metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Acetato-κ2O:O′-[7,23-di­benzyl-15,31-di­chloro-3,7,11,19,23,27-hexa­azatri­cyclo­[27.3.1.113,17]tetra­triconta-1(32),2,11,13,15,17(34),18,27,29(33),30-deca­ene-33,34-diolato-κ10N4,N5,N6,O1,O2:N1,N2,N3,O1,O2]dinickel(II) per­chlorate aceto­nitrile disolvate

aHubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
*Correspondence e-mail: zhiqpan@163.com

(Received 9 November 2007; accepted 20 November 2007; online 6 December 2007)

The title complex, [Ni2(C42H46Cl2N6O2)(C2H3O2)]ClO4·2CH3CN, was synthesized by condensation of 2,6-diformyl-4-chloro­phenol with N,N-bis­(amino­prop­yl)benzyl­amine in the presence of NiII ions. The ligand is a 28-membered macrocycle with two identical pendant arms. The coordination geometries of the Ni atoms are both octa­hedral. The two Ni atoms are bridged by two phenolate O atoms of the macrocyclic ligand and one acetate ligand, with an Ni⋯Ni distance of 3.147 (4) Å.

Related literature

For related literature, see: Gou & Fenton (1994[Gou, S. & Fenton, D. E. (1994). Inorg. Chim. Acta, 223, 169-172.]); Luo et al. (2002[Luo, Y., Zhang, J., Lu, L., Qian, M., Wang, X. & Yang, X. (2002). Transition Met. Chem. 27, 469-472.]); Turonek et al. (1995[Turonek, M. L., Moore, P., Class, H. J. & Alcock, N. W. (1995). J. Chem. Soc. Dalton Trans. pp. 3659-3666.]); Zeng et al. (1998[Zeng, Q., Sun, J., Gou, S., Zhou, K., Fang, J. & Chen, H. (1998). Transition Met. Chem. 23, 371-373.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C42H46Cl2N6O2)(C2H3O2)]ClO4·2C2H3N

  • Mr = 1095.77

  • Monoclinic, P 21 /n

  • a = 16.7957 (14) Å

  • b = 17.2146 (15) Å

  • c = 18.0209 (15) Å

  • β = 99.305 (2)°

  • V = 5141.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 273 (2) K

  • 0.32 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS inc., Madison, Wisconsin, USA.]) Tmin = 0.7, Tmax = 0.8

  • 29289 measured reflections

  • 10096 independent reflections

  • 7248 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.158

  • S = 1.08

  • 10096 reflections

  • 623 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.98 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pendant-arm marocyclic complexes have attracted much interest in recent decades. Because there is a concept that, by having pendant arm attached at appropriate positions on the macrocyclic framework, an "opened cryptand" would result, leading to modified complexation property over the corresponding clathrochelates or simple macrocyclic precursors (Zeng et al., 1998). Transition metal complexes with pendant-arm ligands, usually synthesized by cyclocondensation of 2,6-diformyl-4- chlorophenol and diamine the stepwise template reaction, have been studies extensively (Luo et al., 2002, Zeng et al., 1998). However, the dinuclear nickel complex of this ligand(I) has not been published. Here, we report the synthesis and crystal structure of the complex.

The crystal structure is composed of complex cations, perchlorate anions and solvent acetonitrile molecules. Neither the perchlorate ion nor the acetonitrile molecules participate in coordination of the Ni atoms. The complex cation is extremely twisted owing to the flexility of macrocyclic ligand as well as the requirement of Ni coordination with donor atoms. The structure of (I) is shown in Fig. 1. The coordination geometry of Ni1 is similar to that of Ni2. The coordination polyhedron around Ni1 is a distorted octahedron, whose equatorial plane is formed by one imine N6, one tertiary N5, two phenolate O1 and O2 with the mean deviation of 0.0541 (4) Å. The axial positions are occupied by N4 and O3, respectively. the band length of Ni1—O is fall in the range 2.033 (3)–2.082 (3) Å, but the two Ni1N(imine) bonds[2.081 (4) and 2.092 (3) Å, respectively] are shorter significantly than the Ni1—N(tertiary) [2.201 (3) Å]. The Ni···Ni separation is 3.147 (4) Å. The two benzyl groups attached to N2 and N5 respectively are cis to each other.

Related literature top

For related literature, see: Gou & Fenton (1994); Luo et al. (2002); Turonek et al. (1995); Zeng et al. (1998).

Experimental top

2,6-diformyl-4-chlorophenol was prepared by a modification of the literature method (Gou & Fenton, 1994). N,N-bis(aminopropyl)- benzylamine prepared by literature method of (Turonek et al., 1995). The title complex was synthesized by the following procedure: 0.5 mmol N,N-bis(aminopropyl)-benzylamine in 15 ml of absolute methanol was added dropwise to a methanol solution (30 ml) containing 0.5 mmol 2,6-diformyl-4-methylphenol and 0.5 mmol Ni(OAc)2.H2O. After stirring the mixture for 10 h at room temperature, a green solution formed. A methanol solution (10 ml) containing Ni(ClO4)2.4H2O(0.5 mmol) was added dropwise. A yellow-green solution was produced after stirring at room temperature for 4 h. Green needle-shaped crystals suitable for X-ray diffraction were obtained by slow evaporation from acetonitrile over three days.

Refinement top

All H atoms for C—H distances were placed in calculated positions in the range 0.93–0.97 Å, and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2–1.5 Ueq(C).

Structure description top

Pendant-arm marocyclic complexes have attracted much interest in recent decades. Because there is a concept that, by having pendant arm attached at appropriate positions on the macrocyclic framework, an "opened cryptand" would result, leading to modified complexation property over the corresponding clathrochelates or simple macrocyclic precursors (Zeng et al., 1998). Transition metal complexes with pendant-arm ligands, usually synthesized by cyclocondensation of 2,6-diformyl-4- chlorophenol and diamine the stepwise template reaction, have been studies extensively (Luo et al., 2002, Zeng et al., 1998). However, the dinuclear nickel complex of this ligand(I) has not been published. Here, we report the synthesis and crystal structure of the complex.

The crystal structure is composed of complex cations, perchlorate anions and solvent acetonitrile molecules. Neither the perchlorate ion nor the acetonitrile molecules participate in coordination of the Ni atoms. The complex cation is extremely twisted owing to the flexility of macrocyclic ligand as well as the requirement of Ni coordination with donor atoms. The structure of (I) is shown in Fig. 1. The coordination geometry of Ni1 is similar to that of Ni2. The coordination polyhedron around Ni1 is a distorted octahedron, whose equatorial plane is formed by one imine N6, one tertiary N5, two phenolate O1 and O2 with the mean deviation of 0.0541 (4) Å. The axial positions are occupied by N4 and O3, respectively. the band length of Ni1—O is fall in the range 2.033 (3)–2.082 (3) Å, but the two Ni1N(imine) bonds[2.081 (4) and 2.092 (3) Å, respectively] are shorter significantly than the Ni1—N(tertiary) [2.201 (3) Å]. The Ni···Ni separation is 3.147 (4) Å. The two benzyl groups attached to N2 and N5 respectively are cis to each other.

For related literature, see: Gou & Fenton (1994); Luo et al. (2002); Turonek et al. (1995); Zeng et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted.
µ-Acetato-κ2O:O'-[7,23-dibenzyl-15,31-dichloro- 3,7,11,19,23,27-hexaazatricyclo[27.3.1.113,17]tetratriconta- 1(32),2,11,13,15,17 (34),18,27,29 (33),30- decaene-33,34-diolato-κ10N4,N5,N6,O1, O2:N1,N2,N3,O1,O2] dinickel perchlorate acetonitrile disolvate top
Crystal data top
[Ni2(C42H46Cl2N6O2)(C2H3O2)]ClO4·2C2H3NF(000) = 2280
Mr = 1095.77Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5427 reflections
a = 16.7957 (14) Åθ = 2.2–26.0°
b = 17.2146 (15) ŵ = 0.95 mm1
c = 18.0209 (15) ÅT = 273 K
β = 99.305 (2)°Needle, green
V = 5141.8 (8) Å30.32 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
10096 independent reflections
Radiation source: sealed tube7248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1620
Tmin = 0.7, Tmax = 0.8k = 1921
29289 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.080P)2 + 1.990P]
where P = (Fo2 + 2Fc2)/3
10096 reflections(Δ/σ)max < 0.001
623 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Ni2(C42H46Cl2N6O2)(C2H3O2)]ClO4·2C2H3NV = 5141.8 (8) Å3
Mr = 1095.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.7957 (14) ŵ = 0.95 mm1
b = 17.2146 (15) ÅT = 273 K
c = 18.0209 (15) Å0.32 × 0.26 × 0.24 mm
β = 99.305 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
10096 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
7248 reflections with I > 2σ(I)
Tmin = 0.7, Tmax = 0.8Rint = 0.041
29289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.08Δρmax = 0.81 e Å3
10096 reflectionsΔρmin = 0.98 e Å3
623 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5447 (2)0.4856 (2)0.3737 (2)0.0384 (8)
C20.6266 (3)0.5068 (2)0.3850 (2)0.0433 (9)
C30.6790 (3)0.4856 (3)0.4510 (2)0.0504 (11)
H30.73280.50100.45880.060*
C40.6471 (3)0.4392 (2)0.5066 (2)0.0437 (9)
C50.5708 (3)0.4157 (2)0.4929 (2)0.0466 (10)
H50.55130.38510.52850.056*
C60.5182 (3)0.4354 (2)0.4263 (2)0.0414 (9)
C70.4348 (3)0.4073 (2)0.4149 (2)0.0441 (10)
H70.41040.39860.45700.053*
C80.3076 (2)0.3736 (3)0.3447 (2)0.0441 (10)
H8A0.27610.41980.32930.053*
H8B0.29760.35970.39450.053*
C90.2760 (3)0.3071 (3)0.2904 (3)0.0587 (12)
H9A0.21840.30200.28970.070*
H9B0.30110.25900.31000.070*
C100.2912 (3)0.3175 (3)0.2086 (2)0.0449 (10)
H10A0.26480.27480.17920.054*
H10B0.26430.36480.18910.054*
C110.4153 (3)0.2448 (2)0.2070 (3)0.0480 (10)
H11A0.45130.23840.17040.058*
H11B0.37490.20410.19820.058*
C120.4646 (3)0.2343 (3)0.2870 (3)0.0528 (11)
H12A0.43070.24940.32330.063*
H12B0.47690.17960.29460.063*
C130.5404 (3)0.2781 (3)0.3032 (3)0.0536 (11)
H13A0.54960.29340.35560.064*
H13B0.58470.24490.29470.064*
C140.5897 (3)0.3469 (3)0.2101 (3)0.0495 (10)
H140.62670.30620.21510.059*
C150.5962 (3)0.4036 (2)0.1500 (2)0.0457 (10)
C160.6554 (3)0.3915 (3)0.1043 (2)0.0472 (10)
H160.68730.34720.11180.057*
C170.6677 (3)0.4424 (3)0.0493 (2)0.0490 (11)
C180.6236 (3)0.5072 (3)0.0399 (2)0.0471 (10)
H180.63300.54190.00280.056*
C190.5643 (3)0.5255 (2)0.0825 (2)0.0440 (10)
C200.5473 (2)0.4692 (3)0.1378 (2)0.0427 (9)
C210.5214 (3)0.5981 (3)0.0724 (3)0.0547 (12)
H210.51270.62000.02460.066*
C220.4451 (3)0.7055 (3)0.1046 (3)0.0513 (11)
H22A0.38970.69320.10940.062*
H22B0.44570.71860.05240.062*
C230.4703 (3)0.7769 (3)0.1520 (2)0.0480 (10)
H23A0.43560.82000.13340.058*
H23B0.52510.79070.14670.058*
C240.4660 (3)0.7642 (2)0.2374 (2)0.0438 (9)
H24A0.47380.81410.26230.053*
H24B0.41190.74680.24130.053*
C250.6092 (3)0.7352 (3)0.2870 (2)0.0491 (11)
H25A0.63740.71960.33600.059*
H25B0.60770.79150.28660.059*
C260.6611 (3)0.7089 (3)0.2275 (2)0.0527 (12)
H26A0.63210.72180.17800.063*
H26B0.71070.73880.23500.063*
C270.6823 (3)0.6259 (3)0.2279 (3)0.0508 (11)
H27A0.73790.61940.25190.061*
H27B0.67790.60770.17650.061*
C280.6636 (3)0.5506 (3)0.3313 (2)0.0467 (10)
H280.71870.55960.34410.056*
C290.3746 (3)0.3459 (3)0.1126 (2)0.0484 (10)
H29A0.35240.39790.10610.058*
H29B0.43030.34870.10460.058*
C300.3289 (3)0.2947 (3)0.0519 (2)0.0500 (11)
C310.3671 (3)0.2357 (3)0.0197 (3)0.0542 (11)
H310.42090.22440.03740.065*
C320.3247 (3)0.1931 (3)0.0397 (3)0.0491 (10)
H320.34970.15150.05940.059*
C330.2477 (3)0.2114 (2)0.0690 (3)0.0462 (10)
H330.22160.18490.11100.055*
C340.2073 (3)0.2696 (2)0.0366 (2)0.0432 (9)
H340.15340.28050.05460.052*
C350.2489 (3)0.3106 (3)0.0226 (3)0.0552 (12)
H350.22270.35040.04390.066*
C360.5011 (3)0.6952 (3)0.3556 (2)0.0460 (10)
H36A0.53170.65170.37950.055*
H36B0.44460.68030.34790.055*
C370.5120 (3)0.7639 (3)0.4106 (3)0.0527 (11)
C380.4489 (3)0.8212 (3)0.4079 (3)0.0478 (10)
H380.40290.81760.37160.057*
C390.4566 (3)0.8796 (3)0.4576 (2)0.0455 (10)
H390.41720.91800.45360.055*
C400.5231 (2)0.8839 (2)0.5158 (2)0.0428 (10)
H400.52660.92320.55160.051*
C410.5814 (3)0.8304 (2)0.5188 (2)0.0431 (10)
H410.62550.83340.55730.052*
C420.5786 (3)0.7691 (3)0.4654 (2)0.0463 (10)
H420.62070.73370.46770.056*
C430.3289 (2)0.5568 (2)0.2186 (2)0.0410 (9)
C440.2420 (3)0.5854 (3)0.2063 (2)0.0459 (10)
H44A0.23800.63040.23700.069*
H44B0.20750.54520.22000.069*
H44C0.22580.59860.15440.069*
C460.5706 (3)1.0022 (3)0.8446 (3)0.0529 (11)
C480.6614 (3)0.9861 (3)0.2799 (2)0.0444 (10)
C1110.5752 (3)0.9916 (3)0.9238 (3)0.0587 (12)
H7A0.57540.94040.93430.088*
H7B0.62101.01340.94770.088*
H7C0.53251.01420.93930.088*
C1120.6952 (3)0.9316 (3)0.2343 (2)0.0481 (10)
H8C0.69000.88330.25210.072*
H8D0.66930.93450.18650.072*
H8E0.74780.94240.23560.072*
Cl10.70869 (8)0.41975 (7)0.58362 (7)0.0568 (3)
Cl20.73998 (8)0.42420 (7)0.00057 (7)0.0620 (3)
Cl30.64598 (7)0.15587 (6)0.06422 (6)0.0473 (3)
N10.6295 (2)0.5785 (2)0.2680 (2)0.0492 (9)
N20.5251 (2)0.7073 (2)0.2805 (2)0.0444 (8)
N30.4957 (2)0.6330 (2)0.1232 (2)0.0467 (9)
N40.5390 (2)0.3470 (2)0.25636 (19)0.0436 (8)
N50.3744 (2)0.3212 (2)0.1943 (2)0.0457 (8)
N60.3943 (2)0.3941 (2)0.3504 (2)0.0432 (8)
N70.6331 (2)1.0322 (2)0.3179 (2)0.0484 (9)
N80.5666 (2)1.0108 (2)0.7794 (2)0.0506 (9)
Ni10.43937 (3)0.42058 (3)0.25238 (3)0.03695 (14)
Ni20.50518 (3)0.58905 (3)0.23164 (3)0.03986 (15)
O10.49362 (17)0.51229 (16)0.31702 (15)0.0408 (6)
O20.48682 (16)0.48320 (16)0.17442 (15)0.0418 (6)
O30.33703 (18)0.48490 (17)0.22122 (18)0.0493 (7)
O40.38232 (19)0.60574 (17)0.22422 (17)0.0496 (7)
O110.64001 (18)0.06817 (17)0.08605 (17)0.0492 (7)
O120.70489 (18)0.19800 (17)0.11967 (17)0.0481 (7)
O130.56391 (17)0.19927 (16)0.06237 (16)0.0445 (7)
O140.68326 (18)0.16370 (17)0.00305 (16)0.0476 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.0327 (19)0.039 (2)0.0000 (16)0.0061 (17)0.0031 (16)
C20.050 (2)0.037 (2)0.043 (2)0.0014 (18)0.0087 (19)0.0033 (17)
C30.055 (3)0.053 (3)0.040 (2)0.005 (2)0.000 (2)0.0005 (19)
C40.043 (2)0.040 (2)0.049 (2)0.0114 (17)0.0092 (18)0.0056 (18)
C50.061 (3)0.041 (2)0.038 (2)0.0020 (19)0.0070 (19)0.0003 (17)
C60.054 (3)0.037 (2)0.034 (2)0.0032 (18)0.0107 (18)0.0008 (16)
C70.051 (3)0.035 (2)0.048 (2)0.0010 (18)0.013 (2)0.0031 (17)
C80.039 (2)0.058 (3)0.040 (2)0.0178 (19)0.0186 (18)0.0039 (18)
C90.059 (3)0.057 (3)0.061 (3)0.020 (2)0.012 (2)0.002 (2)
C100.052 (3)0.042 (2)0.038 (2)0.0114 (19)0.0018 (18)0.0038 (17)
