (5)0.49427 (16)0.1316 (6)0.0229 (7)
O20.1644 (5)0.52224 (19)0.3760 (5)0.0218 (7)
O30.4215 (4)0.38945 (17)0.3288 (5)0.0217 (7)
N10.2521 (5)0.3424 (2)0.3225 (5)0.0168 (7)
C10.0530 (6)0.3771 (2)0.2833 (6)0.0175 (8)
C20.1198 (7)0.3240 (3)0.2650 (7)0.0232 (9)
H2A0.26100.34830.23840.028*
C30.0923 (8)0.2365 (3)0.2826 (7)0.0287 (10)
H3A0.21350.19990.26670.034*
C40.1137 (8)0.2034 (3)0.3249 (7)0.0273 (10)
H4A0.13860.14320.34030.033*
C50.2825 (7)0.2572 (3)0.3436 (7)0.0234 (9)
H5A0.42590.23410.37370.028*
C60.0146 (6)0.4725 (3)0.2616 (6)0.0177 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0186 (5)0.0236 (5)0.0293 (5)0.0011 (2)0.0064 (4)0.0029 (3)
O1W0.0178 (14)0.0239 (15)0.0222 (14)0.0006 (11)0.0059 (11)0.0006 (11)
O10.0128 (16)0.0208 (16)0.0256 (17)0.0033 (10)0.0008 (13)0.0021 (11)
O20.0118 (14)0.0176 (13)0.0289 (16)0.0007 (11)0.0020 (12)0.0062 (13)
O30.0131 (13)0.0210 (14)0.0313 (16)0.0047 (11)0.0099 (12)0.0094 (12)
N10.0162 (16)0.0150 (16)0.0172 (16)0.0009 (12)0.0051 (13)0.0036 (13)
C10.0165 (19)0.0163 (19)0.0172 (19)0.0014 (15)0.0048 (16)0.0027 (15)
C20.019 (2)0.021 (2)0.028 (2)0.0020 (16)0.0087 (18)0.0012 (17)
C30.032 (3)0.023 (2)0.032 (2)0.0086 (18)0.015 (2)0.0015 (18)
C40.039 (3)0.014 (2)0.029 (2)0.0003 (17)0.014 (2)0.0004 (17)
C50.027 (2)0.0164 (19)0.025 (2)0.0044 (16)0.0089 (19)0.0026 (16)
C60.0146 (19)0.0186 (19)0.022 (2)0.0019 (16)0.0101 (16)0.0006 (16)
Geometric parameters (Å, º) top
Zn1—O3i2.049 (3)N1—C11.354 (5)
Zn1—O32.049 (3)N1—C51.356 (5)
Zn1—O2i2.059 (3)C1—C21.386 (6)
Zn1—O22.059 (3)C1—C61.520 (5)
Zn1—O1Wi2.143 (3)C2—C31.389 (6)
Zn1—O1W2.143 (3)C2—H2A0.9600
O1W—H1WA0.9000C3—C41.381 (7)
O1W—H1WB0.9001C3—H3A0.9601
O1—C61.247 (5)C4—C51.371 (6)
O2—C61.253 (5)C4—H4A0.9597
O3—N11.338 (4)C5—H5A0.9600
O3i—Zn1—O3180.00 (8)O3—N1—C5117.3 (3)
O3i—Zn1—O2i86.46 (11)C1—N1—C5120.6 (3)
O3—Zn1—O2i93.54 (11)N1—C1—C2118.9 (4)
O3i—Zn1—O293.54 (11)N1—C1—C6121.8 (3)
O3—Zn1—O286.46 (11)C2—C1—C6119.2 (3)
O2i—Zn1—O2180.0C3—C2—C1121.1 (4)
O3i—Zn1—O1Wi90.21 (11)C3—C2—H2A119.6
O3—Zn1—O1Wi89.79 (11)C1—C2—H2A119.3
O2i—Zn1—O1Wi91.07 (12)C2—C3—C4118.3 (4)
O2—Zn1—O1Wi88.93 (12)C2—C3—H3A120.8
O3i—Zn1—O1W89.79 (11)C4—C3—H3A120.9
O3—Zn1—O1W90.21 (11)C5—C4—C3119.5 (4)
O2i—Zn1—O1W88.93 (12)C5—C4—H4A120.2
O2—Zn1—O1W91.07 (12)C3—C4—H4A120.3
O1Wi—Zn1—O1W180.00 (13)N1—C5—C4121.5 (4)
Zn1—O1W—H1WA109.3N1—C5—H5A119.2
Zn1—O1W—H1WB109.5C4—C5—H5A119.4
H1WA—O1W—H1WB109.5O2—C6—O1125.2 (4)
C6—O2—Zn1126.3 (3)O2—C6—C1119.9 (4)
N1—O3—Zn1119.4 (2)O1—C6—C1114.8 (3)
O3—N1—C1121.9 (3)
O3i—Zn1—O2—C6175.0 (3)C2—C1—C2—C30 (100)
O3—Zn1—O2—C65.0 (3)C6—C1—C2—C3179.7 (4)
O1Wi—Zn1—O2—C694.8 (3)C1—C2—C3—C20 (2)
O1W—Zn1—O2—C685.2 (3)C2—C2—C3—C40.0 (7)
O2i—Zn1—O3—N1137.7 (3)C1—C2—C3—C41.8 (7)
O2—Zn1—O3—N142.3 (3)C2—C3—C4—C51.4 (7)
O1Wi—Zn1—O3—N1131.2 (3)C2—C3—C4—C51.4 (7)
O1W—Zn1—O3—N148.8 (3)O3—N1—C5—C4175.5 (4)
Zn1—O3—N1—C147.5 (4)C1—N1—C5—C40.4 (6)
Zn1—O3—N1—C5136.6 (3)C3—C4—C5—N10.3 (6)
O3—N1—C1—C2175.7 (3)Zn1—O2—C6—O1154.2 (3)
C5—N1—C1—C20.0 (6)Zn1—O2—C6—C128.9 (5)
O3—N1—C1—C2175.7 (3)N1—C1—C6—O236.9 (6)
C5—N1—C1—C20.0 (6)C2—C1—C6—O2142.3 (4)
O3—N1—C1—C65.1 (5)C2—C1—C6—O2142.3 (4)
C5—N1—C1—C6179.2 (4)N1—C1—C6—O1145.9 (4)
N1—C1—C2—C20.0 (2)C2—C1—C6—O134.9 (5)
C6—C1—C2—C20.00 (6)C2—C1—C6—O134.9 (5)
N1—C1—C2—C31.1 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1ii0.901.982.753 (4)143
O1W—H1WA···O1iii0.902.202.742 (4)118
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C6H4NO3)2(H2O)2]
Mr377.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.6837 (5), 15.7376 (13), 6.9935 (6)
β (°) 115.370 (1)
V3)664.67 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.21 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
CrystalClear (Rigaku, 2005)
Tmin, Tmax0.674, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
3515, 1170, 1033
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.149, 1.15
No. of reflections1170
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.90

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).

Selected geometric parameters (Å, º) top
Zn1—O32.049 (3)O1—C61.247 (5)
Zn1—O22.059 (3)O2—C61.253 (5)
Zn1—O1W2.143 (3)O3—N11.338 (4)
O3—Zn1—O286.46 (11)C6—O2—Zn1126.3 (3)
O3—Zn1—O1Wi89.79 (11)N1—O3—Zn1119.4 (2)
O2—Zn1—O1Wi88.93 (12)O2—C6—O1125.2 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1ii0.901.982.753 (4)143.4
O1W—H1WA···O1iii0.902.202.742 (4)118.2
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (project No. 20671019) for financial support.

References

First citationBayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390–1394.  CAS Google Scholar
First citationCiurtin, D. M., Smith, M. D. & Loye, H.-C. (2003). Polyhedron, 22, 3043–3049.  Web of Science CSD CrossRef CAS Google Scholar
First citationLawrence, R. G., Jones, C. J. & Kresinski, R. A. (1999). Inorg. Chim. Acta, 285, 283–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeinrath, G., Lis, S. & Bohme, U. (2006). J. Alloys Compd. 408, 962–969.  Web of Science CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShan, X., Ellern, A. & Espenson, J. H. (2002). Inorg. Chem. 41, 7136–7142.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–51.  Web of Science CrossRef CAS Google Scholar
First citationYang, B.-P., Mao, J.-G. & Dong, Z.-C. (2004). Inorg. Chem. Commun. 7, 104–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationZafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. & Hamilton, A. D. (2000). Tetrahedron, 56, 8419–8427.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds