organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(2-Chloroquinolin-3-ylmethylene)-aniline

Rajesh G. Kalkhambkar,^a Geeta M. Kulkarni,^a* Wen-Shu Hwang^b and Chen-Shiang Lee^b

^aDepartment of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India, and ^bDepartment of Chemistry, NDHU Shoufeng, Hualien 947, Taiwan Correspondence e-mail: drgmk256@gmail.com

Received 13 June 2007; accepted 30 November 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.002 Å; R factor = 0.024; wR factor = 0.060; data-to-parameter ratio = 10.5.

The title compound, $C_{16}H_{11}ClN_2$, displays a *trans* configuration across the C—N bond and a transoid arrangement across the quinoline ring and the azomethine C atom. This arrangement facilitates C—H···Cl interactions. The packing in the crystal structure is due to intermolecular C—H··· π and Cl··· π (3.52 and 3.84 Å) interactions. The dihedral angle between the least-squares planes of 2-chloroquinoline and phenylamine is 16.61 (2)°.

Related literature

For the importance of chloro-substituted quinolines, see: Meth-Cohn *et al.* (1981); Rajendran & Karavembu (2002); Dutta *et al.* (2002). For chloro-substituted benzylidine anilines see: Prasanna & Guru Row (2000).

For related literature, see: Meth-Cohn & Narine (1978); Umezawa et al. (1998, 1999).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{11}{\rm ClN}_2\\ M_r = 266.72\\ {\rm Orthorhombic,} \ P2_12_12_1\\ a = 6.0069 \ (3) \ {\rm \AA}\\ b = 11.6812 \ (6) \ {\rm \AA}\\ c = 18.3798 \ (9) \ {\rm \AA} \end{array}$

 $V = 1289.67 (11) \text{ Å}^3$ Z = 4Mo K α radiation $\mu = 0.28 \text{ mm}^{-1}$ T = 273 (2) K $0.40 \times 0.11 \times 0.09 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.880, T_{max} = 0.975$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.060$ S = 1.012272 reflections 217 parameters H atoms treated by a mixture of independent and constrained refinement 13778 measured reflections 2272 independent reflections 1984 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

 $\begin{array}{l} \Delta \rho_{max} = 0.10 \mbox{ e } \mbox{\AA}^{-3} \\ \Delta \rho_{min} = -0.13 \mbox{ e } \mbox{\AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 929 \mbox{ Friedel pairs} \\ \mbox{Flack parameter: } -0.05 \mbox{ (5)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

cost is the control of the cost of hing.					
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
C10-H10···Cl1	0.997 (17)	2.68	3.0667	104	
$C_0 - H_0 \cdots C_g 2^n$	0.956 (19)	2.96	3./55 (1)	142	

Symmetry code: (i) -x - 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

The authors thank National Dong Hwa University, Taiwan, for use of the CCD X-ray facility and FAB-MS, the University Sophisticated Instrumentation Centre, Karnatak University, Dharwad, for help with the IR and NMR data. RGK thanks Karnatak University and Karnatak Science College, Dharwad, for a University Research Studentship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2018).

References

Bruker (1999). SHELXTL, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dutta, N. J., Khunt, R. C. & Parikh, A. R. (2002). *Ind. J. Chem.* **41B**, 433–435. Flack, H. D. (1983). *Acta Cryst.* **A39**, 876–881.

Meth-Cohn, O. & Narine, B. (1978). Tetrahedron. Lett. pp. 2045–2048.

Meth-Cohn, O., Tarnowski, B., Hayear, R., Keyzad, A. & Rhouti, S. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 2509–2517.

Prasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135-154.

Rajendran, P. & Karavembu, R. (2002). Indian J. Chem. Sect. B, 41, 222-224.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1207–1210.

Umezawa, Y., Tsuboyama, S., Takahashi, H. & Nishio, M. (1999). *Tetrahedron*, **55**, 10047–10056.

supporting information

Acta Cryst. (2008). E64, o258 [https://doi.org/10.1107/S1600536807064690]

N-(2-Chloroquinolin-3-ylmethylene)aniline

Rajesh G. Kalkhambkar, Geeta M. Kulkarni, Wen-Shu Hwang and Chen-Shiang Lee

S1. Comment

2-chloro substituted quinolines are vital synthetic intermediates in the construction of a large number of linearly fused triand tetra - cyclic quinolines studied for the DNA intercalating properties (Meth-Cohn *et al.*, 1981; Rajendran & Karavembu, 2002; Dutta *et al.*, 2002). Several interesting structural features associated with chloro substituted Benzilidine anilines, like polymorphism, twisting of aryl moieties, presence of weak $Cl \cdots \pi$ interactions have come to light through their diffraction studies (Prasanna & Guru Row, 2000).

Many schiff bases have been synthesized from 2-chloro-3-formyl-quinoline (Meth-Cohn & Narine, 1978), for studying nonlinear Optical phenomenon arising due to the extended conjugation within the molecule. It is of interest to know the conformation around the azomethine double bond which restricts the free rotation and causes changes in dipole moment manifestations.

The prefered *trans* conformer is stabilized due to C—H···Cl (2.676 Å) intramolecular interaction (Fig. 1). Molecular packing formed along *a* axis organizes the molecules in a Zigzag pattern due to C—H.. π (2.962 Å) and Cl··· π (3.521°, 3.845°) intermolecular interactions.(Fig.2) The dihedral angle between the least squares planes of 2-chloro-quinoline and the phenylamine is 16.61 (2)°.

S2. Experimental

A mixture of 2-chloro-3-formyl-quinoline (1.064 g, 0.004 mol) and aniline (0.37 ml,0.004 mol) in ethanol-acetic acid mixture (20 ml, 2:1) was stirred at room temperature for 6 h. After the completion of the reaction (6 h), the separated solid was filtered and washed with excess of cold alcohol.It was dried and crystallized from ethanol (yield = 92%, M.P=435 K). Colourless rectangular crystals were grown from benzene and etyl acetate solvents (1:1, v/v) by slow evaporation method at room temperature.

S3. Refinement

All H atoms atoms were located in difference fourier map and refined isotropically, with $U_{iso}(H)=1.2U_{eq}(C)$.

Figure 1

ORTEP diagram of the molecule in asymmetric unit with 50% probability displacement ellipsoids showing the atomnumbering scheme and C—H…Cl interaction.

Figure 2

Molecular packing due to C—H··· π and Cl··· π interactions along *a* axis.

N-(2-Chloroquinolin-3-ylmethylene)aniline

Crystal data

 $C_{16}H_{11}ClN_2$ Z = 4 $M_r = 266.72$ F(000) = 552 $D_{\rm x} = 1.374 {\rm Mg} {\rm m}^{-3}$ Orthorhombic, $P2_12_12_1$ Hall symbol: P2ac2ab Melting point: 162 K a = 6.0069 (3) ÅMo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3933 reflections *b* = 11.6812 (6) Å *c* = 18.3798 (9) Å $\theta = 2.2 - 22.3^{\circ}$ V = 1289.67 (11) Å³ $\mu = 0.28 \text{ mm}^{-1}$

T = 273 KRectangular, colourless

Data collection

Duiu conection	
CCD area-detector	13778 measured reflections
diffractometer	2272 independent reflections
Radiation source: fine-focus sealed tube	1984 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(SADABS; Sheldrick, 1996)	$k = -13 \rightarrow 13$
$T_{\min} = 0.880, \ T_{\max} = 0.975$	$l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	H atoms treated by a mixture of independen

 $0.40 \times 0.11 \times 0.09 \text{ mm}$

H atoms treated by a mixture of independent Refinement on *I* Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.024$ $w = 1/[\sigma^2(F_0^2) + (0.0303P)^2 + 0.1031P]$ $wR(F^2) = 0.060$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.01 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.10 \ {\rm e} \ {\rm \AA}^{-3}$ 2272 reflections $\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$ 217 parameters 0 restraints Extinction correction: SHELXL, $Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0221 (13) Secondary atom site location: difference Fourier Absolute structure: Flack (1983), 929 Friedel pairs map Hydrogen site location: inferred from Absolute structure parameter: -0.05(5)neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	-0.09134 (8)	0.27844 (4)	0.72352 (2)	0.06349 (15)	
N1	-0.2433 (2)	0.10138 (11)	0.79120 (7)	0.0480 (3)	
N2	0.4029 (2)	0.27821 (11)	0.89186 (6)	0.0485 (3)	
C1	-0.0786 (3)	0.17247 (13)	0.79054 (8)	0.0460 (4)	
C2	-0.2429 (3)	0.01865 (13)	0.84434 (8)	0.0457 (4)	
C3	-0.4204 (3)	-0.05994 (15)	0.84716 (10)	0.0560 (4)	
H3	-0.533 (3)	-0.0514 (14)	0.8119 (10)	0.059 (5)*	
C4	-0.4242 (4)	-0.14343 (16)	0.89875 (10)	0.0626 (5)	
H4	-0.552 (4)	-0.1966 (17)	0.9029 (11)	0.082 (6)*	
C5	-0.2529 (4)	-0.15120 (16)	0.95073 (11)	0.0640 (5)	
Н5	-0.266 (3)	-0.2075 (15)	0.9847 (10)	0.067 (5)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C6	-0.0802 (4)	-0.07688 (14)	0.94957 (10)	0.0559 (4)
H6	0.036 (3)	-0.0804 (14)	0.9851 (10)	0.062 (5)*
C7	-0.0705 (3)	0.01022 (13)	0.89623 (8)	0.0456 (4)
C8	0.1042 (3)	0.09005 (13)	0.89156 (9)	0.0475 (4)
H8	0.228 (3)	0.0865 (14)	0.9251 (9)	0.055 (5)*
C9	0.1048 (3)	0.17368 (13)	0.83936 (8)	0.0441 (4)
C10	0.2813 (3)	0.26074 (14)	0.83700 (9)	0.0481 (4)
H10	0.300 (3)	0.3049 (14)	0.7910 (10)	0.057 (5)*
C11	0.5640 (3)	0.36654 (13)	0.88976 (8)	0.0454 (4)
C12	0.7579 (3)	0.35109 (15)	0.93006 (9)	0.0505 (4)
H12	0.773 (3)	0.2826 (14)	0.9550 (9)	0.049 (4)*
C13	0.9205 (4)	0.43458 (17)	0.93071 (10)	0.0602 (5)
H13	1.044 (3)	0.4184 (14)	0.9571 (10)	0.057 (5)*
C14	0.8916 (4)	0.53449 (17)	0.89224 (11)	0.0662 (5)
H14	1.005 (4)	0.5924 (17)	0.8927 (11)	0.082 (7)*
C15	0.6971 (4)	0.55175 (17)	0.85356 (11)	0.0630 (5)
H15	0.672 (3)	0.6234 (17)	0.8277 (11)	0.070 (6)*
C16	0.5336 (3)	0.46919 (15)	0.85239 (9)	0.0522 (4)
H16	0.395 (3)	0.4831 (15)	0.8266 (9)	0.060 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0701 (3)	0.0640 (3)	0.0564 (2)	0.0052 (3)	-0.0084 (2)	0.0134 (2)
N1	0.0461 (7)	0.0535 (7)	0.0446 (7)	0.0035 (7)	-0.0045 (6)	-0.0039 (6)
N2	0.0494 (7)	0.0496 (7)	0.0464 (7)	-0.0009 (8)	-0.0015 (7)	-0.0011 (6)
C1	0.0509 (9)	0.0476 (8)	0.0396 (8)	0.0064 (8)	0.0009 (8)	-0.0037 (6)
C2	0.0476 (9)	0.0468 (9)	0.0428 (8)	0.0038 (8)	0.0015 (8)	-0.0092 (7)
C3	0.0501 (10)	0.0625 (11)	0.0553 (10)	-0.0012 (10)	-0.0003 (10)	-0.0078 (9)
C4	0.0606 (11)	0.0603 (11)	0.0668 (11)	-0.0096 (11)	0.0063 (11)	-0.0058 (9)
C5	0.0800 (14)	0.0523 (10)	0.0598 (11)	-0.0048 (12)	0.0020 (11)	0.0055 (9)
C6	0.0668 (12)	0.0505 (10)	0.0503 (10)	0.0018 (10)	-0.0044 (10)	-0.0004 (7)
C7	0.0518 (10)	0.0433 (8)	0.0417 (8)	0.0036 (8)	-0.0019 (9)	-0.0070 (7)
C8	0.0490 (9)	0.0496 (9)	0.0440 (9)	0.0044 (9)	-0.0068 (9)	-0.0065 (7)
C9	0.0471 (9)	0.0458 (8)	0.0394 (7)	0.0024 (8)	-0.0004 (8)	-0.0054 (6)
C10	0.0519 (10)	0.0512 (9)	0.0413 (8)	0.0005 (8)	0.0015 (8)	-0.0021 (7)
C11	0.0475 (9)	0.0502 (9)	0.0386 (7)	-0.0010 (8)	0.0040 (7)	-0.0056 (7)
C12	0.0526 (10)	0.0528 (10)	0.0461 (9)	0.0046 (9)	-0.0005 (8)	-0.0050 (8)
C13	0.0459 (10)	0.0762 (13)	0.0583 (10)	0.0014 (11)	-0.0034 (10)	-0.0122 (9)
C14	0.0656 (13)	0.0665 (12)	0.0664 (12)	-0.0156 (12)	0.0120 (12)	-0.0075 (10)
C15	0.0779 (14)	0.0535 (11)	0.0575 (11)	-0.0070 (10)	0.0076 (10)	0.0027 (9)
C16	0.0572 (12)	0.0543 (10)	0.0451 (9)	0.0017 (9)	0.0005 (8)	-0.0006 (8)

Geometric parameters (Å, °)

Cl1—C1	1.7479 (16)	С7—С8	1.406 (3)
N1—C1	1.291 (2)	C8—C9	1.369 (2)
N1—C2	1.374 (2)	C8—H8	0.968 (18)

supporting information

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C10	1.261 (2)	C9—C10	1.470 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C11	1.415 (2)	C10—H10	0.997 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C9	1.421 (2)	C11—C12	1.392 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.408 (3)	C11—C16	1.394 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C7	1.411 (2)	C12—C13	1.380 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.360 (3)	C12—H12	0.926 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3	0.940 (19)	C13—C14	1.375 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.407 (3)	С13—Н13	0.906 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4	0.99 (2)	C14—C15	1.383 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.353 (3)	C14—H14	0.96 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5	0.910 (18)	C15—C16	1.377 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7	1.414 (2)	С15—Н15	0.97 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—Н6	0.956 (19)	C16—H16	0.972 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C2	117.24 (14)	С7—С8—Н8	120.4 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—N2—C11	119.48 (13)	C8—C9—C1	115.67 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—C9	126.46 (14)	C8—C9—C10	121.10 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C1-Cl1	115.37 (12)	C1—C9—C10	123.19 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C1—C11	118.16 (12)	N2—C10—C9	120.39 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C3	118.91 (16)	N2—C10—H10	122.0 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C7	122.05 (15)	С9—С10—Н10	117.7 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C7	119.04 (16)	C12—C11—C16	118.91 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C2	120.39 (19)	C12—C11—N2	117.60 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	123.0 (11)	C16—C11—N2	123.42 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	116.6 (11)	C13—C12—C11	120.33 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5	120.5 (2)	C13—C12—H12	122.6 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С4—Н4	121.1 (12)	C11—C12—H12	117.1 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—H4	118.3 (12)	C14—C13—C12	120.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5—C4	120.57 (18)	C14—C13—H13	123.8 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С5—Н5	122.9 (13)	С12—С13—Н13	115.8 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С5—Н5	116.6 (13)	C13—C14—C15	119.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C7	120.28 (19)	C13—C14—H14	120.1 (13)
C7—C6—H6118.3 (11)C16—C15—C14120.6 (2)C8—C7—C2117.38 (14)C16—C15—H15118.8 (12)C8—C7—C6123.38 (17)C14—C15—H15120.6 (12)C2—C7—C6119.24 (18)C15—C16—C11120.08 (18)C9—C8—C7121.20 (16)C15—C16—H16120.1 (11)C9—C8—H8118.4 (10)C11—C16—H16119.8 (11)	С5—С6—Н6	121.4 (11)	C15—C14—H14	120.2 (13)
C8—C7—C2117.38 (14)C16—C15—H15118.8 (12)C8—C7—C6123.38 (17)C14—C15—H15120.6 (12)C2—C7—C6119.24 (18)C15—C16—C11120.08 (18)C9—C8—C7121.20 (16)C15—C16—H16120.1 (11)C9—C8—H8118.4 (10)C11—C16—H16119.8 (11)	С7—С6—Н6	118.3 (11)	C16—C15—C14	120.6 (2)
C8—C7—C6123.38 (17)C14—C15—H15120.6 (12)C2—C7—C6119.24 (18)C15—C16—C11120.08 (18)C9—C8—C7121.20 (16)C15—C16—H16120.1 (11)C9—C8—H8118.4 (10)C11—C16—H16119.8 (11)	C8—C7—C2	117.38 (14)	C16—C15—H15	118.8 (12)
C2—C7—C6119.24 (18)C15—C16—C11120.08 (18)C9—C8—C7121.20 (16)C15—C16—H16120.1 (11)C9—C8—H8118.4 (10)C11—C16—H16119.8 (11)	C8—C7—C6	123.38 (17)	C14—C15—H15	120.6 (12)
C9—C8—C7121.20 (16)C15—C16—H16120.1 (11)C9—C8—H8118.4 (10)C11—C16—H16119.8 (11)	C2—C7—C6	119.24 (18)	C15—C16—C11	120.08 (18)
C9—C8—H8 118.4 (10) C11—C16—H16 119.8 (11)	C9—C8—C7	121.20 (16)	C15—C16—H16	120.1 (11)
	С9—С8—Н8	118.4 (10)	C11-C16-H16	119.8 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
C10—H10…Cl1	0.997 (17)	2.68	3.0667	104
C6—H6…Cg2 ⁱ	0.956 (19)	2.96	3.755 (1)	142

Symmetry code: (i) -x-1, y+1/2, -z+1/2.