organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Nebiviololinium chloride dihydrate

aBerlin-Chemie AG, Glienicker Weg 125, D-12489 Berlin, Germany, and bBundesanstalt für Materialforschung und prüfung, Abteilung Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany
*Correspondence e-mail: franziska.emmerling@bam.de

(Received 9 November 2007; accepted 21 November 2007; online 6 December 2007)

The hydro­chloride salt of chiral L-nebivolol {systematic name: (+)−(R,S,S,S)-bis­[2-(6-fluoro-3,4-dihydro-2H-1-benzopyran-2-yl)-2-hydroxy­ethyl]ammonium chloride dihydrate}, C22H26F2NO4+·Cl·2H2O, was obtained by chiral liquid chromatography as a dihydrate. The pyran rings adopt half-chair conformations. Hydrogen bonds between the cation, anions and water mol­ecules contribute to the formation of layers parallel to the ac plane.

Related literature

For related literature, see: Cini et al. (1990[Cini, M., Crotti, P. & Macchia, F. (1990). Tetrahedron Lett. 31, 4661-4664.]); van Lommen et al. (1990[Lommen, G. R. E. van, de Bruyn, M. F. L. & Schroven, M. F. J. (1990). J. Pharm. Belg. 45, 355-360.]); Peeters et al. (1993[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 2154-2157.]); Tuchalski et al. (2006[Tuchalski, G., Emmerling, F., Groger, K., Hansicke, A., Nagel, T. & Reck, G. (2006). J. Mol. Struct. 800, 28-44.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26F2NO4+·Cl·2H2O

  • Mr = 477.92

  • Orthorhombic, P 21 21 21

  • a = 4.8026 (4) Å

  • b = 14.5781 (12) Å

  • c = 33.261 (3) Å

  • V = 2328.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 291 (2) K

  • 0.60 × 0.12 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.981

  • 26222 measured reflections

  • 3401 independent reflections

  • 2857 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.05

  • 3401 reflections

  • 301 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 608 Friedel pairs

  • Flack parameter: −0.04 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1Wi 0.90 2.12 2.794 (3) 131
N1—H1⋯O4ii 0.90 2.37 3.056 (4) 133
N1—H2⋯O4′iii 0.90 2.19 3.061 (4) 162
O4—H9⋯Cl1i 0.82 2.67 3.142 (2) 118
O4′—H10⋯O2Wii 0.82 2.04 2.701 (4) 137
O1W—H1B⋯Cl1 0.89 (4) 2.47 (4) 3.242 (2) 146 (4)
O1W—H2B⋯N1iv 0.88 (3) 2.47 (4) 2.794 (3) 102 (3)
O2W—H1A⋯Cl1 0.89 (4) 2.29 (4) 3.175 (3) 175 (3)
O2W—H2A⋯Cl1iii 0.88 (4) 2.37 (4) 3.242 (3) 171 (3)
C2′—H4⋯O6′ 0.97 2.26 2.708 (4) 107
C2—H5⋯O6 0.97 2.35 2.738 (4) 103
C2—H6⋯O6ii 0.97 2.49 3.457 (4) 172
C14′—H26⋯F1v 0.93 2.34 3.213 (5) 156
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x-1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x+2, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Bruker, 2001[Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

L-Nebivolol is one enantiomer of the active pharmaceutical ingredient DL-nebivolol. DL-Nebivolol is a β-blocker of the third generation exhibiting a unique activity profile (van Lommen, et al., 1990). Here we report the title compound, (I), the hydrochloride salt of L-nebivolol, obtained by chiral liquid chromatography.

The overall shape of the cation in (I) is strongly influenced by the conformation of the bridging C—C—N—C—C chain between the two benzopyran moieties. This conformation is stabilized by two intramolecular N—H···O hydrogen bonds, depicted in Figure 1. Two non-classical C—H···O intramolecular hydrogen bonds align the torsion angles C2—C3—C5—O6 and C2'-C3'-C5'-O6' in a synclinal (sc) arrangement. The length of the bridging chain defined by the distance between the carbon atoms C5 and C5' amounts to 7.434 (2) Å. O6 and O6' are in cis-position. The average C—N, C—C and C—O distances in the title compound (Fig. 1) are in good agreement with those in other nebivolol derivatives (Peeters et al., 1993; Tuchalski et al., 2006).