C110.039 (2)0.041 (2)0.060 (3)0.0062 (18)0.002 (2)0.007 (2)
C120.048 (3)0.055 (3)0.052 (3)0.011 (2)0.004 (2)0.016 (2)
C130.055 (3)0.050 (3)0.053 (3)0.010 (2)0.002 (2)0.007 (2)
C140.045 (2)0.050 (2)0.051 (2)0.0066 (19)0.000 (2)0.003 (2)
C150.051 (3)0.042 (2)0.043 (2)0.0012 (18)0.0052 (19)0.0095 (17)
C160.047 (2)0.042 (2)0.055 (3)0.0082 (18)0.014 (2)0.0110 (19)
C170.055 (3)0.047 (2)0.044 (2)0.018 (2)0.008 (2)0.0114 (19)
C180.053 (3)0.044 (2)0.044 (2)0.021 (2)0.010 (2)0.0078 (18)
C190.050 (3)0.046 (2)0.035 (2)0.0175 (19)0.0041 (18)0.0001 (17)
C200.038 (2)0.051 (2)0.039 (2)0.0065 (18)0.0061 (17)0.0036 (18)
C210.060 (3)0.059 (3)0.043 (2)0.005 (2)0.002 (2)0.011 (2)
C220.043 (2)0.058 (3)0.050 (2)0.004 (2)0.001 (2)0.012 (2)
C230.046 (2)0.051 (2)0.047 (2)0.0090 (19)0.0079 (19)0.0175 (19)
C240.048 (2)0.043 (2)0.042 (2)0.0093 (18)0.0145 (19)0.0119 (18)
C250.060 (3)0.047 (2)0.043 (2)0.014 (2)0.017 (2)0.0071 (19)
C260.058 (3)0.059 (3)0.044 (2)0.021 (2)0.018 (2)0.015 (2)
C270.054 (3)0.052 (3)0.049 (2)0.020 (2)0.015 (2)0.006 (2)
C280.039 (2)0.055 (3)0.045 (2)0.0066 (19)0.0055 (18)0.004 (2)
C290.045 (2)0.049 (2)0.044 (2)0.0147 (19)0.0133 (19)0.0090 (19)
C300.053 (3)0.051 (3)0.042 (2)0.014 (2)0.007 (2)0.0004 (19)
C310.044 (3)0.058 (3)0.059 (3)0.004 (2)0.007 (2)0.000 (2)
C320.041 (2)0.043 (2)0.064 (3)0.0026 (18)0.011 (2)0.003 (2)
C330.040 (2)0.044 (2)0.052 (2)0.0163 (18)0.0002 (19)0.0088 (19)
C340.038 (2)0.046 (2)0.042 (2)0.0115 (17)0.0052 (17)0.0014 (18)
C350.049 (3)0.047 (3)0.063 (3)0.011 (2)0.013 (2)0.007 (2)
C360.040 (2)0.050 (2)0.049 (2)0.0181 (19)0.0121 (19)0.0007 (19)
C370.044 (3)0.048 (2)0.067 (3)0.011 (2)0.014 (2)0.001 (2)
C380.042 (2)0.051 (2)0.053 (2)0.0150 (19)0.014 (2)0.013 (2)
C390.047 (2)0.042 (2)0.049 (2)0.0074 (18)0.0093 (19)0.0139 (18)
C400.042 (2)0.049 (2)0.041 (2)0.0155 (19)0.0162 (18)0.0165 (18)
C410.044 (2)0.044 (2)0.042 (2)0.0215 (18)0.0106 (18)0.0119 (17)
C420.050 (3)0.043 (2)0.046 (2)0.0134 (19)0.0082 (19)0.0047 (18)
C430.040 (2)0.039 (2)0.044 (2)0.0084 (17)0.0056 (17)0.0072 (17)
C440.043 (2)0.056 (3)0.038 (2)0.0119 (19)0.0066 (18)0.0082 (18)
C460.040 (2)0.047 (3)0.072 (3)0.0084 (19)0.011 (2)0.005 (2)
C480.047 (2)0.047 (2)0.043 (2)0.0166 (18)0.0157 (19)0.0142 (18)
C1110.053 (3)0.048 (3)0.069 (3)0.014 (2)0.008 (2)0.009 (2)
C1120.049 (2)0.045 (2)0.049 (2)0.0059 (19)0.004 (2)0.0067 (19)
Cl10.0675 (8)0.0461 (6)0.0541 (6)0.0129 (5)0.0015 (5)0.0038 (5)
Cl20.0666 (8)0.0560 (7)0.0645 (7)0.0165 (6)0.0137 (6)0.0127 (6)
Cl30.0482 (6)0.0417 (5)0.0497 (6)0.0084 (4)0.0013 (4)0.0062 (4)
N10.0360 (19)0.061 (2)0.051 (2)0.0126 (16)0.0080 (16)0.0057 (17)
N20.0396 (19)0.0402 (18)0.054 (2)0.0043 (15)0.0079 (16)0.0092 (15)
N30.0375 (19)0.049 (2)0.051 (2)0.0089 (15)0.0018 (16)0.0133 (17)
N40.048 (2)0.0424 (19)0.0374 (18)0.0069 (15)0.0029 (16)0.0008 (14)
N50.045 (2)0.0403 (19)0.048 (2)0.0078 (15)0.0030 (16)0.0002 (15)
N60.045 (2)0.0385 (18)0.047 (2)0.0050 (15)0.0108 (16)0.0077 (15)
N70.047 (2)0.050 (2)0.049 (2)0.0150 (16)0.0102 (17)0.0119 (17)
N80.045 (2)0.053 (2)0.057 (2)0.0151 (17)0.0171 (18)0.0003 (18)
Ni10.0350 (3)0.0339 (3)0.0409 (3)0.00144 (19)0.0027 (2)0.0042 (2)
Ni20.0403 (3)0.0377 (3)0.0403 (3)0.0052 (2)0.0027 (2)0.0072 (2)
O10.0424 (15)0.0386 (14)0.0391 (15)0.0069 (12)0.0002 (12)0.0029 (11)
O20.0382 (15)0.0452 (16)0.0422 (15)0.0033 (12)0.0071 (12)0.0042 (12)
O30.0396 (16)0.0440 (17)0.0633 (19)0.0017 (13)0.0055 (14)0.0025 (14)
O40.0487 (18)0.0436 (17)0.0556 (18)0.0033 (14)0.0056 (14)0.0090 (14)
O110.0451 (17)0.0441 (16)0.0544 (18)0.0075 (13)0.0042 (14)0.0017 (13)
O120.0498 (18)0.0424 (16)0.0535 (18)0.0031 (13)0.0120 (14)0.0082 (13)
O130.0435 (16)0.0440 (16)0.0451 (15)0.0043 (12)0.0047 (13)0.0107 (13)
O140.0449 (17)0.0519 (17)0.0470 (16)0.0004 (13)0.0102 (13)0.0050 (13)
Geometric parameters (Å, º) top
C1—O11.306 (5)C27—N11.478 (5)
C1—C21.405 (6)C27—H27A0.9700
C1—C61.407 (5)C27—H27B0.9700
C2—C31.408 (6)C28—N11.285 (6)
C2—C281.445 (6)C28—H280.9300
C3—C41.450 (6)C29—C301.514 (6)
C3—H30.9300C29—N51.533 (5)
C4—C51.328 (6)C29—H29A0.9700
C4—Cl11.626 (4)C29—H29B0.9700
C5—C61.413 (6)C30—C311.378 (7)
C5—H50.9300C30—C351.389 (6)
C6—C71.465 (6)C31—C321.394 (7)
C7—N61.270 (6)C31—H310.9300
C7—H70.9300C32—C331.353 (6)
C8—N61.484 (5)C32—H320.9300
C8—C91.543 (6)C33—C341.390 (6)
C8—H8A0.9700C33—H330.9300
C8—H8B0.9700C34—C351.372 (6)
C9—C101.546 (6)C34—H340.9300
C9—H9A0.9700C35—H350.9300
C9—H9B0.9700C36—N21.488 (5)
C10—N51.462 (6)C36—C371.534 (6)
C10—H10A0.9700C36—H36A0.9700
C10—H10B0.9700C36—H36B0.9700
C11—N51.485 (5)C37—C421.369 (6)
C11—C121.553 (6)C37—C381.444 (7)
C11—H11A0.9700C38—C391.338 (6)
C11—H11B0.9700C38—H380.9300
C12—C131.468 (7)C39—C401.406 (6)
C12—H12A0.9700C39—H390.9300
C12—H12B0.9700C40—C411.338 (6)
C13—N41.452 (6)C40—H400.9300
C13—H13A0.9700C41—C421.423 (6)
C13—H13B0.9700C41—H410.9300
C14—N41.283 (6)C42—H420.9300
C14—C151.476 (6)C43—O41.224 (5)
C14—H140.9300C43—O31.245 (5)
C15—C201.394 (6)C43—C441.521 (6)
C15—C161.405 (6)C44—H44A0.9600
C16—C171.363 (6)C44—H44B0.9600
C16—H160.9300C44—H44C0.9600
C17—C181.335 (7)C46—N81.175 (6)
C17—Cl21.652 (5)C46—C1111.430 (7)
C18—C191.388 (6)C48—N71.195 (5)
C18—H180.9300C48—C1121.424 (6)
C19—C211.440 (7)C111—H7A0.8999
C19—C201.450 (6)C111—H7B0.8999
C20—O21.320 (5)C111—H7C0.9001
C21—N31.230 (6)C112—H8C0.9000
C21—H210.9300C112—H8D0.9000
C22—N31.517 (6)C112—H8E0.9000
C22—C231.518 (7)Cl3—O141.458 (3)
C22—H22A0.9700Cl3—O121.478 (3)
C22—H22B0.9700Cl3—O131.564 (3)
C23—C241.566 (6)Cl3—O111.567 (3)
C23—H23A0.9700N1—Ni22.092 (4)
C23—H23B0.9700N2—Ni22.222 (4)
C24—N21.515 (5)N3—Ni22.078 (4)
C24—H24A0.9700N4—Ni12.091 (4)
C24—H24B0.9700N5—Ni12.200 (3)
C25—N21.479 (6)N6—Ni12.082 (3)
C25—C261.556 (6)Ni1—O22.033 (3)
C25—H25A0.9700Ni1—O32.046 (3)
C25—H25B0.9700Ni1—O12.082 (3)
C26—C271.471 (7)Ni2—O12.061 (3)
C26—H26A0.9700Ni2—O42.066 (3)
C26—H26B0.9700Ni2—O22.092 (3)
O1—C1—C2121.8 (3)C30—C31—H31120.1
O1—C1—C6120.2 (4)C32—C31—H31120.1
C2—C1—C6118.0 (4)C33—C32—C31121.0 (4)
C1—C2—C3121.3 (4)C33—C32—H32119.5
C1—C2—C28123.7 (4)C31—C32—H32119.5
C3—C2—C28115.0 (4)C32—C33—C34120.2 (4)
C2—C3—C4118.4 (4)C32—C33—H33119.9
C2—C3—H3120.8C34—C33—H33119.9
C4—C3—H3120.8C35—C34—C33118.4 (4)
C5—C4—C3119.5 (4)C35—C34—H34120.8
C5—C4—Cl1123.9 (4)C33—C34—H34120.8
C3—C4—Cl1116.6 (3)C34—C35—C30122.3 (5)
C4—C5—C6122.5 (4)C34—C35—H35118.9
C4—C5—H5118.7C30—C35—H35118.9
C6—C5—H5118.7N2—C36—C37117.3 (3)
C1—C6—C5119.8 (4)N2—C36—H36A108.0
C1—C6—C7120.6 (4)C37—C36—H36A108.0
C5—C6—C7119.5 (4)N2—C36—H36B108.0
N6—C7—C6123.1 (4)C37—C36—H36B108.0
N6—C7—H7118.5H36A—C36—H36B107.2
C6—C7—H7118.5C42—C37—C38119.2 (4)
N6—C8—C9117.0 (4)C42—C37—C36121.0 (4)
N6—C8—H8A108.1C38—C37—C36119.6 (4)
C9—C8—H8A108.1C39—C38—C37120.0 (4)
N6—C8—H8B108.1C39—C38—H38120.0
C9—C8—H8B108.1C37—C38—H38120.0
H8A—C8—H8B107.3C38—C39—C40121.2 (4)
C8—C9—C10115.2 (4)C38—C39—H39119.4
C8—C9—H9A108.5C40—C39—H39119.4
C10—C9—H9A108.5C41—C40—C39118.8 (4)
C8—C9—H9B108.5C41—C40—H40120.6
C10—C9—H9B108.5C39—C40—H40120.6
H9A—C9—H9B107.5C40—C41—C42122.6 (4)
N5—C10—C9118.8 (4)C40—C41—H41118.7
N5—C10—H10A107.6C42—C41—H41118.7
C9—C10—H10A107.6C37—C42—C41118.1 (4)
N5—C10—H10B107.6C37—C42—H42121.0
C9—C10—H10B107.6C41—C42—H42121.0
H10A—C10—H10B107.0O4—C43—O3127.4 (4)
N5—C11—C12114.1 (4)O4—C43—C44117.5 (4)
N5—C11—H11A108.7O3—C43—C44115.1 (4)
C12—C11—H11A108.7C43—C44—H44A109.5
N5—C11—H11B108.7C43—C44—H44B109.5
C12—C11—H11B108.7H44A—C44—H44B109.5
H11A—C11—H11B107.6C43—C44—H44C109.5
C13—C12—C11116.1 (4)H44A—C44—H44C109.5
C13—C12—H12A108.3H44B—C44—H44C109.5
C11—C12—H12A108.3N8—C46—C111179.8 (6)
C13—C12—H12B108.3N7—C48—C112179.6 (5)
C11—C12—H12B108.3C46—C111—H7A109.5
H12A—C12—H12B107.4C46—C111—H7B109.2
N4—C13—C12111.8 (4)H7A—C111—H7B109.5
N4—C13—H13A109.3C46—C111—H7C109.7
C12—C13—H13A109.3H7A—C111—H7C109.5
N4—C13—H13B109.3H7B—C111—H7C109.5
C12—C13—H13B109.3C48—C112—H8C109.4
H13A—C13—H13B107.9C48—C112—H8D109.8
N4—C14—C15127.7 (4)H8C—C112—H8D109.5
N4—C14—H14116.2C48—C112—H8E109.2
C15—C14—H14116.2H8C—C112—H8E109.5
C20—C15—C16118.8 (4)H8D—C112—H8E109.5
C20—C15—C14122.7 (4)O14—Cl3—O12100.74 (18)
C16—C15—C14118.5 (4)O14—Cl3—O13115.71 (17)
C17—C16—C15122.5 (4)O12—Cl3—O13105.76 (17)
C17—C16—H16118.8O14—Cl3—O11110.56 (18)
C15—C16—H16118.8O12—Cl3—O11111.48 (17)
C18—C17—C16118.8 (4)O13—Cl3—O11111.93 (16)
C18—C17—Cl2122.1 (4)C28—N1—C27115.1 (4)
C16—C17—Cl2119.0 (4)C28—N1—Ni2126.2 (3)
C17—C18—C19123.6 (4)C27—N1—Ni2116.5 (3)
C17—C18—H18118.2C25—N2—C36111.6 (3)
C19—C18—H18118.2C25—N2—C24111.6 (3)
C18—C19—C21121.1 (4)C36—N2—C24107.8 (3)
C18—C19—C20117.8 (4)C25—N2—Ni2114.2 (3)
C21—C19—C20121.1 (4)C36—N2—Ni2100.8 (2)
O2—C20—C15123.4 (4)C24—N2—Ni2110.1 (3)
O2—C20—C19118.3 (4)C21—N3—C22119.3 (4)
C15—C20—C19118.3 (4)C21—N3—Ni2122.6 (3)
N3—C21—C19124.0 (4)C22—N3—Ni2117.5 (3)
N3—C21—H21118.0C14—N4—C13115.2 (4)
C19—C21—H21118.0C14—N4—Ni1126.1 (3)
N3—C22—C23116.5 (4)C13—N4—Ni1116.9 (3)
N3—C22—H22A108.2C10—N5—C11111.5 (3)
C23—C22—H22A108.2C10—N5—C29109.4 (3)
N3—C22—H22B108.2C11—N5—C29108.6 (4)
C23—C22—H22B108.2C10—N5—Ni1111.4 (3)
H22A—C22—H22B107.3C11—N5—Ni1115.7 (3)
C22—C23—C24112.7 (3)C29—N5—Ni199.4 (2)
C22—C23—H23A109.1C7—N6—C8118.7 (3)
C24—C23—H23A109.1C7—N6—Ni1121.6 (3)
C22—C23—H23B109.1C8—N6—Ni1118.7 (3)
C24—C23—H23B109.1O2—Ni1—O385.94 (12)
H23A—C23—H23B107.8O2—Ni1—N6159.97 (13)
N2—C24—C23117.7 (3)O3—Ni1—N686.93 (13)
N2—C24—H24A107.9O2—Ni1—O178.44 (11)
C23—C24—H24A107.9O3—Ni1—O190.88 (12)
N2—C24—H24B107.9N6—Ni1—O182.98 (12)
C23—C24—H24B107.9O2—Ni1—N486.79 (13)
H24A—C24—H24B107.2O3—Ni1—N4165.88 (13)
N2—C25—C26119.0 (4)N6—Ni1—N4103.73 (14)
N2—C25—H25A107.6O1—Ni1—N499.49 (13)
C26—C25—H25A107.6O2—Ni1—N5107.66 (12)
N2—C25—H25B107.6O3—Ni1—N587.70 (13)
C26—C25—H25B107.6N6—Ni1—N590.71 (14)
H25A—C25—H25B107.0O1—Ni1—N5173.61 (12)
C27—C26—C25116.2 (3)N4—Ni1—N583.00 (14)
C27—C26—H26A108.2O1—Ni2—O485.63 (11)
C25—C26—H26A108.2O1—Ni2—N3159.00 (13)
C27—C26—H26B108.2O4—Ni2—N387.96 (13)
C25—C26—H26B108.2O1—Ni2—O277.61 (11)
H26A—C26—H26B107.4O4—Ni2—O291.33 (12)
C26—C27—N1112.0 (4)N3—Ni2—O282.58 (13)
C26—C27—H27A109.2O1—Ni2—N185.41 (13)
N1—C27—H27A109.2O4—Ni2—N1165.40 (14)
C26—C27—H27B109.2N3—Ni2—N1104.32 (14)
N1—C27—H27B109.2O2—Ni2—N197.98 (14)
H27A—C27—H27B107.9O1—Ni2—N2108.53 (12)
N1—C28—C2127.7 (4)O4—Ni2—N289.01 (13)
N1—C28—H28116.1N3—Ni2—N291.31 (14)
C2—C28—H28116.1O2—Ni2—N2173.86 (12)
C30—C29—N5117.0 (3)N1—Ni2—N282.94 (14)
C30—C29—H29A108.1C1—O1—Ni2132.8 (2)
N5—C29—H29A108.1C1—O1—Ni1110.1 (2)
C30—C29—H29B108.1Ni2—O1—Ni198.86 (11)
N5—C29—H29B108.1C20—O2—Ni1132.0 (3)
H29A—C29—H29B107.3C20—O2—Ni2109.9 (2)
C31—C30—C35118.2 (4)Ni1—O2—Ni299.45 (12)
C31—C30—C29121.1 (4)C43—O3—Ni1129.1 (3)
C35—C30—C29120.4 (4)C43—O4—Ni2128.4 (3)
C30—C31—C32119.8 (4)

Experimental details

Crystal data
Chemical formula[Ni2(C42H46Cl2N6O2)(C2H3O2)]ClO4·2C2H3N
Mr1095.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)16.7957 (14), 17.2146 (15), 18.0209 (15)
β (°) 99.305 (2)
V3)5141.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.7, 0.8
No. of measured, independent and
observed [I > 2σ(I)] reflections
29289, 10096, 7248
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.158, 1.08
No. of reflections10096
No. of parameters623
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.98

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

 

Acknowledgements

The authors thank the National Science Foundation of China (No. 20271039).

References

First citationBruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationGou, S. & Fenton, D. E. (1994). Inorg. Chim. Acta, 223, 169–172.  CrossRef CAS Web of Science Google Scholar
First citationLuo, Y., Zhang, J., Lu, L., Qian, M., Wang, X. & Yang, X. (2002). Transition Met. Chem. 27, 469–472.  Web of Science CSD CrossRef CAS Google Scholar
First citationTuronek, M. L., Moore, P., Class, H. J. & Alcock, N. W. (1995). J. Chem. Soc. Dalton Trans. pp. 3659–3666.  CSD CrossRef Web of Science Google Scholar
First citationZeng, Q., Sun, J., Gou, S., Zhou, K., Fang, J. & Chen, H. (1998). Transition Met. Chem. 23, 371–373.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds