organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(1E)-(3,5-Di­chloro-2-hy­droxy­phen­yl)(phen­yl)methyl­ene]-4-meth­oxy­benzohydrazide

aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: tsucjg@163.com

(Received 22 November 2007; accepted 28 November 2007; online 6 December 2007)

The title compound, C21H15Cl2N2O3, displays a trans configuration with respect to the C=N double bond. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond.

Related literature

For related compounds, see: Salem (1998[Salem, A. A. (1998). Microchem. J. 60, 51-66.]); Chang & Ji (2007[Chang, J.-G. & Ji, C.-Y. (2007). Acta Cryst. E63, o3212.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15Cl2N2O3

  • Mr = 414.25

  • Triclinic, [P \overline 1]

  • a = 8.9814 (9) Å

  • b = 10.8867 (11) Å

  • c = 11.5291 (13) Å

  • α = 89.623 (2)°

  • β = 72.700 (1)°

  • γ = 66.947 (2)°

  • V = 982.57 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 273 (2) K

  • 0.18 × 0.15 × 0.10 mm

Data collection
  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.965

  • 5254 measured reflections

  • 3459 independent reflections

  • 2262 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.207

  • S = 1.00

  • 3459 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.82 2.528 (3) 145

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27). and SAINT (Version 7.12). Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27). and SAINT (Version 7.12). Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc.,Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions and their biological activity (Salem, 1998; Chang et al., 2007).As an extension of work on the structural characterization of aroylhydrazone derivatives,the title compound, (I),was synthesized and its crystal structure is reported here.

The title molecule displays a trans conformation with respect to the C7=N2 double bond (Fig. 1). The three benzene rings, C1–C6 (A), C9–C14 (B) and C16–C21 (C) make dihedral angles of 10.69 (15)(A/B) °, 79.64 (13) (B/C) °, 73.13 (12)(A/C) °. The molecular conformation is stabilized by intramolecular O—H···N hydrogen bond.(Table 1.) .

Related literature top

For related compounds, see: Salem (1998); Chang & Ji (2007).

Experimental top

4-methoxybenzohydrazide (0.01 mol,1.66 g) was dissolved in anhydrous ethanol (50 ml), and (3,5-dichloro-2-hydroxyphenyl)(phenyl)methanone (0.01 mol, 2.67 g) was added. The reaction mixture was refluxed for 6 h with stirring, then the resulting precipitate was collected by filtration, washed several times with ethanol and dried in vacuo (yield 78%). The compound (1.0 mmol,0.41 g) was dissolved in dimethylformamide (30 ml) and kept at room temperature for 20 d to obtain colourless single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms,CH(methyl) = 0.96 Å,C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, and N—H =0.86 Å and with Uiso(H) =1.5U~eq~(C~methyl~,O) and 1.2Ueq(Caromatic,N).

Structure description top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions and their biological activity (Salem, 1998; Chang et al., 2007).As an extension of work on the structural characterization of aroylhydrazone derivatives,the title compound, (I),was synthesized and its crystal structure is reported here.

The title molecule displays a trans conformation with respect to the C7=N2 double bond (Fig. 1). The three benzene rings, C1–C6 (A), C9–C14 (B) and C16–C21 (C) make dihedral angles of 10.69 (15)(A/B) °, 79.64 (13) (B/C) °, 73.13 (12)(A/C) °. The molecular conformation is stabilized by intramolecular O—H···N hydrogen bond.(Table 1.) .

For related compounds, see: Salem (1998); Chang & Ji (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
N'-[(1E)-(3,5-Dichloro-2-hydroxyphenyl)(phenyl)methylene]-4- methoxybenzohydrazide top
Crystal data top
C21H15Cl2N2O3Z = 2
Mr = 414.25F(000) = 426
Triclinic, P1Dx = 1.400 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9814 (9) ÅCell parameters from 1372 reflections
b = 10.8867 (11) Åθ = 2.6–23.0°
c = 11.5291 (13) ŵ = 0.36 mm1
α = 89.623 (2)°T = 273 K
β = 72.700 (1)°Block, yellow
γ = 66.947 (2)°0.18 × 0.15 × 0.10 mm
V = 982.57 (18) Å3
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3459 independent reflections
Radiation source: fine-focus sealed tube2262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.949, Tmax = 0.965k = 128
5254 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.135P)2]
where P = (Fo2 + 2Fc2)/3
3459 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H15Cl2N2O3γ = 66.947 (2)°
Mr = 414.25V = 982.57 (18) Å3
Triclinic, P1Z = 2
a = 8.9814 (9) ÅMo Kα radiation
b = 10.8867 (11) ŵ = 0.36 mm1
c = 11.5291 (13) ÅT = 273 K
α = 89.623 (2)°0.18 × 0.15 × 0.10 mm
β = 72.700 (1)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3459 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2262 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.965Rint = 0.016
5254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
3459 reflectionsΔρmin = 0.29 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51883 (14)1.15784 (10)0.47405 (9)0.0944 (4)
Cl20.19492 (12)1.40951 (10)0.93386 (11)0.1083 (5)
O10.4694 (3)1.2048 (2)0.99251 (19)0.0763 (7)
H10.55491.15011.00510.115*
O20.7413 (3)1.0462 (2)1.16739 (19)0.0795 (7)
O31.3151 (3)0.5644 (3)1.3043 (2)0.0845 (7)
N10.8610 (3)0.9057 (3)0.9878 (2)0.0634 (7)
N20.7483 (3)0.9984 (2)0.9403 (2)0.0602 (7)
C10.4846 (4)1.1863 (3)0.8740 (3)0.0598 (8)
C20.3621 (4)1.2797 (3)0.8308 (3)0.0705 (9)
C30.3711 (4)1.2716 (3)0.7099 (4)0.0758 (10)
H30.28751.33590.68380.091*
C40.5050 (4)1.1674 (3)0.6276 (3)0.0651 (8)
C50.6262 (4)1.0708 (3)0.6671 (3)0.0592 (8)
H50.71490.99980.61130.071*
C60.6180 (3)1.0778 (3)0.7901 (2)0.0533 (7)
C70.7493 (4)0.9727 (3)0.8309 (2)0.0530 (7)
C80.8492 (4)0.9403 (3)1.1074 (3)0.0621 (8)
C90.9766 (4)0.8393 (3)1.1529 (3)0.0590 (8)
C101.1299 (4)0.7433 (4)1.0769 (3)0.0724 (9)
H101.15520.74150.99250.087*
C111.2451 (4)0.6506 (4)1.1240 (3)0.0740 (9)
H111.34640.58631.07130.089*
C121.2110 (4)0.6527 (3)1.2492 (3)0.0659 (8)
C131.0590 (5)0.7504 (4)1.3255 (3)0.0768 (10)
H131.03460.75321.40990.092*
C140.9449 (4)0.8425 (3)1.2786 (3)0.0682 (9)
H140.84490.90801.33140.082*
C151.4627 (5)0.4539 (4)1.2293 (4)0.0973 (12)
H15A1.42960.40671.17850.146*
H15B1.51620.39381.28040.146*
H15C1.54160.48671.17870.146*
C160.8695 (4)0.8437 (3)0.7508 (2)0.0533 (7)
C170.8065 (5)0.7546 (4)0.7229 (3)0.0823 (11)
H170.68960.77670.75130.099*
C180.9169 (7)0.6327 (4)0.6528 (3)0.0980 (14)
H180.87450.57220.63520.118*
C191.0902 (6)0.6004 (4)0.6088 (3)0.0872 (12)
H191.16500.51780.56230.105*
C201.1502 (5)0.6900 (4)0.6338 (3)0.0888 (12)
H201.26640.66980.60200.107*
C211.0411 (4)0.8108 (4)0.7059 (3)0.0732 (9)
H211.08460.87040.72400.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1206 (9)0.0939 (7)0.0808 (7)0.0388 (6)0.0560 (6)0.0253 (5)
Cl20.0701 (7)0.0784 (7)0.1367 (10)0.0121 (5)0.0020 (6)0.0271 (6)
O10.0759 (15)0.0805 (16)0.0590 (14)0.0308 (12)0.0038 (10)0.0138 (11)
O20.0978 (18)0.0806 (16)0.0510 (13)0.0251 (14)0.0263 (12)0.0083 (12)
O30.0870 (17)0.0971 (18)0.0738 (15)0.0362 (15)0.0339 (13)0.0216 (14)
N10.0846 (18)0.0668 (16)0.0454 (13)0.0317 (14)0.0290 (12)0.0054 (11)
N20.0777 (17)0.0639 (16)0.0463 (13)0.0351 (14)0.0215 (12)0.0012 (11)
C10.0614 (18)0.0613 (18)0.0589 (18)0.0339 (16)0.0098 (14)0.0040 (15)
C20.0571 (19)0.0590 (19)0.087 (2)0.0243 (16)0.0104 (17)0.0079 (17)
C30.071 (2)0.066 (2)0.101 (3)0.0302 (18)0.039 (2)0.015 (2)
C40.070 (2)0.0637 (19)0.069 (2)0.0283 (17)0.0309 (16)0.0112 (16)
C50.0643 (18)0.0567 (18)0.0554 (17)0.0244 (15)0.0179 (14)0.0001 (14)
C60.0551 (16)0.0565 (17)0.0498 (16)0.0276 (14)0.0122 (13)0.0019 (13)
C70.0636 (18)0.0545 (17)0.0455 (15)0.0302 (14)0.0154 (13)0.0020 (12)
C80.080 (2)0.073 (2)0.0429 (16)0.0417 (19)0.0183 (15)0.0023 (15)
C90.074 (2)0.0704 (19)0.0458 (16)0.0408 (17)0.0215 (14)0.0058 (14)
C100.081 (2)0.088 (2)0.0477 (17)0.037 (2)0.0169 (16)0.0012 (17)
C110.071 (2)0.086 (2)0.0569 (19)0.0280 (19)0.0154 (16)0.0015 (17)
C120.074 (2)0.080 (2)0.0621 (19)0.0468 (18)0.0279 (16)0.0175 (17)
C130.095 (3)0.091 (3)0.0427 (16)0.037 (2)0.0204 (17)0.0117 (17)
C140.081 (2)0.075 (2)0.0438 (16)0.0306 (18)0.0156 (15)0.0047 (15)
C150.078 (3)0.105 (3)0.107 (3)0.032 (2)0.035 (2)0.025 (3)
C160.0698 (19)0.0551 (17)0.0394 (14)0.0264 (15)0.0221 (13)0.0045 (12)
C170.103 (3)0.083 (2)0.062 (2)0.057 (2)0.0013 (18)0.0132 (18)
C180.154 (4)0.075 (3)0.064 (2)0.067 (3)0.005 (2)0.0078 (19)
C190.127 (4)0.060 (2)0.053 (2)0.013 (2)0.033 (2)0.0035 (16)
C200.074 (2)0.094 (3)0.077 (2)0.006 (2)0.0326 (19)0.018 (2)
C210.068 (2)0.079 (2)0.072 (2)0.0252 (18)0.0255 (16)0.0107 (17)
Geometric parameters (Å, º) top
Cl1—C41.738 (3)C10—C111.376 (5)
Cl2—C21.722 (3)C10—H100.9300
O1—C11.340 (4)C11—C121.382 (5)
O1—H10.8200C11—H110.9300
O2—C81.217 (4)C12—C131.389 (5)
O3—C121.358 (4)C13—C141.365 (5)
O3—C151.427 (4)C13—H130.9300
N1—N21.366 (4)C14—H140.9300
N1—C81.394 (4)C15—H15A0.9600
N2—C71.291 (3)C15—H15B0.9600
C1—C21.391 (5)C15—H15C0.9600
C1—C61.408 (4)C16—C211.367 (4)
C2—C31.374 (5)C16—C171.381 (4)
C3—C41.378 (4)C17—C181.380 (5)
C3—H30.9300C17—H170.9300
C4—C51.375 (4)C18—C191.381 (5)
C5—C61.399 (4)C18—H180.9300
C5—H50.9300C19—C201.354 (5)
C6—C71.479 (4)C19—H190.9300
C7—C161.492 (4)C20—C211.379 (5)
C8—C91.469 (5)C20—H200.9300
C9—C101.387 (4)C21—H210.9300
C9—C141.390 (4)
C1—O1—H1109.5C10—C11—H11119.9
C12—O3—C15118.3 (3)C12—C11—H11119.9
N2—N1—C8116.5 (3)O3—C12—C11124.7 (3)
C7—N2—N1120.2 (2)O3—C12—C13116.8 (3)
O1—C1—C2118.3 (3)C11—C12—C13118.5 (3)
O1—C1—C6123.8 (3)C14—C13—C12121.1 (3)
C2—C1—C6117.8 (3)C14—C13—H13119.4
C3—C2—C1122.3 (3)C12—C13—H13119.4
C3—C2—Cl2119.6 (3)C13—C14—C9120.7 (3)
C1—C2—Cl2118.1 (3)C13—C14—H14119.6
C2—C3—C4119.5 (3)C9—C14—H14119.6
C2—C3—H3120.3O3—C15—H15A109.5
C4—C3—H3120.3O3—C15—H15B109.5
C5—C4—C3120.1 (3)H15A—C15—H15B109.5
C5—C4—Cl1120.2 (3)O3—C15—H15C109.5
C3—C4—Cl1119.8 (3)H15A—C15—H15C109.5
C4—C5—C6120.9 (3)H15B—C15—H15C109.5
C4—C5—H5119.5C21—C16—C17119.2 (3)
C6—C5—H5119.5C21—C16—C7121.4 (3)
C5—C6—C1119.3 (3)C17—C16—C7119.4 (3)
C5—C6—C7120.1 (3)C18—C17—C16120.0 (4)
C1—C6—C7120.6 (3)C18—C17—H17120.0
N2—C7—C6115.7 (2)C16—C17—H17120.0
N2—C7—C16123.0 (3)C17—C18—C19120.2 (4)
C6—C7—C16121.2 (2)C17—C18—H18119.9
O2—C8—N1121.7 (3)C19—C18—H18119.9
O2—C8—C9123.9 (3)C20—C19—C18119.4 (3)
N1—C8—C9114.4 (3)C20—C19—H19120.3
C10—C9—C14118.0 (3)C18—C19—H19120.3
C10—C9—C8123.5 (3)C19—C20—C21120.8 (4)
C14—C9—C8118.5 (3)C19—C20—H20119.6
C11—C10—C9121.3 (3)C21—C20—H20119.6
C11—C10—H10119.3C16—C21—C20120.4 (3)
C9—C10—H10119.3C16—C21—H21119.8
C10—C11—C12120.3 (3)C20—C21—H21119.8
C8—N1—N2—C7178.8 (2)O2—C8—C9—C1419.9 (5)
O1—C1—C2—C3177.5 (3)N1—C8—C9—C14160.2 (3)
C6—C1—C2—C32.3 (5)C14—C9—C10—C112.2 (5)
O1—C1—C2—Cl22.2 (4)C8—C9—C10—C11179.9 (3)
C6—C1—C2—Cl2177.9 (2)C9—C10—C11—C120.9 (5)
C1—C2—C3—C40.3 (5)C15—O3—C12—C116.0 (5)
Cl2—C2—C3—C4179.9 (2)C15—O3—C12—C13173.2 (3)
C2—C3—C4—C51.5 (5)C10—C11—C12—O3178.8 (3)
C2—C3—C4—Cl1179.1 (2)C10—C11—C12—C130.3 (5)
C3—C4—C5—C61.3 (5)O3—C12—C13—C14179.0 (3)
Cl1—C4—C5—C6179.3 (2)C11—C12—C13—C140.2 (5)
C4—C5—C6—C10.7 (4)C12—C13—C14—C91.1 (6)
C4—C5—C6—C7179.8 (3)C10—C9—C14—C132.3 (5)
O1—C1—C6—C5177.4 (3)C8—C9—C14—C13179.7 (3)
C2—C1—C6—C52.5 (4)N2—C7—C16—C2167.8 (4)
O1—C1—C6—C72.1 (4)C6—C7—C16—C21114.8 (3)
C2—C1—C6—C7178.1 (3)N2—C7—C16—C17111.3 (3)
N1—N2—C7—C6177.9 (2)C6—C7—C16—C1766.2 (4)
N1—N2—C7—C160.3 (4)C21—C16—C17—C181.5 (5)
C5—C6—C7—N2169.1 (2)C7—C16—C17—C18177.6 (3)
C1—C6—C7—N210.4 (4)C16—C17—C18—C191.1 (6)
C5—C6—C7—C1613.3 (4)C17—C18—C19—C200.8 (6)
C1—C6—C7—C16167.2 (2)C18—C19—C20—C212.1 (6)
N2—N1—C8—O21.7 (4)C17—C16—C21—C200.2 (5)
N2—N1—C8—C9178.2 (2)C7—C16—C21—C20178.9 (3)
O2—C8—C9—C10157.9 (3)C19—C20—C21—C161.7 (5)
N1—C8—C9—C1022.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.822.528 (3)145

Experimental details

Crystal data
Chemical formulaC21H15Cl2N2O3
Mr414.25
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.9814 (9), 10.8867 (11), 11.5291 (13)
α, β, γ (°)89.623 (2), 72.700 (1), 66.947 (2)
V3)982.57 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.18 × 0.15 × 0.10
Data collection
DiffractometerBruker APEX2 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.949, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
5254, 3459, 2262
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.207, 1.00
No. of reflections3459
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.8201.8152.528 (3)144.59
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (No. Y05–2–09)

References

First citationBruker (2005). APEX2 (Version 1.27). and SAINT (Version 7.12). Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationChang, J.-G. & Ji, C.-Y. (2007). Acta Cryst. E63, o3212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalem, A. A. (1998). Microchem. J. 60, 51–66.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds