metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-hy­droxy-3-meth­­oxy­phen­yl)benzimidazolium] tetra­chlorido­cuprate(II) methanol disolvate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: niumeiju@163.com

(Received 9 November 2007; accepted 8 December 2007; online 18 December 2007)

In the title compound, (C14H13N2O2)2[CuCl4]·2CH4O, the geometry of the CuC142− ions (Cu site symmetry 2) is inter­mediate between tetra­hedral and square-planar. The dihedral angle between the benzimidazole and benzene ring systems is 8.74(14)°. A network of N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds helps to consoldiate the structure. Aromatic ππ stacking inter­actions involving the benzimidazole ring system, with a centroid–centroid distance of 3.785 (3) Å, also occur.

Related literature

For background, see: Zhao et al. (2006[Zhao, Y.-H., Su, Z.-M., Wang, Y., Hao, X.-R. & Shao, K.-Z. (2006). Acta Cryst. E62, m2361-m2362.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H13N2O2)2[CuCl4]·2CH4O

  • Mr = 751.95

  • Monoclinic, C 2/c

  • a = 17.992 (2) Å

  • b = 9.9694 (16) Å

  • c = 19.849 (3) Å

  • β = 109.406 (2)°

  • V = 3358.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 298 (2) K

  • 0.55 × 0.32 × 0.29 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.605, Tmax = 0.757

  • 8468 measured reflections

  • 2968 independent reflections

  • 2273 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.00

  • 2968 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Cu1 2.2297 (8)
Cu1—Cl2 2.2732 (8)
Cl1i—Cu1—Cl1 99.99 (5)
Cl1i—Cu1—Cl2 128.83 (3)
Cl1—Cu1—Cl2 103.30 (3)
Cl2—Cu1—Cl2i 96.38 (5)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.09 2.634 (3) 120
N2—H2⋯O3 0.86 1.92 2.747 (3) 162
O3—H3⋯Cl2 0.82 2.44 3.245 (3) 168
N1—H1⋯Cl1ii 0.86 2.55 3.298 (2) 147
O1—H1A⋯Cl2ii 0.82 2.36 3.066 (2) 145
Symmetry code: (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(2-Hydroxyphenyl)benzimidazole complexes have potential applications in the fabrication of organic electroluminescent devices (e.g. Zhao et al., 2006). In the title compound, (I), the organic species is protonated and does not bind to the metal ion (Fig. 1). The copper(II) ion (site symmetry 2) adopts a geometry intermediate between square planar and tetrahedral (Table 1).

In the crystal, a network of hydrogen bonds (Table 2) link the component species into chains (Fig. 2) The adjacent chains are cross-linked by ππ stacking interactions involving the two benzimidazole rings, with a centroid···centroid distance of 3.785 (3) Å.

Related literature top

For background, see: Zhao et al. (2006).

Experimental top

To a solution of o-phenylenediamine (0.216 g, 2 mmol) in methanol (5 ml), o-vanillin (0.615 g, 4 mmol) was added. The mixture was refluxed for 1 h, then a solution of cupric chloride dihydrate (0.3408 g, 2 mmol) was added dropwise and the mixture stirred for another 3 h. Red blocks of (I) were grown by slow evaporation of the solvent after about two weeks.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H = 0.86 Å, O—H = 0.82 Å, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.5Ueq(Cmethyl, O) or 1.2Ueq(C).

Structure description top

2-(2-Hydroxyphenyl)benzimidazole complexes have potential applications in the fabrication of organic electroluminescent devices (e.g. Zhao et al., 2006). In the title compound, (I), the organic species is protonated and does not bind to the metal ion (Fig. 1). The copper(II) ion (site symmetry 2) adopts a geometry intermediate between square planar and tetrahedral (Table 1).

In the crystal, a network of hydrogen bonds (Table 2) link the component species into chains (Fig. 2) The adjacent chains are cross-linked by ππ stacking interactions involving the two benzimidazole rings, with a centroid···centroid distance of 3.785 (3) Å.

For background, see: Zhao et al. (2006).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry code: (i) 1 - x, y, 1/2 - z.
[Figure 2] Fig. 2. View of a hydrogen-bonded (dashed lines) chain in (I).
Bis[2-(2-hydroxy-3-methoxyphenyl)benzimidazolium] tetrachloridocuprate(II) methanol disolvate top
Crystal data top
(C14H13N2O2)2[CuCl4]·2CH4OF(000) = 1548
Mr = 751.95Dx = 1.487 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.992 (2) ÅCell parameters from 3347 reflections
b = 9.9694 (16) Åθ = 2.4–26.5°
c = 19.849 (3) ŵ = 1.02 mm1
β = 109.406 (2)°T = 298 K
V = 3358.1 (8) Å3Block, red
Z = 40.55 × 0.32 × 0.29 mm
Data collection top
Bruker SMART CCD
diffractometer
2968 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1721
Tmin = 0.605, Tmax = 0.757k = 1011
8468 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0475P)2 + 3.5756P]
where P = (Fo2 + 2Fc2)/3
2968 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
(C14H13N2O2)2[CuCl4]·2CH4OV = 3358.1 (8) Å3
Mr = 751.95Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.992 (2) ŵ = 1.02 mm1
b = 9.9694 (16) ÅT = 298 K
c = 19.849 (3) Å0.55 × 0.32 × 0.29 mm
β = 109.406 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2968 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2273 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.757Rint = 0.036
8468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.46 e Å3
2968 reflectionsΔρmin = 0.20 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43726 (4)1.01765 (8)0.16383 (4)0.0528 (2)
Cu10.50000.87387 (5)0.25000.03965 (16)
Cl20.40516 (4)0.72185 (8)0.24813 (5)0.0618 (2)
N10.77757 (12)0.5015 (2)0.52156 (11)0.0393 (5)
H10.80900.52660.56260.047*
N20.67538 (14)0.4895 (3)0.42615 (12)0.0476 (6)
H20.62980.50560.39530.057*
O10.76890 (12)0.6556 (2)0.62645 (10)0.0606 (6)
H1A0.78740.70340.66170.091*
O20.70083 (13)0.8504 (2)0.67617 (11)0.0651 (6)
O30.52158 (14)0.4866 (3)0.33663 (14)0.0859 (9)
H30.49810.55430.31740.129*
C10.66881 (15)0.6608 (3)0.51403 (14)0.0414 (7)
C20.70078 (15)0.7102 (3)0.58301 (15)0.0425 (7)
C30.66309 (17)0.8123 (3)0.60765 (16)0.0463 (7)
C40.59298 (18)0.8638 (3)0.56282 (18)0.0533 (8)
H40.56650.92960.57920.064*
C50.56225 (17)0.8174 (4)0.49376 (18)0.0585 (9)
H50.51590.85490.46330.070*
C60.59831 (17)0.7175 (3)0.46896 (16)0.0524 (8)
H60.57620.68700.42230.063*
C70.6671 (2)0.9575 (4)0.7043 (2)0.0764 (11)
H7A0.65831.03340.67290.115*
H7B0.70240.98230.75060.115*
H7C0.61780.92870.70840.115*
C80.70637 (15)0.5539 (3)0.48807 (14)0.0401 (6)
C90.72747 (17)0.3928 (3)0.41891 (15)0.0459 (7)
C100.79306 (16)0.4004 (3)0.48014 (14)0.0410 (7)
C110.85731 (17)0.3171 (3)0.49069 (16)0.0489 (7)
H110.90140.32260.53170.059*
C120.85291 (19)0.2254 (3)0.43757 (18)0.0586 (8)
H120.89480.16710.44280.070*
C130.7865 (2)0.2184 (4)0.37584 (19)0.0683 (10)
H130.78580.15630.34070.082*
C140.7228 (2)0.2999 (4)0.36564 (17)0.0635 (9)
H140.67850.29350.32500.076*
C150.4684 (3)0.3940 (5)0.3439 (3)0.121 (2)
H15A0.49130.34470.38750.182*
H15B0.45470.33330.30410.182*
H15C0.42180.43930.34530.182*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0484 (4)0.0576 (5)0.0422 (4)0.0070 (4)0.0012 (3)0.0115 (3)
Cu10.0358 (3)0.0405 (3)0.0399 (3)0.0000.00888 (19)0.000
Cl20.0404 (4)0.0512 (5)0.0950 (6)0.0002 (4)0.0239 (4)0.0185 (4)
N10.0310 (12)0.0451 (14)0.0391 (12)0.0005 (10)0.0081 (9)0.0017 (10)
N20.0367 (13)0.0549 (16)0.0441 (13)0.0022 (12)0.0038 (10)0.0026 (12)
O10.0499 (12)0.0718 (16)0.0491 (11)0.0258 (11)0.0017 (9)0.0101 (11)
O20.0655 (14)0.0698 (16)0.0587 (13)0.0287 (12)0.0189 (11)0.0032 (12)
O30.0605 (15)0.0776 (19)0.0928 (18)0.0156 (14)0.0105 (13)0.0301 (15)
C10.0307 (14)0.0445 (17)0.0493 (16)0.0024 (13)0.0137 (12)0.0110 (13)
C20.0321 (14)0.0440 (17)0.0526 (16)0.0068 (13)0.0158 (12)0.0106 (14)
C30.0418 (16)0.0472 (18)0.0556 (17)0.0088 (14)0.0239 (14)0.0096 (14)
C40.0452 (17)0.050 (2)0.072 (2)0.0142 (15)0.0293 (16)0.0159 (16)
C50.0334 (15)0.064 (2)0.074 (2)0.0134 (16)0.0128 (15)0.0193 (18)
C60.0396 (16)0.059 (2)0.0531 (17)0.0054 (15)0.0085 (13)0.0098 (15)
C70.092 (3)0.072 (3)0.074 (2)0.027 (2)0.038 (2)0.003 (2)
C80.0306 (14)0.0449 (17)0.0442 (15)0.0038 (13)0.0114 (12)0.0079 (13)
C90.0422 (16)0.0481 (18)0.0471 (16)0.0071 (14)0.0142 (13)0.0013 (14)
C100.0385 (15)0.0423 (17)0.0436 (15)0.0071 (13)0.0154 (12)0.0010 (13)
C110.0428 (16)0.0501 (19)0.0564 (17)0.0013 (15)0.0200 (13)0.0040 (15)
C120.057 (2)0.052 (2)0.073 (2)0.0023 (16)0.0303 (17)0.0101 (17)
C130.074 (2)0.066 (2)0.070 (2)0.013 (2)0.0302 (19)0.0246 (19)
C140.060 (2)0.074 (3)0.0518 (18)0.0150 (19)0.0126 (16)0.0142 (18)
C150.082 (3)0.110 (4)0.149 (4)0.029 (3)0.009 (3)0.055 (3)
Geometric parameters (Å, º) top
Cl1—Cu12.2297 (8)C4—C51.377 (5)
Cu1—Cl1i2.2297 (8)C4—H40.9300
Cu1—Cl22.2732 (8)C5—C61.366 (4)
Cu1—Cl2i2.2732 (8)C5—H50.9300
N1—C81.338 (3)C6—H60.9300
N1—C101.386 (3)C7—H7A0.9600
N1—H10.8600C7—H7B0.9600
N2—C81.334 (4)C7—H7C0.9600
N2—C91.385 (4)C9—C101.386 (4)
N2—H20.8600C9—C141.388 (4)
O1—C21.356 (3)C10—C111.382 (4)
O1—H1A0.8200C11—C121.377 (4)
O2—C31.357 (4)C11—H110.9300
O2—C71.431 (4)C12—C131.400 (5)
O3—C151.372 (5)C12—H120.9300
O3—H30.8200C13—C141.364 (5)
C1—C21.387 (4)C13—H130.9300
C1—C61.405 (4)C14—H140.9300
C1—C81.445 (4)C15—H15A0.9600
C2—C31.398 (4)C15—H15B0.9600
C3—C41.378 (4)C15—H15C0.9600
Cl1i—Cu1—Cl199.99 (5)O2—C7—H7A109.5
Cl1i—Cu1—Cl2128.83 (3)O2—C7—H7B109.5
Cl1—Cu1—Cl2103.30 (3)H7A—C7—H7B109.5
Cl1i—Cu1—Cl2i103.30 (3)O2—C7—H7C109.5
Cl1—Cu1—Cl2i128.83 (3)H7A—C7—H7C109.5
Cl2—Cu1—Cl2i96.38 (5)H7B—C7—H7C109.5
C8—N1—C10109.7 (2)N2—C8—N1107.9 (2)
C8—N1—H1125.1N2—C8—C1125.6 (2)
C10—N1—H1125.1N1—C8—C1126.5 (2)
C8—N2—C9109.9 (2)N2—C9—C10106.2 (3)
C8—N2—H2125.0N2—C9—C14132.3 (3)
C9—N2—H2125.0C10—C9—C14121.5 (3)
C2—O1—H1A109.5C11—C10—N1132.1 (3)
C3—O2—C7117.7 (2)C11—C10—C9121.7 (3)
C15—O3—H3109.5N1—C10—C9106.2 (2)
C2—C1—C6118.4 (3)C12—C11—C10116.8 (3)
C2—C1—C8121.6 (2)C12—C11—H11121.6
C6—C1—C8120.0 (3)C10—C11—H11121.6
O1—C2—C1118.4 (2)C11—C12—C13121.2 (3)
O1—C2—C3120.7 (3)C11—C12—H12119.4
C1—C2—C3120.9 (2)C13—C12—H12119.4
O2—C3—C4126.1 (3)C14—C13—C12122.1 (3)
O2—C3—C2114.5 (2)C14—C13—H13119.0
C4—C3—C2119.4 (3)C12—C13—H13119.0
C5—C4—C3119.8 (3)C13—C14—C9116.7 (3)
C5—C4—H4120.1C13—C14—H14121.6
C3—C4—H4120.1C9—C14—H14121.6
C6—C5—C4121.5 (3)O3—C15—H15A109.5
C6—C5—H5119.3O3—C15—H15B109.5
C4—C5—H5119.3H15A—C15—H15B109.5
C5—C6—C1120.0 (3)O3—C15—H15C109.5
C5—C6—H6120.0H15A—C15—H15C109.5
C1—C6—H6120.0H15B—C15—H15C109.5
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.092.634 (3)120
N2—H2···O30.861.922.747 (3)162
O3—H3···Cl20.822.443.245 (3)168
N1—H1···Cl1ii0.862.553.298 (2)147
O1—H1A···Cl2ii0.822.363.066 (2)145
Symmetry code: (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C14H13N2O2)2[CuCl4]·2CH4O
Mr751.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.992 (2), 9.9694 (16), 19.849 (3)
β (°) 109.406 (2)
V3)3358.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.55 × 0.32 × 0.29
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.605, 0.757
No. of measured, independent and
observed [I > 2σ(I)] reflections
8468, 2968, 2273
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.00
No. of reflections2968
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Cl1—Cu12.2297 (8)Cu1—Cl22.2732 (8)
Cl1i—Cu1—Cl199.99 (5)Cl1—Cu1—Cl2103.30 (3)
Cl1i—Cu1—Cl2128.83 (3)Cl2—Cu1—Cl2i96.38 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.092.634 (3)120
N2—H2···O30.861.922.747 (3)162
O3—H3···Cl20.822.443.245 (3)168
N1—H1···Cl1ii0.862.553.298 (2)147
O1—H1A···Cl2ii0.822.363.066 (2)145
Symmetry code: (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

References

First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, Y.-H., Su, Z.-M., Wang, Y., Hao, X.-R. & Shao, K.-Z. (2006). Acta Cryst. E62, m2361–m2362.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds