organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-(eth­oxy­carbon­yl)-3-(4-meth­oxy­phen­yl)-1H-pyrazole-1-acetate

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bShandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
*Correspondence e-mail: bxzhao@hotmail.com

(Received 26 October 2007; accepted 8 November 2007; online 6 December 2007)

In the title compound, C17H20N2O5, all bond lengths and angles show normal values. The dihedral angle between the pyrazole ring and the benzene ring is 6.98 (11)°. The mol­ecules are linked by inter­molecular C—H⋯π inter­actions.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Brough et al. (2005[Brough, P. A., Barril, X. & Beswick, M. (2005). Bioorg. Med. Chem. Lett. 15, 5197-5201.]); Cheng et al. (2006[Cheng, H., Lundy DeMello, K. M., Li, J. & Sakya, S. M. (2006). Bioorg. Med. Chem. Lett. 16, 2076-2080.]); Dong et al. (2007[Dong, W.-L., Dong, W.-L., Xia, Y., Ge, Y.-Q. & Zhao, B.-X. (2007). Acta Cryst. E63, o4468.]); Sehon et al. (2006[Sehon, C., McClure, K., Hack, M., Morton, M., Gomez, L. & Li, L. (2006). Bioorg. Med. Chem. Lett. 15, 1677-1680.]); Wei et al. (2006[Wei, F., Zhao, B. X., Huang, B., Zhang, L., Sun, C. H., Dong, W. L., Shin, D. S. & Miao, J. Y. (2006). Bioorg. Med. Chem. Lett. 16, 6342-6347.]); Xia et al. (2007[Xia, Y., Dong, Z. W., Zhao, B. X., Ge, X., Meng, N., Shin, D. S. & Miao, J. Y. (2007). Bioorg. Med. Chem. 15, 6893-6899.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O5

  • Mr = 332.35

  • Triclinic, [P \overline 1]

  • a = 7.4267 (1) Å

  • b = 11.0511 (2) Å

  • c = 11.7139 (2) Å

  • α = 106.721 (1)°

  • β = 97.898 (1)°

  • γ = 106.796 (1)°

  • V = 855.59 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.45 × 0.39 × 0.28 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.846, Tmax = 0.974

  • 13041 measured reflections

  • 3806 independent reflections

  • 2376 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.166

  • S = 1.06

  • 3806 reflections

  • 221 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
X—H⋯π-ring interactions calculated by PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Cgi is a centroid of the pyrazole ring N1/N2/C8/C9/C10

X—H⋯Cg X—H H⋯Cg XCg X—H⋯Cg
C1—H1ACg1i 0.96 2.89 3.731 (3) 147
Symmetry code: (i) 1+x,y,z. Cg1 is the centroid of the the pyrazole ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The pyrazole unit is one of the core structures in a number of natural products. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as antagonists (Sehon et al., 2006), anti-inflammatory (Cheng et al., 2006), inhibitors of the Hsp90 (Brough et al., 2005), antitumor (Wei et al., 2006; Xia et al., 2007). In our previous paper, we reported the crystal structure of ethyl 3-(4-chlorophenyl)-5-(ethoxycarbonyl)-1H-pyrazole-1-acetate (Dong et al., 2007). We report here the crystal structure of the title compound, (I).

In compound (I) (Fig. 1), all bond lengths and angles are normal (Allen et al., 1987). The dihedral angles between the rings of the pyrazole and the benzene ring is 6.98 (11)o. The two ethyl carboxylate groups are inclined to the attached pyrazole ring by 2.16 (9)o and 75.95 (11)o, respectively. The molecules are linked into a network parallel by C—H···π interactions (Table 1) involving the pyrazole ring (centroid Cg1). We report here the crystal structure of the title compound, (I).

Related literature top

For related literature, see: Allen et al. (1987); Brough et al. (2005); Cheng et al. (2006); Dong et al. (2007); Sehon et al. (2006); Wei et al. (2006); Xia et al. (2007).

Experimental top

A mixture of ethyl 3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate (0.01 mol), ethyl chloroacetate (0.015 mol) and potassium carbonate (0.02 mol) in acetonitrile (50 ml) was heated to reflux for 15 h. The solvent was removed under reduced pressure, and the residue was dissolved in the mixture of water (50 ml) and ethyl acetate (50 ml). After separated, the water phase was extracted with ethyl acetate (25 ml), and then the organic phase was combined, dried over anhydrous magnesium sulfate and filtered. The solvent was removed under reduced pressure. The solid product was recrystallized from ethyl acetate (yield 55%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at room temperature for 6 d.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.96 Å (for CH3 groups), their isotropic displacement parameters were set to 1.2 times (1.5times for CH3 groups) the equivalent displacement parameter of their parent atoms.

Structure description top

The pyrazole unit is one of the core structures in a number of natural products. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as antagonists (Sehon et al., 2006), anti-inflammatory (Cheng et al., 2006), inhibitors of the Hsp90 (Brough et al., 2005), antitumor (Wei et al., 2006; Xia et al., 2007). In our previous paper, we reported the crystal structure of ethyl 3-(4-chlorophenyl)-5-(ethoxycarbonyl)-1H-pyrazole-1-acetate (Dong et al., 2007). We report here the crystal structure of the title compound, (I).

In compound (I) (Fig. 1), all bond lengths and angles are normal (Allen et al., 1987). The dihedral angles between the rings of the pyrazole and the benzene ring is 6.98 (11)o. The two ethyl carboxylate groups are inclined to the attached pyrazole ring by 2.16 (9)o and 75.95 (11)o, respectively. The molecules are linked into a network parallel by C—H···π interactions (Table 1) involving the pyrazole ring (centroid Cg1). We report here the crystal structure of the title compound, (I).

For related literature, see: Allen et al. (1987); Brough et al. (2005); Cheng et al. (2006); Dong et al. (2007); Sehon et al. (2006); Wei et al. (2006); Xia et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title molecule showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing view of (I), shown down the a axis.
Ethyl 5-(ethoxycarbonyl)-3-(4-methoxyphenyl)-1H-pyrazole-1-acetate top
Crystal data top
C17H20N2O5Z = 2
Mr = 332.35F(000) = 352
Triclinic, P1Dx = 1.290 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4267 (1) ÅCell parameters from 3567 reflections
b = 11.0511 (2) Åθ = 3.0–24.5°
c = 11.7139 (2) ŵ = 0.10 mm1
α = 106.721 (1)°T = 296 K
β = 97.898 (1)°Prism, colourless
γ = 106.796 (1)°0.45 × 0.39 × 0.28 mm
V = 855.59 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3806 independent reflections
Radiation source: fine-focus sealed tube2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.846, Tmax = 0.974k = 1414
13041 measured reflectionsl = 1513
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.1127P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3806 reflectionsΔρmax = 0.32 e Å3
221 parametersΔρmin = 0.16 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (4)
Crystal data top
C17H20N2O5γ = 106.796 (1)°
Mr = 332.35V = 855.59 (3) Å3
Triclinic, P1Z = 2
a = 7.4267 (1) ÅMo Kα radiation
b = 11.0511 (2) ŵ = 0.10 mm1
c = 11.7139 (2) ÅT = 296 K
α = 106.721 (1)°0.45 × 0.39 × 0.28 mm
β = 97.898 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3806 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2376 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.974Rint = 0.023
13041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
3806 reflectionsΔρmin = 0.16 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7281 (3)0.0919 (3)0.9802 (3)0.1071 (8)
H1A0.78150.09970.90430.161*
H1B0.81480.09901.03340.161*
H1C0.71100.00620.96390.161*
C20.4043 (3)0.2015 (2)0.9716 (2)0.0792 (5)
C30.2328 (3)0.3033 (2)1.0311 (2)0.0871 (6)
H30.21830.36261.10910.104*
C40.0829 (3)0.3176 (2)0.9754 (2)0.0815 (6)
H40.03390.38721.01700.098*
C50.0974 (3)0.23132 (17)0.85765 (17)0.0676 (5)
C60.2716 (3)0.1283 (2)0.7993 (2)0.0783 (6)
H60.28650.06850.72140.094*
C70.4285 (3)0.1127 (2)0.8567 (2)0.0823 (6)
H70.54620.04320.81710.099*
C80.0682 (3)0.25088 (16)0.80054 (16)0.0645 (5)
C90.0946 (3)0.17110 (17)0.69185 (17)0.0674 (5)
H90.00620.08980.63650.081*
C100.2765 (3)0.23673 (16)0.68338 (16)0.0640 (5)
C110.5351 (3)0.46068 (18)0.81994 (17)0.0722 (5)
H11A0.63970.42480.81650.087*
H11B0.55510.51870.90380.087*
C120.5401 (3)0.54247 (18)0.73607 (18)0.0744 (5)
C130.7510 (4)0.7109 (3)0.6817 (3)0.1111 (9)
H13A0.67550.76960.69770.133*
H13B0.71140.65740.59490.133*
C140.9606 (5)0.7918 (3)0.7167 (3)0.1405 (13)
H14A0.99960.84090.80340.211*
H14B0.98430.85390.67300.211*
H14C1.03350.73300.69630.211*
C150.3773 (3)0.19420 (18)0.58813 (18)0.0714 (5)
C160.6729 (3)0.2462 (3)0.5236 (2)0.0952 (7)
H16A0.60790.22750.43950.114*
H16B0.70060.16700.52870.114*
C170.8560 (4)0.3647 (3)0.5629 (3)0.1128 (9)
H17A0.82930.43830.54520.169*
H17B0.94830.34120.51930.169*
H17C0.90800.39090.64960.169*
N10.2268 (2)0.36044 (14)0.85650 (14)0.0697 (4)
N20.3521 (2)0.35071 (14)0.78541 (14)0.0664 (4)
O10.5490 (2)0.19486 (17)1.03670 (16)0.1040 (5)
O20.4038 (2)0.53626 (15)0.66541 (16)0.1015 (5)
O30.7201 (2)0.62366 (14)0.75458 (13)0.0866 (5)
O40.3061 (2)0.08992 (16)0.50282 (15)0.1068 (6)
O50.55182 (19)0.28057 (13)0.60626 (13)0.0793 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0884 (16)0.0961 (16)0.127 (2)0.0173 (13)0.0019 (14)0.0497 (15)
C20.0858 (13)0.0741 (12)0.0800 (12)0.0337 (11)0.0114 (10)0.0275 (9)
C30.0879 (15)0.0757 (13)0.0808 (14)0.0253 (11)0.0101 (12)0.0105 (10)
C40.0789 (13)0.0690 (12)0.0812 (14)0.0205 (10)0.0088 (11)0.0137 (10)
C50.0714 (11)0.0561 (9)0.0686 (11)0.0195 (8)0.0012 (9)0.0217 (8)
C60.0816 (13)0.0689 (11)0.0720 (12)0.0169 (10)0.0042 (10)0.0220 (9)
C70.0760 (12)0.0665 (11)0.0860 (13)0.0112 (9)0.0028 (10)0.0234 (9)
C80.0682 (11)0.0522 (9)0.0622 (10)0.0151 (8)0.0010 (8)0.0176 (8)
C90.0697 (11)0.0500 (9)0.0656 (11)0.0123 (8)0.0031 (9)0.0129 (8)
C100.0688 (11)0.0497 (8)0.0575 (10)0.0127 (8)0.0034 (8)0.0119 (7)
C110.0730 (11)0.0625 (10)0.0548 (10)0.0035 (8)0.0051 (8)0.0118 (8)
C120.0791 (12)0.0573 (10)0.0655 (11)0.0093 (9)0.0017 (10)0.0136 (8)
C130.129 (2)0.0820 (15)0.1059 (19)0.0067 (14)0.0078 (16)0.0480 (14)
C140.146 (3)0.106 (2)0.127 (2)0.0186 (19)0.021 (2)0.0466 (18)
C150.0744 (12)0.0624 (10)0.0650 (11)0.0193 (9)0.0023 (9)0.0152 (9)
C160.0941 (16)0.1076 (17)0.0903 (16)0.0433 (14)0.0266 (13)0.0332 (13)
C170.0953 (17)0.1129 (19)0.150 (3)0.0370 (15)0.0466 (17)0.0653 (19)
N10.0757 (10)0.0590 (8)0.0591 (9)0.0129 (7)0.0038 (8)0.0144 (7)
N20.0691 (9)0.0556 (8)0.0563 (8)0.0093 (7)0.0014 (7)0.0127 (6)
O10.0940 (11)0.0954 (11)0.1023 (12)0.0215 (9)0.0206 (9)0.0175 (9)
O20.0943 (10)0.0906 (10)0.1036 (12)0.0156 (8)0.0142 (9)0.0441 (9)
O30.0868 (9)0.0727 (8)0.0778 (9)0.0016 (7)0.0001 (7)0.0287 (7)
O40.0975 (11)0.0835 (10)0.0917 (11)0.0104 (8)0.0154 (9)0.0146 (8)
O50.0756 (8)0.0742 (8)0.0753 (9)0.0172 (7)0.0137 (7)0.0178 (7)
Geometric parameters (Å, º) top
C1—O11.397 (3)C11—C121.512 (3)
C1—H1A0.9600C11—H11A0.9700
C1—H1B0.9600C11—H11B0.9700
C1—H1C0.9600C12—O21.188 (2)
C2—C31.360 (3)C12—O31.325 (2)
C2—C71.370 (3)C13—O31.452 (3)
C2—O11.398 (3)C13—C141.483 (4)
C3—C41.359 (3)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.402 (3)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—C61.377 (2)C14—H14C0.9600
C5—C81.470 (3)C15—O41.203 (2)
C6—C71.417 (3)C15—O51.315 (2)
C6—H60.9300C16—O51.455 (3)
C7—H70.9300C16—C171.492 (3)
C8—N11.338 (2)C16—H16A0.9700
C8—C91.400 (3)C16—H16B0.9700
C9—C101.369 (3)C17—H17A0.9600
C9—H90.9300C17—H17B0.9600
C10—N21.368 (2)C17—H17C0.9600
C10—C151.469 (3)N1—N21.338 (2)
C11—N21.449 (2)
O1—C1—H1A109.5H11A—C11—H11B108.0
O1—C1—H1B109.5O2—C12—O3125.12 (19)
H1A—C1—H1B109.5O2—C12—C11125.49 (19)
O1—C1—H1C109.5O3—C12—C11109.39 (16)
H1A—C1—H1C109.5O3—C13—C14107.6 (2)
H1B—C1—H1C109.5O3—C13—H13A110.2
C3—C2—C7121.2 (2)C14—C13—H13A110.2
C3—C2—O1115.1 (2)O3—C13—H13B110.2
C7—C2—O1123.7 (2)C14—C13—H13B110.2
C4—C3—C2119.4 (2)H13A—C13—H13B108.5
C4—C3—H3120.3C13—C14—H14A109.5
C2—C3—H3120.3C13—C14—H14B109.5
C3—C4—C5122.6 (2)H14A—C14—H14B109.5
C3—C4—H4118.7C13—C14—H14C109.5
C5—C4—H4118.7H14A—C14—H14C109.5
C6—C5—C4117.2 (2)H14B—C14—H14C109.5
C6—C5—C8122.06 (18)O4—C15—O5123.9 (2)
C4—C5—C8120.78 (17)O4—C15—C10122.73 (19)
C5—C6—C7120.6 (2)O5—C15—C10113.38 (15)
C5—C6—H6119.7O5—C16—C17106.8 (2)
C7—C6—H6119.7O5—C16—H16A110.4
C2—C7—C6119.0 (2)C17—C16—H16A110.4
C2—C7—H7120.5O5—C16—H16B110.4
C6—C7—H7120.5C17—C16—H16B110.4
N1—C8—C9110.03 (17)H16A—C16—H16B108.6
N1—C8—C5119.14 (17)C16—C17—H17A109.5
C9—C8—C5130.83 (16)C16—C17—H17B109.5
C10—C9—C8106.19 (15)H17A—C17—H17B109.5
C10—C9—H9126.9C16—C17—H17C109.5
C8—C9—H9126.9H17A—C17—H17C109.5
N2—C10—C9106.01 (17)H17B—C17—H17C109.5
N2—C10—C15125.70 (17)C8—N1—N2105.97 (15)
C9—C10—C15128.25 (16)N1—N2—C10111.79 (15)
N2—C11—C12111.51 (14)N1—N2—C11118.33 (14)
N2—C11—H11A109.3C10—N2—C11129.73 (18)
C12—C11—H11A109.3C1—O1—C2117.6 (2)
N2—C11—H11B109.3C12—O3—C13116.71 (17)
C12—C11—H11B109.3C15—O5—C16118.99 (16)
C7—C2—C3—C40.2 (3)C9—C10—C15—O40.7 (3)
O1—C2—C3—C4179.65 (19)N2—C10—C15—O52.6 (3)
C2—C3—C4—C50.3 (3)C9—C10—C15—O5179.77 (16)
C3—C4—C5—C60.7 (3)C9—C8—N1—N20.21 (18)
C3—C4—C5—C8179.64 (18)C5—C8—N1—N2179.32 (14)
C4—C5—C6—C70.6 (3)C8—N1—N2—C100.48 (19)
C8—C5—C6—C7179.75 (16)C8—N1—N2—C11176.47 (14)
C3—C2—C7—C60.3 (3)C9—C10—N2—N10.56 (19)
O1—C2—C7—C6179.68 (18)C15—C10—N2—N1178.58 (15)
C5—C6—C7—C20.1 (3)C9—C10—N2—C11175.96 (16)
C6—C5—C8—N1173.34 (16)C15—C10—N2—C116.0 (3)
C4—C5—C8—N17.0 (2)C12—C11—N2—N1106.75 (19)
C6—C5—C8—C97.2 (3)C12—C11—N2—C1068.4 (2)
C4—C5—C8—C9172.38 (18)C3—C2—O1—C1179.77 (19)
N1—C8—C9—C100.12 (19)C7—C2—O1—C10.4 (3)
C5—C8—C9—C10179.58 (16)O2—C12—O3—C130.3 (3)
C8—C9—C10—N20.40 (18)C11—C12—O3—C13179.51 (19)
C8—C9—C10—C15178.35 (16)C14—C13—O3—C12179.8 (2)
N2—C11—C12—O213.2 (3)O4—C15—O5—C164.0 (3)
N2—C11—C12—O3167.54 (16)C10—C15—O5—C16175.57 (16)
N2—C10—C15—O4176.88 (19)C17—C16—O5—C15177.34 (17)

Experimental details

Crystal data
Chemical formulaC17H20N2O5
Mr332.35
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.4267 (1), 11.0511 (2), 11.7139 (2)
α, β, γ (°)106.721 (1), 97.898 (1), 106.796 (1)
V3)855.59 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.39 × 0.28
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.846, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
13041, 3806, 2376
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.166, 1.06
No. of reflections3806
No. of parameters221
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.16

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), WinGX (Farrugia, 1999).

X—H···π-ring interactions calculated by PLATON (Spek, 2003). Cgi is a centroid of the pyrazole ring N1/N2/C8/C9/C10. top
X—H···CgX—HH···CgX···CgX—H···Cg
C1—H1A···Cg1i0.962.893.731 (3)147
Symmetry code: (i) 1+x,y,z.
 

Acknowledgements

This study was supported by the Natural Science Foundation of Shandong Province (grant No. Y2005B12).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrough, P. A., Barril, X. & Beswick, M. (2005). Bioorg. Med. Chem. Lett. 15, 5197–5201.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, H., Lundy DeMello, K. M., Li, J. & Sakya, S. M. (2006). Bioorg. Med. Chem. Lett. 16, 2076–2080.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDong, W.-L., Dong, W.-L., Xia, Y., Ge, Y.-Q. & Zhao, B.-X. (2007). Acta Cryst. E63, o4468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSehon, C., McClure, K., Hack, M., Morton, M., Gomez, L. & Li, L. (2006). Bioorg. Med. Chem. Lett. 15, 1677–1680.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, F., Zhao, B. X., Huang, B., Zhang, L., Sun, C. H., Dong, W. L., Shin, D. S. & Miao, J. Y. (2006). Bioorg. Med. Chem. Lett. 16, 6342–6347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, Y., Dong, Z. W., Zhao, B. X., Ge, X., Meng, N., Shin, D. S. & Miao, J. Y. (2007). Bioorg. Med. Chem. 15, 6893–6899.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds