organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Cyclohexane-1,4-diyl bis(4-nitrophenvl) dicarbonate

Syed Nawazish Ali,^{a,b} Sabira Begum,^a Mitchell A. Winnik^b and Alan J. Lough^{b*}

^aH. E. J. Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi 75270, Pakistan, and ^bDepartment of Chemistry. University of Toronto, Toronto, Ontario, M5S 3H6, Canada Correspondence e-mail: alough@chem.utoronto.ca

Received 3 December 2007; accepted 6 December 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.006 Å; R factor = 0.063; wR factor = 0.190; data-to-parameter ratio = 11.6.

In the title crystal structure, $C_{20}H_{18}N_2O_{10}$, there are two independent molecules, both of which lie on crystallographic inversion centres. In one molecule the 4-nitrophenyl dicarbonate groups are substituted in equatorial (A_{eq}) positions of the chair-form cyclohexane ring while in the other molecule the substitution is axial (B_{ax}) . The dihedral angles between the atoms of the symmetry-unique carbonate group $(O=CO_2-)$ and benzene ring for each molecule are $47.3 (1)^{\circ}$ for A_{eq} and 11.7 (2)° for B_{ax} . In B_{ax} , this facilitates the formation of a weak intramolecular $C-H \cdots O$ hydrogen bond, while the packing is stabilized by weak intermolecular C-H···O interactions.

Related literature

For related literature, see: Ali et al. (2008).

b = 11.6548 (18) Å

c = 12.3092 (11) Å

 $\alpha = 63.201 \ (8)^{\circ}$ $\beta = 87.254 \ (10)^{\circ}$

Experimental

Crystal data

$C_{20}H_{18}N_2O_{10}$	
$M_r = 446.36$	
Triclinic, P1	
a = 7.6804 (14)	Å

 $\gamma = 82.310 \ (7)^{\circ}$ V = 974.6 (3) Å³ Z = 2Mo $K\alpha$ radiation

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.768, T_{\max} = 0.996$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ 289 parameters $wR(F^2) = 0.190$ H-atom parameters constrained S = 0.96 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.27$ e Å⁻³ 3355 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10A - H10A \cdots O5A^{i}$ $C6B - H6BA \cdots O2B$ $C9B - H9BA \cdots O2A^{ii}$	0.95	2.32	3.205 (6)	155
	0.95	2.24	2.812 (5)	118
	0.95	2.48	3.184 (5)	131

 $\mu = 0.12 \text{ mm}^{-1}$

T = 150 (1) K

 $R_{\rm int} = 0.080$

 $0.22 \times 0.20 \times 0.08 \text{ mm}$

7088 measured reflections

3355 independent reflections

1633 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2001); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC.

The authors acknowledge funding from the Higher Education Commission (HEC) of Pakistan, Materials and Manufacturing Ontario (MMO), Canada, NSERC Canada and the University of Toronto.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2675).

References

- Ali, S. N., Begum, S., Winnik, S. A. & Lough, A. J. (2008). Acta Cryst. E64, 0281.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, o282 [https://doi.org/10.1107/S1600536807066007] trans-Cyclohexane-1,4-diyl bis(4-nitrophenyl) dicarbonate Syed Nawazish Ali, Sabira Begum, Mitchell A. Winnik and Alan J. Lough

S1. Comment

The synthesis of title compound is similar to that of cyclohex-2-ene-1,4-diylbis(4-nitrophenyl)dicarbonate (Ali *et al.*, 2008). Here, we used a mixture of *cis* and *trans* isomers of cyclohexane-1,4-diol. The *trans* isomer has been separated from the mixture of *cis* and *trans* isomers. Most of the *trans* isomer remained undissolved in EtOH during the recrystallization at 358 K, after 40 minutes. Pale yellow plates of (I) were obtained after solubilizing this EtOH insoluble solid in dichloromethane. The molecular structure is illustrated in Figs. 1 and 2, showing that one of the two asymmetric molecules possesses equatorial substituents and the other axial. Within the latter, a weak C—H…O interaction (Table 1) occurs. Further C—H…O links help to establish the packing.

S2. Experimental

A solution of 4-nitrophenylchloroformate (5.64 g, 28.0 mmol) in dry dichloromethane (40 ml) was added dropwise *via* a 100 ml separating funnel into a solution of cyclohexane-1,4-diol (*cis* and *trans* isomers) (1.63 g, 14.0 mmol) in anhydrous pyridine (2.15 g, 2.2 ml, 27.1 mmol) and dry dichloromethane (20 ml) in a 250 ml round-bottom flask. A white suspension appeared which was allowed to stir gently at room temperature for 16 h. After this time more dry dichloromethane (40 ml) was added, which dissolved the suspension and then the reaction mixture was stirred for another 6 h. Then it was quenched by adding deionized water (40 ml). The reaction mixture was transferred to a separating funnel (500 ml), and the lower organic phase was removed. The aqueous phase was washed with dichloromethane (30 ml × 2), and the dichloromethane solutions were combined. These were then washed with deionized water (30 ml × 2), a 1.0% solution of acetic acid (50 ml × 2) and once more with deionized water (40 ml × 2), and then dried over anhydrous magnesium sulfate and filtered. After filtration, the solvent was removed by rotary evaporator. The product was obtained in good yield (6.2 g, 84.0%) as a white solid. For recrystallization, the solid was dissolved in 95% EtOH (50 ml) at 358 K, after 40 minutes some of the solid (about 40%) remained undissolved. The warm solution was filtered and the EtOH-insoluble solid was recovered from the filter paper and dissolved in dichloromethane. Pale yellow plates of (I) were obtained by slow evaporation of solvent at room temperature.

S3. Refinement

The H atoms were placed in calculated positions, with C—H = 0.95–1.00 Å, and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of one of the independent molecules of the title compound with displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator (-x, -y, 1 - z).

Figure 2

View of the other independent molecule of the title compound with displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator (2 - x, 1 - y, -z). The dashed line indicates a hydrogen bond.

trans-Cyclohexane-1,4-diyl bis(4-nitrophenyl) dicarbonate

Crystal data

 $C_{20}H_{18}N_{2}O_{10}$ $M_{r} = 446.36$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.6804 (14) Å b = 11.6548 (18) Å c = 12.3092 (11) Å $a = 63.201 (8)^{\circ}$ $\beta = 87.254 (10)^{\circ}$ $\gamma = 82.310 (7)^{\circ}$ $V = 974.6 (3) \text{ Å}^{3}$

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 9 pixels mm⁻¹ φ scans and ω scans with κ offsets Absorption correction: multi-scan (*SORTAV*; Blessing, 1995) $T_{\min} = 0.768, T_{\max} = 0.996$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.063$	Hydrogen site location: inferred from
$wR(F^2) = 0.190$	neighbouring sites
<i>S</i> = 0.96	H-atom parameters constrained
3355 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0923P)^2]$
289 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 464

 $\theta = 2.7 - 25.2^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$

Plate, pale yellow

 $0.22 \times 0.20 \times 0.08 \text{ mm}$

7088 measured reflections

 $\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$

3355 independent reflections

1633 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int} = 0.080$

 $h = -9 \rightarrow 9$

 $k = -12 \rightarrow 13$

 $l = -14 \rightarrow 14$

 $D_{\rm x} = 1.521 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7088 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1A	0.1429 (4)	0.0985 (3)	0.2676 (2)	0.0517 (8)	
O2A	0.4182 (4)	-0.0092 (3)	0.2921 (2)	0.0504 (8)	
O3A	0.3173 (4)	0.1684 (3)	0.1182 (2)	0.0524 (8)	

O4A	0.9007 (4)	0.1716 (3)	-0.2527 (3)	0.0685 (10)
O5A	1.0631 (5)	0.1300 (3)	-0.0977 (3)	0.0690 (10)
N1A	0.9198 (6)	0.1542 (3)	-0.1481 (4)	0.0498 (10)
C1A	-0.1660 (6)	-0.0576 (4)	0.5216 (3)	0.0495 (12)
H1A1	-0.1245	-0.1509	0.5502	0.059*
H1A2	-0.2960	-0.0463	0.5211	0.059*
$C2\Delta$	-0.1003(6)	0.0194(4)	0.3211 0.3030 (3)	0.059
	-0.1380	-0.0145	0.3757 (5)	0.0515 (12)
	-0.1589	-0.0143	0.3390	0.002*
HZAZ	-0.1520	0.1112	0.3624	0.062*
C3A	0.0979 (6)	0.0112 (4)	0.3927 (3)	0.0474 (12)
НЗА	0.1518	-0.0796	0.4145	0.057*
C4A	0.3057 (6)	0.0763 (4)	0.2341 (4)	0.0453 (11)
C5A	0.4739 (6)	0.1635 (4)	0.0559 (3)	0.0409 (11)
C6A	0.6345 (6)	0.1517 (4)	0.1054 (4)	0.0476 (12)
H6AA	0.6442	0.1459	0.1844	0.057*
C7A	0.7824 (6)	0.1483 (4)	0.0383 (4)	0.0478 (11)
H7AA	0.8962	0.1381	0.0709	0.057*
C8A	0.7621 (6)	0.1599 (4)	-0.0766(3)	0.0402 (10)
C9A	0.6019 (6)	0.1746 (4)	-0.1267(3)	0.0459 (11)
НОАА	0.5926	0 1831	-0.2068	0.055*
CIOA	0.4527 (6)	0.1771(4)	-0.0601(3)	0.035
	0.4527 (0)	0.1771 (4)	-0.0032	0.055*
	0.0040 (4)	0.1070 0.5257(2)	-0.0932	0.033
	0.9940(4)	0.3337(3)	0.1088(2)	0.0493(8)
O2B	0.9203(4)	0.3799 (3)	0.3498 (2)	0.0568 (9)
O3B	0.8673 (4)	0.5951 (3)	0.2963 (2)	0.0486 (8)
O4B	0.4719 (5)	0.5191 (3)	0.7792 (3)	0.0708 (11)
O5B	0.4665 (5)	0.7279 (4)	0.6849 (3)	0.0731 (11)
N1B	0.5072 (5)	0.6198 (4)	0.6918 (3)	0.0527 (10)
C1B	0.8165 (6)	0.4921 (4)	-0.0214 (4)	0.0507 (12)
H1B1	0.7325	0.4509	-0.0465	0.061*
H1B2	0.7480	0.5565	0.0008	0.061*
C2B	0.9217 (6)	0.3884 (4)	0.0905 (3)	0.0500 (12)
H2B1	0.8409	0.3535	0.1597	0.060*
H2B2	0 9730	0 3162	0.0728	0.060*
C3B	1 0669 (6)	0.4393(4)	0.1269(3)	0.0497(12)
H3B	1 1392	0.3659	0.1938	0.060*
C/P	0.0251 (6)	0.3037	0.1750 0.2703 (4)	0.000
C4D	0.3231(0)	0.4077(4)	0.2793(4)	0.0474(11)
C2B	0.7791 (6)	0.5888 (4)	0.4005 (3)	0.0425 (11)
C6B	0.7732 (6)	0.4775 (4)	0.5097 (3)	0.0457(11)
H6BA	0.8299	0.3960	0.5189	0.055*
C7B	0.6813 (6)	0.4894 (4)	0.6054 (4)	0.0473 (11)
H7BA	0.6735	0.4149	0.6810	0.057*
C8B	0.6022 (6)	0.6085 (4)	0.5905 (3)	0.0412 (10)
C9B	0.6109 (6)	0.7178 (4)	0.4819 (3)	0.0439 (11)
H9BA	0.5554	0.7996	0.4727	0.053*
C10B	0.7007 (6)	0.7072 (4)	0.3872 (3)	0.0405 (10)
H10B	0.7085	0.7822	0.3120	0.049*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
O1A	0.052 (2)	0.0532 (18)	0.0391 (16)	0.0002 (15)	0.0040 (14)	-0.0132 (14)
O2A	0.052 (2)	0.0445 (17)	0.0441 (16)	0.0074 (16)	-0.0042 (15)	-0.0133 (13)
O3A	0.055 (2)	0.0517 (17)	0.0347 (16)	0.0048 (15)	0.0035 (14)	-0.0093 (14)
O4A	0.061 (3)	0.087 (2)	0.072 (2)	-0.0174 (19)	0.0189 (18)	-0.048 (2)
O5A	0.045 (2)	0.064 (2)	0.078 (2)	-0.0100 (18)	0.0049 (19)	-0.0146 (17)
N1A	0.047 (3)	0.040 (2)	0.059 (3)	-0.0088 (19)	0.004 (2)	-0.0180 (18)
C1A	0.051 (3)	0.052 (3)	0.045 (2)	-0.015 (2)	0.003 (2)	-0.019 (2)
C2A	0.056 (3)	0.062 (3)	0.039 (2)	-0.008 (2)	-0.001 (2)	-0.025 (2)
C3A	0.055 (3)	0.051 (3)	0.036 (2)	-0.007(2)	0.001 (2)	-0.019 (2)
C4A	0.049 (3)	0.046 (3)	0.044 (3)	-0.006 (2)	0.008 (2)	-0.025 (2)
C5A	0.043 (3)	0.035 (2)	0.041 (2)	-0.003 (2)	0.010 (2)	-0.0155 (18)
C6A	0.055 (3)	0.048 (3)	0.042 (2)	-0.003 (2)	-0.007 (2)	-0.022 (2)
C7A	0.043 (3)	0.048 (3)	0.052 (3)	-0.007(2)	-0.005 (2)	-0.021 (2)
C8A	0.042 (3)	0.032 (2)	0.044 (2)	-0.0007 (19)	0.002 (2)	-0.0166 (18)
C9A	0.054 (3)	0.045 (2)	0.035 (2)	-0.010 (2)	-0.001 (2)	-0.0141 (19)
C10A	0.040 (3)	0.050 (3)	0.039 (2)	-0.008 (2)	0.000 (2)	-0.0126 (19)
O1B	0.059 (2)	0.0453 (16)	0.0435 (17)	-0.0044 (15)	0.0073 (14)	-0.0209 (13)
O2B	0.079 (3)	0.0435 (19)	0.0430 (17)	-0.0046 (16)	0.0087 (15)	-0.0169 (15)
O3B	0.063 (2)	0.0411 (17)	0.0404 (16)	-0.0016 (15)	0.0082 (14)	-0.0194 (13)
O4B	0.077 (3)	0.075 (2)	0.0455 (19)	-0.004 (2)	0.0170 (17)	-0.0174 (17)
O5B	0.084 (3)	0.072 (2)	0.079 (2)	-0.009 (2)	0.0228 (19)	-0.050 (2)
N1B	0.048 (3)	0.064 (3)	0.048 (2)	-0.003 (2)	0.0061 (18)	-0.029 (2)
C1B	0.051 (3)	0.049 (3)	0.054 (3)	-0.002 (2)	0.005 (2)	-0.027 (2)
C2B	0.066 (3)	0.045 (3)	0.042 (2)	-0.009 (2)	0.009 (2)	-0.022 (2)
C3B	0.066 (3)	0.042 (2)	0.042 (2)	-0.003 (2)	0.004 (2)	-0.021 (2)
C4B	0.060 (3)	0.043 (3)	0.036 (2)	-0.008 (2)	-0.001 (2)	-0.014 (2)
C5B	0.046 (3)	0.047 (3)	0.035 (2)	-0.007 (2)	-0.0012 (19)	-0.0187 (19)
C6B	0.048 (3)	0.039 (2)	0.051 (3)	0.002 (2)	0.000 (2)	-0.022 (2)
C7B	0.048 (3)	0.047 (3)	0.041 (2)	-0.008 (2)	0.001 (2)	-0.015 (2)
C8B	0.038 (3)	0.046 (3)	0.040 (2)	-0.005 (2)	0.0024 (19)	-0.020 (2)
C9B	0.043 (3)	0.043 (2)	0.050 (3)	-0.003 (2)	-0.003 (2)	-0.025 (2)
C10B	0.045 (3)	0.041 (2)	0.037 (2)	-0.010 (2)	0.0005 (19)	-0.0180 (19)

Geometric parameters (Å, °)

O1A—C4A	1.327 (5)	O1B—C4B	1.328 (5)	
O1A—C3A	1.469 (4)	O1B—C3B	1.472 (5)	
O2A—C4A	1.199 (5)	O2B—C4B	1.184 (5)	
O3A—C4A	1.352 (5)	O3B—C4B	1.352 (5)	
O3A—C5A	1.404 (5)	O3B—C5B	1.398 (5)	
O4A—N1A	1.223 (4)	O4B—N1B	1.236 (4)	
O5A—N1A	1.224 (5)	O5B—N1B	1.222 (5)	
N1A—C8A	1.475 (5)	N1B—C8B	1.463 (5)	
C1A—C2A	1.518 (5)	C1B—C3B ⁱⁱ	1.507 (5)	
C1A—C3A ⁱ	1.525 (6)	C1B—C2B	1.535 (5)	

C1A—H1A1	0.9900	C1B—H1B1	0.9900
C1A—H1A2	0.9900	C1B—H1B2	0.9900
C2A—C3A	1.512 (6)	C2B—C3B	1.503 (6)
C2A—H2A1	0.9900	C2B—H2B1	0.9900
C2A—H2A2	0.9900	C2B—H2B2	0.9900
C3A—C1A ⁱ	1.525 (6)	C3B—C1B ⁱⁱ	1.507 (5)
C3A—H3A	1.0000	C3B—H3B	1.0000
C5A—C6A	1.365 (6)	C5B—C10B	1.370 (5)
C5A—C10A	1.379 (6)	C5B—C6B	1.388 (5)
C6A—C7A	1 379 (6)	C6B—C7B	1 395 (6)
C6A—H6AA	0.9500	C6B—H6BA	0.9500
C7A - C8A	1 373 (5)	C7B-C8B	1 373 (6)
C7A - H7AA	0.9500	C7B—H7BA	0.9500
C8A - C9A	1 358 (6)	C8B-C9B	1.375(5)
C_{0A} C_{10A}	1.356 (0)	$C^{0}B$ $C^{1}DB$	1.373(3) 1.372(5)
	0.9500		0.9500
	0.9500	CIOR HIOR	0.9500
CIOA—HIOA	0.9500		0.9300
C4A—O1A—C3A	116.0 (3)	C4B-01B-C3B	1164(3)
C4A - O3A - C5A	118.0 (3)	C4B - O3B - C5B	123.4(3)
04A—N1A—05A	123.8 (4)	05B—N1B—O4B	123.8 (4)
O4A—N1A—C8A	118.7 (4)	05B-N1B-C8B	118.3 (4)
O5A—N1A—C8A	117.5 (4)	04B—N1B—C8B	117.8 (4)
$C2A$ — $C1A$ — $C3A^{i}$	109.7 (3)	$C3B^{ii}$ — $C1B$ — $C2B$	112.3 (4)
C2A— $C1A$ — $H1A1$	109.7	$C3B^{ii}$ — $C1B$ — $H1B1$	109.1
$C3A^{i}$ — $C1A$ — $H1A1$	109.7	C2B— $C1B$ — $H1B1$	109.1
C2A—C1A—H1A2	109.7	$C3B^{ii}$ — $C1B$ — $H1B2$	109.1
$C3A^{i}$ — $C1A$ — $H1A2$	109.7	C2B— $C1B$ — $H1B2$	109.1
H1A1— $C1A$ — $H1A2$	108.2	H1B1 - C1B - H1B2	107.9
C3A—C2A—C1A	111.1 (3)	C3B-C2B-C1B	112.9 (4)
C3A—C2A—H2A1	109.4	C3B—C2B—H2B1	109.0
C1A—C2A—H2A1	109.4	C1B—C2B—H2B1	109.0
C3A—C2A—H2A2	109.4	C3B—C2B—H2B2	109.0
C1A—C2A—H2A2	109.4	C1B—C2B—H2B2	109.0
H2A1—C2A—H2A2	108.0	H2B1—C2B—H2B2	107.8
O1A—C3A—C2A	105.7 (3)	O1B—C3B—C2B	110.5 (4)
O1A—C3A—C1A ⁱ	108.5 (3)	O1B-C3B-C1B ⁱⁱ	106.1 (3)
C2A—C3A—C1A ⁱ	111.9 (4)	C2B—C3B—C1B ⁱⁱ	111.9 (3)
О1А—СЗА—НЗА	110.2	O1B—C3B—H3B	109.4
С2А—С3А—Н3А	110.2	C2B—C3B—H3B	109.4
C1A ⁱ —C3A—H3A	110.2	C1B ⁱⁱ —C3B—H3B	109.4
O2A—C4A—O1A	127.8 (4)	O2B—C4B—O1B	127.6 (4)
O2A—C4A—O3A	126.7 (4)	O2B—C4B—O3B	127.0 (4)
01A—C4A—O3A	105.5 (4)	O1B—C4B—O3B	105.3 (3)
C6A—C5A—C10A	122.8 (4)	C10B—C5B—C6B	121.5 (4)
C6A—C5A—O3A	122.0 (4)	C10B—C5B—O3B	113.0 (3)
C10A—C5A—O3A	115.1 (4)	C6B—C5B—O3B	125.5 (4)
C5A—C6A—C7A	118.6 (4)	C5B—C6B—C7B	117.8 (4)

supporting information

C5A—C6A—H6AA C7A—C6A—H6AA C8A—C7A—C6A C8A—C7A—H7AA C6A—C7A—H7AA C9A—C8A—C7A C9A—C8A—N1A C7A—C8A—N1A C7A—C8A—N1A C8A—C9A—C10A C8A—C9A—H9AA C10A—C9A—H9AA C5A—C10A—C9A C5A—C10A—H10A	120.7 120.7 118.8 (4) 120.6 120.6 122.5 (4) 118.4 (4) 119.0 (4) 119.3 (4) 120.3 120.3 117.9 (4) 121.0	C5B—C6B—H6BA C7B—C6B—H6BA C8B—C7B—C6B C8B—C7B—H7BA C6B—C7B—H7BA C7B—C8B—C9B C7B—C8B—N1B C9B—C8B—N1B C10B—C9B—C8B C10B—C9B—H9BA C8B—C9B—H9BA C5B—C10B—C9B C5B—C10B—H10B	121.1 121.1 120.1 (4) 120.0 120.0 121.2 (4) 119.6 (3) 119.2 (4) 119.2 (4) 120.4 120.4 120.4 120.2 (3) 119.9
C5A—C10A—H10A	121.0	C5B—C10B—H10B	119.9
C9A—C10A—H10A	121.0	C9B—C10B—H10B	119.9

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
C10 <i>A</i> —H10 <i>A</i> ···O5 <i>A</i> ⁱⁱⁱ	0.95	2.32	3.205 (6)	155	
C6 <i>B</i> —H6 <i>BA</i> ···O2 <i>B</i>	0.95	2.24	2.812 (5)	118	
C9 <i>B</i> —H9 <i>BA</i> ···O2 <i>A</i> ^{iv}	0.95	2.48	3.184 (5)	131	

Symmetry codes: (iii) x-1, y, z; (iv) x, y+1, z.