Figure 2 shows the packing in (I). Like in the other nebivolol isomers the molecular packing of l-nebivolol is directed by classical intermolecular hydrogen bonds. Nine unique hydrogen bonds between nitrogen and hydroxyl groups, nitrogen and water molecules, hydroxyl groups and water molecules, hydroxyl groups and chlorine as well as between water and chlorine can be observed (Table 1). Together, these result in layers propagating in (010).

Related literature top

For related literature, see: Cini et al. (1990); van Lommen et al. (1990); Peeters et al. (1993); Tuchalski et al. (2006).

Experimental top

The title compound was synthesized by a subsequent ring-opening addition reaction (Cini et al., 1990) of two different oxiran isomers with benzylamine leading to the individual benzyl-nebivolol isomers endowed with 4 chiral centers. The L-nebivolol isomer was isolated after hydrogenation and preparative chiral chromatography as its corresponding hydrochloride.

Colourless needles of (I) were grown by solvent evaporation from ethanol/ethyl acetate (1:1 v/v) at room temperature. NMR data: 1H NMR (DMSO-d6), δ(p.p.m.): 1.70 (1H, m); 1.77 (1H, m); 1.93 (1H, m); 2.11 (1H, m); 2.79 (4H, m); 3.05 (1H, m); 3.17 (1H, m); 3.22 (1H, m); 3.33 (1H, m); 3.89 (1H, m); 3.99 (1H, m); 3.99 (1H, m); 4.09 (1H, m); 5.75 (1H, d); 5.94 (1H, d); 6.76 (2H, dd); 6.91 (2H, m); 6.94 (2H, m); 8.63 (2H, broad) 13C NMR (DMSO -d6) δ(p.p.m.): 22.1; 22.3; 23.4; 24.0; 49.4; 49.8; 67.3; 67.4; 76.7; 77.0; 113.6 (23.0); 113.6 (23.1); 115.2 (22.5); 115.3 (22.5); 117.3 (8.1); 117.3 (8.1); 123.6 (7.7); 123.7 (7.8); 150.0 (1.4); 150.4 (1.6); 155.8 (235.5); 155.9 (235.5); [αl]29D= - 20.5° (c = 1, THF/water = 4/1) chiral LC: 99.9 area-%

Refinement top

The water H atoms were located in a difference map and their positions were freely refined with Uiso(H) = 1.5Ueq(O).

The other hydrogen atoms were located in difference maps, repositioned with idealized geometry (C—H = 0.93–0.97 Å, N—H = 0.89 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom).

Structure description top

L-Nebivolol is one enantiomer of the active pharmaceutical ingredient DL-nebivolol. DL-Nebivolol is a β-blocker of the third generation exhibiting a unique activity profile (van Lommen, et al., 1990). Here we report the title compound, (I), the hydrochloride salt of L-nebivolol, obtained by chiral liquid chromatography.

The overall shape of the cation in (I) is strongly influenced by the conformation of the bridging C—C—N—C—C chain between the two benzopyran moieties. This conformation is stabilized by two intramolecular N—H···O hydrogen bonds, depicted in Figure 1. Two non-classical C—H···O intramolecular hydrogen bonds align the torsion angles C2—C3—C5—O6 and C2'-C3'-C5'-O6' in a synclinal (sc) arrangement. The length of the bridging chain defined by the distance between the carbon atoms C5 and C5' amounts to 7.434 (2) Å. O6 and O6' are in cis-position. The average C—N, C—C and C—O distances in the title compound (Fig. 1) are in good agreement with those in other nebivolol derivatives (Peeters et al., 1993; Tuchalski et al., 2006).

Figure 2 shows the packing in (I). Like in the other nebivolol isomers the molecular packing of l-nebivolol is directed by classical intermolecular hydrogen bonds. Nine unique hydrogen bonds between nitrogen and hydroxyl groups, nitrogen and water molecules, hydroxyl groups and water molecules, hydroxyl groups and chlorine as well as between water and chlorine can be observed (Table 1). Together, these result in layers propagating in (010).

For related literature, see: Cini et al. (1990); van Lommen et al. (1990); Peeters et al. (1993); Tuchalski et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with 50% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. View of the layers array of (I), formed via hydrogen-bonding interactions (indicated by green lines).
(+)-(R,S,S,S)-bis[2-(6-fluoro-3,4-dihydro-2H-1-benzopyran-2-yl)-2-\ hydroxyethyl]ammonium chloride dihydrate top
Crystal data top
C22H26F2NO4+·Cl·2H2OF(000) = 1008
Mr = 477.92Dx = 1.363 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 120 reflections
a = 4.8026 (4) Åθ = 1.2–25.4°
b = 14.5781 (12) ŵ = 0.22 mm1
c = 33.261 (3) ÅT = 291 K
V = 2328.7 (3) Å3Needle, colourless
Z = 40.60 × 0.12 × 0.09 mm
Data collection top
APEX CCD area-detector
diffractometer
3401 independent reflections
Radiation source: fine-focus sealed tube2857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω–scanθmax = 26.4°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.865, Tmax = 0.981k = 1818
26222 measured reflectionsl = 4141
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.978P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
3401 reflectionsΔρmax = 0.33 e Å3
301 parametersΔρmin = 0.24 e Å3
6 restraintsAbsolute structure: Flack (1983), xx Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (12)
Crystal data top
C22H26F2NO4+·Cl·2H2OV = 2328.7 (3) Å3
Mr = 477.92Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8026 (4) ŵ = 0.22 mm1
b = 14.5781 (12) ÅT = 291 K
c = 33.261 (3) Å0.60 × 0.12 × 0.09 mm
Data collection top
APEX CCD area-detector
diffractometer
3401 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2857 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.981Rint = 0.054
26222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.33 e Å3
S = 1.05Δρmin = 0.24 e Å3
3401 reflectionsAbsolute structure: Flack (1983), xx Friedel pairs
301 parametersAbsolute structure parameter: 0.04 (12)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.7060 (2)0.96561 (9)0.28493 (3)0.0826 (4)
O1W0.2063 (8)1.0846 (2)0.24528 (8)0.0899 (10)
H1A0.348 (7)0.866 (3)0.2722 (19)0.135*
H1B0.348 (8)1.075 (3)0.2618 (13)0.135*
O2W0.2154 (7)0.8243 (2)0.26894 (9)0.0772 (8)
H2A0.064 (6)0.858 (3)0.2719 (18)0.116*
H2B0.191 (10)1.0312 (17)0.2332 (13)0.116*
N10.7326 (6)0.57169 (17)0.33807 (7)0.0461 (7)
H10.84750.56220.31710.069*
H20.58290.60260.32900.069*
C2'0.8776 (7)0.6276 (2)0.36873 (9)0.0435 (8)
H31.02880.59180.38000.052*
H40.74840.64140.39030.052*
C20.6415 (7)0.4814 (2)0.35470 (9)0.0397 (8)
H50.51960.49200.37750.048*
H60.80350.44830.36430.048*
C30.4905 (7)0.4230 (2)0.32411 (9)0.0390 (8)
H70.61690.40920.30180.058*
C3'0.9940 (7)0.7165 (2)0.35241 (9)0.0403 (8)
H80.84980.74780.33670.048*
O40.2600 (5)0.47447 (14)0.30934 (6)0.0449 (5)
H90.17440.44370.29280.067*
O4'1.2211 (5)0.69428 (15)0.32678 (6)0.0508 (6)
H101.28710.74150.31740.076*
C50.3984 (7)0.3337 (2)0.34381 (9)0.0403 (8)
H110.56450.30080.35300.060*
C5'1.0904 (7)0.7793 (2)0.38644 (9)0.0390 (8)
H121.25510.75210.39910.047*
O60.2381 (5)0.36036 (13)0.37856 (6)0.0455 (6)
O6'0.8676 (5)0.78023 (15)0.41512 (6)0.0473 (6)
C70.0810 (7)0.2942 (2)0.39725 (9)0.0421 (8)
C7'0.8967 (7)0.8404 (2)0.44712 (9)0.0411 (8)
C80.0283 (7)0.2085 (2)0.37968 (11)0.0457 (9)
C8'1.0804 (7)0.9139 (2)0.44601 (10)0.0431 (8)
C90.1485 (8)0.1844 (2)0.33954 (11)0.0571 (10)
H130.01170.15080.32390.069*
H140.30970.14520.34320.069*
C9'1.2565 (8)0.9325 (2)0.40927 (9)0.0461 (8)
H151.44950.91830.41520.055*
H161.24510.99710.40250.055*
C100.2340 (9)0.2710 (2)0.31677 (9)0.0506 (9)
H170.34600.25430.29360.061*
H180.06920.30260.30720.061*
C10'1.1607 (7)0.8755 (2)0.37343 (9)0.0455 (8)
H190.99820.90380.36140.055*
H201.30720.87360.35340.055*
C110.0325 (8)0.3188 (3)0.43371 (10)0.0527 (9)
H210.00970.37560.44490.063*
C11'0.7255 (8)0.8244 (2)0.47963 (9)0.0499 (9)
H220.60060.77570.47910.060*
C120.2092 (9)0.2592 (3)0.45375 (12)0.0668 (11)
H230.29080.27530.47810.080*
C12'0.7387 (9)0.8806 (3)0.51317 (10)0.0578 (10)
H240.62420.87070.53530.069*
C130.2590 (9)0.1757 (3)0.43632 (13)0.0660 (11)
C13'0.9266 (9)0.9516 (3)0.51263 (10)0.0581 (10)
C140.1492 (8)0.1495 (3)0.40030 (13)0.0615 (11)
H250.19280.09240.38950.092*
C14'1.0930 (8)0.9700 (3)0.48011 (10)0.0551 (9)
H261.21411.01980.48070.066*
F10.4347 (6)0.11636 (19)0.45634 (9)0.1020 (9)
F1'0.9452 (7)1.00610 (18)0.54589 (7)0.0957 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0593 (7)0.1298 (10)0.0587 (6)0.0099 (7)0.0044 (5)0.0150 (6)
O1W0.098 (3)0.120 (3)0.0524 (17)0.013 (2)0.0059 (17)0.0197 (17)
O2W0.0740 (19)0.095 (2)0.0626 (16)0.0110 (18)0.0067 (18)0.0175 (16)
N10.0506 (17)0.0464 (15)0.0414 (14)0.0137 (15)0.0035 (14)0.0038 (13)
C2'0.0459 (19)0.0432 (19)0.0414 (18)0.0070 (16)0.0018 (16)0.0028 (15)
C20.0390 (18)0.0357 (17)0.0444 (17)0.0061 (15)0.0004 (15)0.0030 (14)
C30.0357 (18)0.0401 (17)0.0411 (17)0.0007 (16)0.0039 (15)0.0046 (15)
C3'0.0384 (18)0.0422 (18)0.0403 (17)0.0039 (16)0.0044 (15)0.0003 (15)
O40.0432 (12)0.0465 (13)0.0450 (12)0.0013 (13)0.0060 (12)0.0019 (10)
O4'0.0512 (14)0.0442 (12)0.0569 (13)0.0016 (12)0.0125 (13)0.0022 (11)
C50.0404 (18)0.0349 (17)0.0456 (18)0.0003 (15)0.0008 (17)0.0006 (15)
C5'0.0348 (17)0.0430 (19)0.0393 (17)0.0010 (15)0.0008 (15)0.0007 (15)
O60.0562 (14)0.0394 (12)0.0410 (11)0.0112 (12)0.0060 (12)0.0027 (10)
O6'0.0437 (13)0.0532 (14)0.0449 (12)0.0116 (11)0.0076 (11)0.0069 (11)
C70.0403 (18)0.044 (2)0.0424 (19)0.0079 (17)0.0072 (16)0.0112 (16)
C7'0.0400 (19)0.0469 (19)0.0365 (17)0.0051 (17)0.0033 (16)0.0046 (15)
C80.0412 (19)0.0370 (18)0.059 (2)0.0038 (17)0.0063 (17)0.0082 (17)
C8'0.0386 (19)0.0441 (19)0.0467 (19)0.0081 (17)0.0071 (16)0.0029 (16)
C90.060 (3)0.0351 (18)0.076 (3)0.0089 (18)0.005 (2)0.0075 (18)
C9'0.0445 (19)0.0416 (18)0.0522 (19)0.0056 (18)0.0005 (18)0.0015 (16)
C100.056 (2)0.046 (2)0.0500 (19)0.008 (2)0.003 (2)0.0102 (16)
C10'0.049 (2)0.0463 (19)0.0408 (18)0.0076 (16)0.0002 (16)0.0044 (15)
C110.058 (2)0.055 (2)0.045 (2)0.012 (2)0.0019 (19)0.0034 (18)
C11'0.051 (2)0.055 (2)0.0446 (19)0.0013 (19)0.0068 (18)0.0017 (16)
C120.060 (3)0.078 (3)0.062 (2)0.011 (2)0.007 (2)0.016 (2)
C12'0.058 (2)0.072 (2)0.0435 (19)0.016 (2)0.0081 (19)0.0023 (19)
C130.055 (2)0.060 (2)0.084 (3)0.020 (2)0.001 (2)0.027 (2)
C13'0.068 (3)0.065 (3)0.041 (2)0.008 (2)0.001 (2)0.0143 (19)
C140.054 (2)0.048 (2)0.082 (3)0.0118 (19)0.008 (2)0.009 (2)
C14'0.059 (2)0.051 (2)0.056 (2)0.002 (2)0.007 (2)0.0113 (18)
F10.090 (2)0.0920 (18)0.124 (2)0.0404 (17)0.0217 (17)0.0312 (17)
F1'0.124 (2)0.1009 (19)0.0617 (14)0.0078 (18)0.0089 (15)0.0367 (14)
Geometric parameters (Å, º) top
O1W—H1B0.89 (4)C7—C81.402 (5)
O1W—H2B0.88 (3)C7'—C11'1.378 (5)
O2W—H1A0.89 (4)C7'—C8'1.388 (5)
O2W—H2A0.92 (5)C8—C141.391 (5)
N1—C2'1.479 (4)C8—C91.496 (5)
N1—C21.493 (4)C8'—C14'1.400 (5)
N1—H10.9000C8'—C9'1.511 (5)
N1—H20.9000C9—C101.528 (5)
C2'—C3'1.512 (4)C9—H130.9700
C2'—H30.9700C9—H140.9700
C2'—H40.9700C9'—C10'1.525 (4)
C2—C31.512 (4)C9'—H150.9700
C2—H50.9700C9'—H160.9700
C2—H60.9700C10—H170.9700
C3—O41.424 (4)C10—H180.9700
C3—C51.524 (4)C10'—H190.9700
C3—H70.9800C10'—H200.9700
C3'—O4'1.422 (4)C11—C121.385 (5)
C3'—C5'1.528 (4)C11—H210.9300
C3'—H80.9800C11'—C12'1.386 (5)
O4—H90.8200C11'—H220.9300
O4'—H100.8200C12—C131.370 (6)
C5—O61.442 (4)C12—H230.9300
C5—C101.506 (5)C12'—C13'1.372 (5)
C5—H110.9800C12'—H240.9300
C5'—O6'1.434 (4)C13—C141.363 (6)
C5'—C10'1.505 (4)C13—F11.379 (4)
C5'—H120.9800C13'—C14'1.371 (5)
O6—C71.373 (4)C13'—F1'1.365 (4)
O6'—C7'1.386 (4)C14—H250.9300
C7—C111.377 (5)C14'—H260.9300
H1B—O1W—H2B102 (4)C14—C8—C7117.1 (3)
H1A—O2W—H2A101 (4)C14—C8—C9122.1 (3)
C2'—N1—C2111.6 (2)C7—C8—C9120.7 (3)
C2'—N1—H1109.3C7'—C8'—C14'117.2 (3)
C2—N1—H1109.3C7'—C8'—C9'121.1 (3)
C2'—N1—H2109.3C14'—C8'—C9'121.7 (3)
C2—N1—H2109.3C8—C9—C10110.6 (3)
H1—N1—H2108.0C8—C9—H13109.5
N1—C2'—C3'113.5 (3)C10—C9—H13109.5
N1—C2'—H3108.9C8—C9—H14109.5
C3'—C2'—H3108.9C10—C9—H14109.5
N1—C2'—H4108.9H13—C9—H14108.1
C3'—C2'—H4108.9C8'—C9'—C10'111.4 (3)
H3—C2'—H4107.7C8'—C9'—H15109.3
N1—C2—C3112.8 (2)C10'—C9'—H15109.3
N1—C2—H5109.0C8'—C9'—H16109.3
C3—C2—H5109.0C10'—C9'—H16109.3
N1—C2—H6109.0H15—C9'—H16108.0
C3—C2—H6109.0C5—C10—C9110.3 (3)
H5—C2—H6107.8C5—C10—H17109.6
O4—C3—C2108.0 (2)C9—C10—H17109.6
O4—C3—C5111.9 (3)C5—C10—H18109.6
C2—C3—C5109.3 (2)C9—C10—H18109.6
O4—C3—H7109.2H17—C10—H18108.1
C2—C3—H7109.2C5'—C10'—C9'110.5 (3)
C5—C3—H7109.2C5'—C10'—H19109.5
O4'—C3'—C2'107.7 (3)C9'—C10'—H19109.5
O4'—C3'—C5'110.4 (3)C5'—C10'—H20109.5
C2'—C3'—C5'111.1 (2)C9'—C10'—H20109.5
O4'—C3'—H8109.2H19—C10'—H20108.1
C2'—C3'—H8109.2C7—C11—C12120.2 (3)
C5'—C3'—H8109.2C7—C11—H21119.9
C3—O4—H9109.5C12—C11—H21119.9
C3'—O4'—H10109.5C7'—C11'—C12'120.3 (4)
O6—C5—C10111.3 (3)C7'—C11'—H22119.9
O6—C5—C3105.6 (2)C12'—C11'—H22119.9
C10—C5—C3114.5 (3)C13—C12—C11117.5 (4)
O6—C5—H11108.4C13—C12—H23121.3
C10—C5—H11108.4C11—C12—H23121.3
C3—C5—H11108.4C13'—C12'—C11'117.7 (4)
O6'—C5'—C10'110.5 (3)C13'—C12'—H24121.1
O6'—C5'—C3'105.8 (2)C11'—C12'—H24121.1
C10'—C5'—C3'114.4 (3)C14—C13—C12123.5 (4)
O6'—C5'—H12108.7C14—C13—F1119.1 (4)
C10'—C5'—H12108.7C12—C13—F1117.4 (4)
C3'—C5'—H12108.7C14'—C13'—F1'119.1 (4)
C7—O6—C5117.8 (2)C14'—C13'—C12'122.7 (3)
C7'—O6'—C5'116.2 (2)F1'—C13'—C12'118.1 (3)
O6—C7—C11115.7 (3)C13—C14—C8119.9 (4)
O6—C7—C8122.4 (3)C13—C14—H25120.1
C11—C7—C8121.8 (3)C8—C14—H25120.1
C11'—C7'—O6'115.8 (3)C13'—C14'—C8'120.0 (4)
C11'—C7'—C8'122.0 (3)C13'—C14'—H26120.0
O6'—C7'—C8'122.1 (3)C8'—C14'—H26120.0
C2—N1—C2'—C3'175.4 (3)O6'—C7'—C8'—C9'0.8 (5)
C2'—N1—C2—C3179.6 (3)C14—C8—C9—C10157.4 (4)
N1—C2—C3—O456.6 (3)C7—C8—C9—C1019.6 (5)
N1—C2—C3—C5178.5 (3)C7'—C8'—C9'—C10'11.8 (4)
N1—C2'—C3'—O4'70.0 (4)C14'—C8'—C9'—C10'167.6 (3)
N1—C2'—C3'—C5'169.0 (3)O6—C5—C10—C959.5 (4)
O4—C3—C5—O664.8 (3)C3—C5—C10—C9179.1 (3)
C2—C3—C5—O654.8 (3)C8—C9—C10—C547.3 (4)
O4—C3—C5—C1058.0 (4)O6'—C5'—C10'—C9'61.2 (4)
C2—C3—C5—C10177.5 (3)C3'—C5'—C10'—C9'179.6 (3)
O4'—C3'—C5'—O6'167.0 (2)C8'—C9'—C10'—C5'41.4 (4)
C2'—C3'—C5'—O6'47.6 (3)O6—C7—C11—C12175.8 (3)
O4'—C3'—C5'—C10'71.1 (4)C8—C7—C11—C121.5 (5)
C2'—C3'—C5'—C10'169.5 (3)O6'—C7'—C11'—C12'179.9 (3)
C10—C5—O6—C741.9 (4)C8'—C7'—C11'—C12'2.0 (5)
C3—C5—O6—C7166.7 (3)C7—C11—C12—C131.5 (6)
C10'—C5'—O6'—C7'49.5 (4)C7'—C11'—C12'—C13'0.1 (5)
C3'—C5'—O6'—C7'173.9 (2)C11—C12—C13—C141.4 (7)
C5—O6—C7—C11170.0 (3)C11—C12—C13—F1179.9 (3)
C5—O6—C7—C812.7 (4)C11'—C12'—C13'—C14'1.9 (6)
C5'—O6'—C7'—C11'163.3 (3)C11'—C12'—C13'—F1'178.6 (3)
C5'—O6'—C7'—C8'18.7 (4)C12—C13—C14—C81.3 (7)
O6—C7—C8—C14175.8 (3)F1—C13—C14—C8180.0 (3)
C11—C7—C8—C141.3 (5)C7—C8—C14—C131.2 (5)
O6—C7—C8—C91.4 (5)C9—C8—C14—C13178.3 (4)
C11—C7—C8—C9178.5 (3)F1'—C13'—C14'—C8'178.8 (3)
C11'—C7'—C8'—C14'2.2 (5)C12'—C13'—C14'—C8'1.7 (6)
O6'—C7'—C8'—C14'179.8 (3)C7'—C8'—C14'—C13'0.4 (5)
C11'—C7'—C8'—C9'177.2 (3)C9'—C8'—C14'—C13'179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Wi0.902.122.794 (3)131
N1—H1···O4ii0.902.373.056 (4)133
N1—H2···O4iii0.902.193.061 (4)162
O4—H9···Cl1i0.822.673.142 (2)118
O4—H10···O2Wii0.822.042.701 (4)137
O1W—H1B···Cl10.89 (4)2.47 (4)3.242 (2)146 (4)
O1W—H2B···N1iv0.88 (3)2.47 (4)2.794 (3)102 (3)
O2W—H1A···Cl10.89 (4)2.29 (4)3.175 (3)175 (3)
O2W—H2A···Cl1iii0.88 (4)2.37 (4)3.242 (3)171 (3)
C2—H4···O60.972.262.708 (4)107
C2—H5···O60.972.352.738 (4)103
C2—H6···O6ii0.972.493.457 (4)172
C14—H26···F1v0.932.343.213 (5)156
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H26F2NO4+·Cl·2H2O
Mr477.92
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)4.8026 (4), 14.5781 (12), 33.261 (3)
V3)2328.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.60 × 0.12 × 0.09
Data collection
DiffractometerAPEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.865, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
26222, 3401, 2857
Rint0.054
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.05
No. of reflections3401
No. of parameters301
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.24
Absolute structureFlack (1983), xx Friedel pairs
Absolute structure parameter0.04 (12)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Wi0.902.122.794 (3)131
N1—H1···O4ii0.902.373.056 (4)133
N1—H2···O4'iii0.902.193.061 (4)162
O4—H9···Cl1i0.822.673.142 (2)118
O4'—H10···O2Wii0.822.042.701 (4)137
O1W—H1B···Cl10.89 (4)2.47 (4)3.242 (2)146 (4)
O1W—H2B···N1iv0.88 (3)2.47 (4)2.794 (3)102 (3)
O2W—H1A···Cl10.89 (4)2.29 (4)3.175 (3)175 (3)
O2W—H2A···Cl1iii0.88 (4)2.37 (4)3.242 (3)171 (3)
C2'—H4···O6'0.972.262.708 (4)107
C2—H5···O60.972.352.738 (4)103
C2—H6···O6ii0.972.493.457 (4)172
C14'—H26···F1v0.932.343.213 (5)156
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+2, y+1, z.
 

References

First citationBruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCini, M., Crotti, P. & Macchia, F. (1990). Tetrahedron Lett. 31, 4661–4664.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLommen, G. R. E. van, de Bruyn, M. F. L. & Schroven, M. F. J. (1990). J. Pharm. Belg. 45, 355–360.  PubMed Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 2154–2157.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTuchalski, G., Emmerling, F., Groger, K., Hansicke, A., Nagel, T. & Reck, G. (2006). J. Mol. Struct. 800, 28–44.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds