organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,11-Di­hydroxy­naphthacene-5,12-dione

aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and bDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
*Correspondence e-mail: tomura@ims.ac.jp

(Received 1 August 2007; accepted 27 November 2007; online 6 December 2007)

The mol­ecule of the title compound, C18H10O4, is centrosymmetric and planar. A long phenolic O—H bond is observed [1.19 (9) Å], which is involved in an intra­molecular hydrogen bond between the phenolic and quinonoid O atoms. The mol­ecules pack in a herringbone pattern and are linked to each other via inter­molecular C—H⋯O hydrogen bonds (2.73–2.77 Å).

Related literature

The crystal structure of the rhenium complex including the title compound has been reported (Sathiyendiran et al., 2007[Sathiyendiran, M., Chang, C.-H., Chuang, C.-H., Luo, T.-T., Wen, Y.-S. & Lu, K.-L. (2007). Dalton Trans. pp. 1872-1874.]). For studies of naphthaza­rin (5,8-dihydr­oxy-1,4-naphtho­quinone), see: Fehlmann & Nigli (1965[Fehlmann, M. & Nigli, A. (1965). Helv. Chim. Acta, 48, 305-308.]); Cradwick & Hall (1971[Cradwick, P. D. & Hall, D. (1971). Acta Cryst. B27, 1990-1997.]); Herbstein et al. (1985[Herbstein, F. H., Kapon, M., Reisner, G. M., Lehman, M. S., Kress, R. B., Wilson, R. B., Shiau, W.-I., Duesler, E. N., Paul, I. C. & Curtin, D. Y. (1985). Proc. R. Soc. London Ser. A, 399, 295-319.]); Rubio et al. (1985[Rubio, P., Florencio, F., García-Blanco, S. & Rodriguez, J. G. (1985). Acta Cryst. C41, 1797-1799.]); Sarkhel et al. (2001[Sarkhel, S., Shefali, Mathad, V. T., Raj, K., Bhaduri, A. P., Maulik, P. R., Broder, C. K. & Howard, J. A. K. (2001). Acta Cryst. C57, 1199-1200.]); Savko et al. (2007[Savko, M., Kaščáková, S., Mojzeš, P., Jancura, D., Miškovský, P. & Uličný, J. (2007). J. Mol. Struct. THEOCHEM, 803, 79-87.]). For background on intra­molecular hydrogen bonds, see: Gilli et al. (1989[Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.]); Bertolasi et al. (1991[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925.]); Gilli et al. (1993[Gilli, G., Bertolasi, V., Ferretti, V. & Gilli, P. (1993). Acta Cryst. B49, 564-576.]); Steiner & Saenger (1994[Steiner, T. & Saenger, W. (1994). Acta Cryst. B50, 348-357.]). For background on inter­molecular hydrogen bonds, see: Taylor & Kennard (1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]); Jagarlapudi & Desiraju (1987[Jagarlapudi, A. R. P. & Desiraju, G. R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1195-1202.]); Biradha et al. (1993[Biradha, K., Sharma, C. V. K., Panneerselvam, K., Shimoni, L., Carrell, H. L., Zacharias, D. E. & Desiraju, G. R. (1993). J. Chem. Soc. Chem. Commun. pp. 1473-1474.]); Batchelor et al. (2000[Batchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839-848.]). For background on resonance structures, see: Cradwick & Hall (1971[Cradwick, P. D. & Hall, D. (1971). Acta Cryst. B27, 1990-1997.]); Shiau et al. (1980[Shiau, W.-I., Duesler, E. N., Paul, I. C., Curtin, D. Y., Blann, W. G. & Fyfe, C. A. (1980). J. Am. Chem. Soc. 102, 4546-4548.]).

[Scheme 1]

Experimental

Crystal data
  • C18H10O4

  • Mr = 290.26

  • Monoclinic, P 21 /c

  • a = 8.85 (2) Å

  • b = 3.750 (8) Å

  • c = 18.74 (4) Å

  • β = 94.55 (3)°

  • V = 620 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 (2) K

  • 0.29 × 0.07 × 0.03 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: none

  • 5026 measured reflections

  • 1347 independent reflections

  • 668 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.114

  • wR(F2) = 0.354

  • S = 0.99

  • 1347 reflections

  • 104 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 1.19 (9) 1.56 (9) 2.516 (7) 132 (6)
C6—H6⋯O1i 0.95 2.77 3.449 (9) 129
C6—H6⋯O1ii 0.95 2.74 3.382 (9) 126
C3—H3⋯O2iii 0.95 2.75 3.378 (10) 124
C4—H4⋯O2iii 0.95 2.73 3.371 (9) 126
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000[Molecular Structure Corporation & Rigaku (2000). TEXSAN. Version 1.11. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organic molecules containing naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) skeleton have been the attractive subject of structural investigations (Fehlmann & Nigli, 1965; Cradwick & Hall, 1971; Herbstein et al., 1985; Rubio et al., 1985; Sarkhel et al., 2001; Savko et al., 2007). The title compound, (I) (Fig. 1), is π-extended naphthazarin and its molecular and crystal structures are described here.

The molecule of (I) is centrosymmetric and planar, with an r.m.s deviation of 0.0098 Å from the least-squares plane for the fitted non-H atoms. The molecular structure is similar to that of naphthazarin. The symmetry of the carbon skeleton of (I) is close to D2 h (Table 1). The long phenolic O2—H2 bond [1.19 (9) Å] constitutes an intramolecular hydrogen bond between the phenolic O2 and quinonoid O1 atoms (Gilli et al., 1989; Bertolasi et al., 1991; Gilli et al., 1993; Steiner & Saenger, 1994). These facts imply that the structure of (I) can be interpreted not as 1,4- nor 1,5-quinone but as resonance between two zwitterion contributors, as shown in Scheme 1 (Cradwick & Hall, 1971; Shiau et al., 1980).

In the crystal structure, the molecules form a herringbone-type stacking along the b axis, where the distance between the molecular planes is 3.42 Å (Fig. 2). The packing mode is similar to that characteristic of aromatic hydrocarbon atoms. The intermolecular C—H···O hydrogen bonds (Taylor & Kennard, 1982; Jagarlapudi & Desiraju, 1987; Biradha et al., 1993; Batchelor et al., 2000) are found between the herringbone-type stackings (Table 2). Similar C—H···O hydrogen bonds (2.54–3.01 Å) were observed in the crystal structure of naphthazarin (Cradwick & Hall, 1971).

Related literature top

The crystal structure of the rhenium complex including the title compound has been reported (Sathiyendiran et al., 2007). For studies of naphthazarin (5,8-dihydroxy-1,4-naphthoquinone), see: Fehlmann & Nigli (1965); Cradwick & Hall (1971); Herbstein et al. (1985); Rubio et al. (1985); Sarkhel et al. (2001); Savko et al. (2007). For background on intramolecular hydrogen bonds, see: Gilli et al. (1989); Bertolasi et al. (1991); Gilli et al. (1993); Steiner & Saenger (1994). For background on intermolecular hydrogen bonds, see: Taylor & Kennard (1982); Jagarlapudi & Desiraju (1987); Biradha et al. (1993); Batchelor et al. (2000). For background on resonance structures, see: Cradwick & Hall (1971); Shiau et al. (1980). [Please check text added to place references in context]

Experimental top

The title compound (I) was commercially available. Red crystals of (I) suitable for X-ray analysis were grown from a chloroform solution.

Refinement top

The H atom bonded to the phenolic O atom was located in a difference map and refined isotropically. Other H atoms were positioned geometrically refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Organic molecules containing naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) skeleton have been the attractive subject of structural investigations (Fehlmann & Nigli, 1965; Cradwick & Hall, 1971; Herbstein et al., 1985; Rubio et al., 1985; Sarkhel et al., 2001; Savko et al., 2007). The title compound, (I) (Fig. 1), is π-extended naphthazarin and its molecular and crystal structures are described here.

The molecule of (I) is centrosymmetric and planar, with an r.m.s deviation of 0.0098 Å from the least-squares plane for the fitted non-H atoms. The molecular structure is similar to that of naphthazarin. The symmetry of the carbon skeleton of (I) is close to D2 h (Table 1). The long phenolic O2—H2 bond [1.19 (9) Å] constitutes an intramolecular hydrogen bond between the phenolic O2 and quinonoid O1 atoms (Gilli et al., 1989; Bertolasi et al., 1991; Gilli et al., 1993; Steiner & Saenger, 1994). These facts imply that the structure of (I) can be interpreted not as 1,4- nor 1,5-quinone but as resonance between two zwitterion contributors, as shown in Scheme 1 (Cradwick & Hall, 1971; Shiau et al., 1980).

In the crystal structure, the molecules form a herringbone-type stacking along the b axis, where the distance between the molecular planes is 3.42 Å (Fig. 2). The packing mode is similar to that characteristic of aromatic hydrocarbon atoms. The intermolecular C—H···O hydrogen bonds (Taylor & Kennard, 1982; Jagarlapudi & Desiraju, 1987; Biradha et al., 1993; Batchelor et al., 2000) are found between the herringbone-type stackings (Table 2). Similar C—H···O hydrogen bonds (2.54–3.01 Å) were observed in the crystal structure of naphthazarin (Cradwick & Hall, 1971).

The crystal structure of the rhenium complex including the title compound has been reported (Sathiyendiran et al., 2007). For studies of naphthazarin (5,8-dihydroxy-1,4-naphthoquinone), see: Fehlmann & Nigli (1965); Cradwick & Hall (1971); Herbstein et al. (1985); Rubio et al. (1985); Sarkhel et al. (2001); Savko et al. (2007). For background on intramolecular hydrogen bonds, see: Gilli et al. (1989); Bertolasi et al. (1991); Gilli et al. (1993); Steiner & Saenger (1994). For background on intermolecular hydrogen bonds, see: Taylor & Kennard (1982); Jagarlapudi & Desiraju (1987); Biradha et al. (1993); Batchelor et al. (2000). For background on resonance structures, see: Cradwick & Hall (1971); Shiau et al. (1980). [Please check text added to place references in context]

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii [symmetry code: (i) -x, -y, -z + 1].
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the a axis.
[Figure 3] Fig. 3. The resonance structure of (I).
6,11-Dihydroxynaphthacene-5,12-dione top
Crystal data top
C18H10O4F(000) = 300
Mr = 290.26Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 928 reflections
a = 8.85 (2) Åθ = 3.1–27.5°
b = 3.750 (8) ŵ = 0.11 mm1
c = 18.74 (4) ÅT = 173 K
β = 94.55 (3)°Prism, red
V = 620 (2) Å30.29 × 0.07 × 0.03 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
668 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.087
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 14.6199 pixels mm-1h = 911
φ and ω scansk = 43
5026 measured reflectionsl = 1924
1347 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.114Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.354H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1532P)2 + 1.2875P]
where P = (Fo2 + 2Fc2)/3
1347 reflections(Δ/σ)max = 0.053
104 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H10O4V = 620 (2) Å3
Mr = 290.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.85 (2) ŵ = 0.11 mm1
b = 3.750 (8) ÅT = 173 K
c = 18.74 (4) Å0.29 × 0.07 × 0.03 mm
β = 94.55 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
668 reflections with I > 2σ(I)
5026 measured reflectionsRint = 0.087
1347 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1140 restraints
wR(F2) = 0.354H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.52 e Å3
1347 reflectionsΔρmin = 0.32 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3137 (5)0.1246 (12)0.4518 (2)0.0438 (12)
O20.1298 (5)0.1563 (12)0.3591 (2)0.0426 (12)
H20.248 (10)0.03 (3)0.378 (5)0.09 (3)*
C10.2384 (6)0.2682 (14)0.5696 (3)0.0317 (13)
C20.1249 (6)0.2760 (13)0.6171 (3)0.0290 (12)
C30.1583 (7)0.4134 (15)0.6871 (3)0.0363 (14)
H30.08230.41980.72010.044*
C40.3022 (7)0.5375 (15)0.7068 (3)0.0381 (15)
H40.32470.63180.75350.046*
C50.4162 (7)0.5264 (15)0.6586 (3)0.0403 (15)
H50.51510.61170.67280.048*
C60.3839 (7)0.3917 (14)0.5910 (3)0.0371 (14)
H60.46110.38230.55860.045*
C70.2079 (6)0.1277 (14)0.4965 (3)0.0294 (12)
C80.0599 (6)0.0051 (14)0.4744 (3)0.0312 (13)
C90.0278 (7)0.1452 (13)0.4050 (3)0.0308 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.034 (2)0.052 (3)0.046 (3)0.011 (2)0.0070 (18)0.004 (2)
O20.042 (3)0.048 (3)0.041 (2)0.000 (2)0.0186 (19)0.0051 (19)
C10.027 (3)0.025 (3)0.043 (3)0.003 (2)0.002 (2)0.001 (2)
C20.028 (3)0.024 (3)0.034 (3)0.000 (2)0.005 (2)0.001 (2)
C30.049 (4)0.028 (3)0.031 (3)0.005 (3)0.003 (2)0.004 (2)
C40.063 (4)0.027 (3)0.023 (3)0.001 (3)0.008 (3)0.000 (2)
C50.042 (3)0.031 (3)0.045 (3)0.001 (3)0.011 (3)0.002 (3)
C60.038 (3)0.022 (3)0.052 (4)0.004 (2)0.004 (3)0.005 (2)
C70.021 (3)0.030 (3)0.037 (3)0.001 (2)0.005 (2)0.002 (2)
C80.036 (3)0.031 (3)0.025 (3)0.001 (2)0.006 (2)0.012 (2)
C90.044 (3)0.021 (2)0.028 (3)0.002 (2)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C71.304 (6)C4—C51.407 (9)
O2—C91.296 (7)C4—H40.9500
O2—H21.19 (9)C5—C61.373 (8)
C1—C21.395 (8)C5—H50.9500
C1—C61.398 (8)C6—H60.9500
C1—C71.472 (8)C7—C81.432 (8)
C2—C31.418 (8)C8—C91.410 (7)
C2—C9i1.467 (8)C8—C8i1.486 (11)
C3—C41.378 (9)C9—C2i1.467 (8)
C3—H30.9500
C7—O1—H2110 (3)C6—C5—H5120.1
C9—O2—H2115 (4)C4—C5—H5120.1
C2—C1—C6120.2 (5)C5—C6—C1120.4 (6)
C2—C1—C7120.9 (5)C5—C6—H6119.8
C6—C1—C7118.9 (5)C1—C6—H6119.8
C1—C2—C3119.4 (5)O1—C7—C8119.9 (5)
C1—C2—C9i120.4 (5)O1—C7—C1120.8 (5)
C3—C2—C9i120.2 (5)C8—C7—C1119.3 (5)
C2—C3—C4119.4 (5)C9—C8—C7120.6 (5)
C2—C3—H3120.3C9—C8—C8i120.2 (6)
C4—C3—H3120.3C7—C8—C8i119.2 (6)
C3—C4—C5120.8 (5)O2—C9—C8121.6 (5)
C3—C4—H4119.6O2—C9—C2i118.4 (5)
C5—C4—H4119.6C8—C9—C2i119.9 (5)
C6—C5—C4119.7 (6)
C6—C1—C2—C30.6 (8)C6—C1—C7—O11.4 (8)
C7—C1—C2—C3180.0 (5)C2—C1—C7—C80.5 (8)
C6—C1—C2—C9i179.7 (5)C6—C1—C7—C8178.9 (5)
C7—C1—C2—C9i0.3 (8)O1—C7—C8—C91.1 (7)
C1—C2—C3—C40.2 (7)C1—C7—C8—C9179.3 (5)
C9i—C2—C3—C4179.5 (5)O1—C7—C8—C8i179.1 (6)
C2—C3—C4—C50.6 (8)C1—C7—C8—C8i0.6 (8)
C3—C4—C5—C60.3 (8)C7—C8—C9—O20.5 (8)
C4—C5—C6—C10.5 (8)C8i—C8—C9—O2179.7 (6)
C2—C1—C6—C50.9 (8)C7—C8—C9—C2i179.2 (5)
C7—C1—C6—C5179.6 (5)C8i—C8—C9—C2i1.0 (8)
C2—C1—C7—O1179.2 (5)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O11.19 (9)1.56 (9)2.516 (7)132 (6)
C6—H6···O1ii0.952.773.449 (9)129
C6—H6···O1iii0.952.743.382 (9)126
C3—H3···O2iv0.952.753.378 (10)124
C4—H4···O2iv0.952.733.371 (9)126
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H10O4
Mr290.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.85 (2), 3.750 (8), 18.74 (4)
β (°) 94.55 (3)
V3)620 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.07 × 0.03
Data collection
DiffractometerRigaku Mercury CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5026, 1347, 668
Rint0.087
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.114, 0.354, 0.99
No. of reflections1347
No. of parameters104
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.32

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), TEXSAN (Molecular Structure Corporation & Rigaku, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected bond lengths (Å) top
O1—C71.304 (6)C3—C41.378 (9)
O2—C91.296 (7)C4—C51.407 (9)
O2—H21.19 (9)C5—C61.373 (8)
C1—C21.395 (8)C7—C81.432 (8)
C1—C61.398 (8)C8—C91.410 (7)
C1—C71.472 (8)C8—C8i1.486 (11)
C2—C31.418 (8)C9—C2i1.467 (8)
C2—C9i1.467 (8)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O11.19 (9)1.56 (9)2.516 (7)132 (6)
C6—H6···O1ii0.952.773.449 (9)128.9
C6—H6···O1iii0.952.743.382 (9)125.8
C3—H3···O2iv0.952.753.378 (10)124.1
C4—H4···O2iv0.952.733.371 (9)125.6
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by Grants-in-Aid (Nos. 17750037 and 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationBatchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917–4925.  CSD CrossRef CAS Web of Science Google Scholar
First citationBiradha, K., Sharma, C. V. K., Panneerselvam, K., Shimoni, L., Carrell, H. L., Zacharias, D. E. & Desiraju, G. R. (1993). J. Chem. Soc. Chem. Commun. pp. 1473–1474.  CrossRef Web of Science Google Scholar
First citationCradwick, P. D. & Hall, D. (1971). Acta Cryst. B27, 1990–1997.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFehlmann, M. & Nigli, A. (1965). Helv. Chim. Acta, 48, 305–308.  CSD CrossRef CAS Web of Science Google Scholar
First citationGilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028.  CrossRef CAS Web of Science Google Scholar
First citationGilli, G., Bertolasi, V., Ferretti, V. & Gilli, P. (1993). Acta Cryst. B49, 564–576.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerbstein, F. H., Kapon, M., Reisner, G. M., Lehman, M. S., Kress, R. B., Wilson, R. B., Shiau, W.-I., Duesler, E. N., Paul, I. C. & Curtin, D. Y. (1985). Proc. R. Soc. London Ser. A, 399, 295–319.  CrossRef CAS Google Scholar
First citationJagarlapudi, A. R. P. & Desiraju, G. R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1195–1202.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2000). TEXSAN. Version 1.11. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRubio, P., Florencio, F., García-Blanco, S. & Rodriguez, J. G. (1985). Acta Cryst. C41, 1797–1799.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSarkhel, S., Shefali, Mathad, V. T., Raj, K., Bhaduri, A. P., Maulik, P. R., Broder, C. K. & Howard, J. A. K. (2001). Acta Cryst. C57, 1199–1200.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSathiyendiran, M., Chang, C.-H., Chuang, C.-H., Luo, T.-T., Wen, Y.-S. & Lu, K.-L. (2007). Dalton Trans. pp. 1872–1874.  Web of Science CSD CrossRef Google Scholar
First citationSavko, M., Kaščáková, S., Mojzeš, P., Jancura, D., Miškovský, P. & Uličný, J. (2007). J. Mol. Struct. THEOCHEM, 803, 79–87.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShiau, W.-I., Duesler, E. N., Paul, I. C., Curtin, D. Y., Blann, W. G. & Fyfe, C. A. (1980). J. Am. Chem. Soc. 102, 4546–4548.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. & Saenger, W. (1994). Acta Cryst. B50, 348–357.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds