organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-5-Phenyl-N'-(1-phenylethylidene)-1Hpyrazole-3-carbohydrazide

Yongqi Qin, Fangfang Jian,* Hailian Xiao and Jing Zhang

New Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: ffj2003@163169.net

Received 22 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.007 Å; R factor = 0.054; wR factor = 0.143; data-to-parameter ratio = 8.1.

In the molecule of the title compound, C₁₈H₁₆N₄O, the intramolecular $N-H\cdots N$ hydrogen bond results in the formation of a planar five-membered ring, which is also coplanar with the adjacent five-membered ring, being oriented at a dihedral angle of $1.23 (3)^\circ$. The dihedral angles formed by the planar pyrazole ring with the adjacent phenyl ring and the other phenyl ring are 7.29 and 11.21°, respectively. The dihedral angle between the two phenyl rings is 18.07°. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules.

Related literature

For general background, see: Ogretir et al. (2006); Tarafder et al. (2000); Deschamps et al. (2003); Wu et al. (2006). For related literature, see: Yang & Raptis (2003); Ali et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

 $C_{18}H_{16}N_4O$ $M_r = 304.35$ Tetragonal, P43 a = 8.0190 (11) Åc = 24.147 (5) Å V = 1552.8 (4) Å³

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 3737 measured reflections 1686 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	1 restraint
$wR(F^2) = 0.143$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
1686 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
209 parameters	

1017 reflections with $I > 2\sigma(I)$

3 standard reflections

every 100 reflections

intensity decay: 4.1%

 $R_{\rm int} = 0.081$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2A···N3	0.86	2.34	2.714 (2)	107
$N4-H4A\cdotsO1^{i}$	0.86	1.98	2.788 (2)	157

Symmetry code: (i) $-x + 1, -y, z - \frac{1}{2}$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2398).

References

Ali, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, 03464-03465. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Ogretir, C., Dal, H., Berber, H. & Taktak, F. F. (2006). J. Chem. Eng. Data, 51, 46 - 50
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,

Siemens (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.
- Wu, L.-B., Hu, Z.-O. & Lai, G.-O. (2006). Chin. J. Struct. Chem. 25, 567-571. Yang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem. 32, 659-664.

Acta Cryst. (2008). E64, o320 [https://doi.org/10.1107/S160053680706223X]

(E)-5-Phenyl-N'-(1-phenylethylidene)-1H-pyrazole-3-carbohydrazide

Yongqi Qin, Fangfang Jian, Hailian Xiao and Jing Zhang

S1. Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Ogretir *et al.*, 2006). As dinegatively charged ligands, Schiff bases show potential as antimicrobial and anticancer agents (Tarafder *et al.*, 2000; Deschamps *et al.*, 2003) and so have biochemical and pharmacological applications. In addition, the chemical behavior of metal complexes with Schiff base ligands has attracted much attention because of their catalytic activity in some industrial and biochemical processes (Wu *et al.*, 2006). The title compound, (I), was synthesized as part of our study of these ligands and we report herein its crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). They are in good agreement with the corresponding values reported (Yang & Raptis, 2003). The C7—N1 [1.285 (6) Å] bond has a double-bond character (Ali *et al.*, 2005). The intramolecular N—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring B (N2/H2A/N3/C9/C1). Rings A (C1—C6), C (N3/N4/C10—C11) and D (C13—C18) are, of course, planar and the dihedral angles between them are A/B = 11.06 (3)°, A/C = 11.10 (3)°, A/D = 17.82 (2)°, B/C = 1.23 (3)°, B/D = 7.85 (3)° and C/D = 7.15 (3)°. So, rings B and C are also co-planar.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

S2. Experimental

A mixture of 5-phenyl-1*H*-pyrazole-3-carbohydrazide (10 mmol) with acetophenone (10 mmol) was stirred in refluxing ethanol (30 ml) for 5 h to afford the title compound, (I), (yield; 81%). Single crystals suitable for X-ray analysis were obtained by recrystallization from dimethylformamide (DMF) at 309 K.

S3. Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

(E)-5-Phenyl-N'-(1-phenylethylidene)-1H-pyrazole-3-carbohydrazide

Crystal data

C₁₈H₁₆N₄O $M_r = 304.35$ Tetragonal, P4₃ Hall symbol: P 4cw a = 8.0190 (11) Å c = 24.147 (5) Å $V = 1552.8 (4) \text{ Å}^3$ Z = 4F(000) = 640

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 3737 measured reflections 1686 independent reflections 1017 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.143$ S = 1.041686 reflections 209 parameters 1 restraint Primary atom site location: structure-invariant direct methods $D_x = 1.302 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 1-25^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 294 KBlock, yellow $0.25 \times 0.20 \times 0.18 \text{ mm}$

 $R_{int} = 0.081$ $\theta_{max} = 26.9^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 9$ $l = -28 \rightarrow 28$ 3 standard reflections every 100 reflections intensity decay: 4.1%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0792P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.6526 (4)	0.7885 (4)	0.19156 (14)	0.0530 (9)	
N1	0.8996 (5)	0.5984 (5)	0.14452 (17)	0.0484 (9)	
N2	0.7574 (4)	0.6473 (5)	0.11695 (18)	0.0495 (10)	
H2A	0.7423	0.6186	0.0830	0.059*	
N3	0.4872 (4)	0.7339 (5)	0.05571 (16)	0.0477 (10)	
N4	0.3421 (5)	0.7929 (5)	0.03787 (17)	0.0467 (9)	
H4A	0.3060	0.7777	0.0047	0.056*	
C1	1.2768 (6)	0.3604 (6)	0.1231 (3)	0.0600 (14)	
H1B	1.2546	0.3129	0.0888	0.072*	
C2	1.4206 (7)	0.3174 (7)	0.1507 (3)	0.0700 (16)	
H2B	1.4918	0.2381	0.1355	0.084*	
C3	1.4605 (6)	0.3911 (7)	0.2008 (3)	0.0615 (14)	
H3B	1.5600	0.3658	0.2187	0.074*	
C4	1.3495 (7)	0.5025 (7)	0.2236 (2)	0.0624 (14)	
H4B	1.3737	0.5505	0.2578	0.075*	
C5	1.2040 (6)	0.5445 (6)	0.1972 (2)	0.0547 (13)	
H5A	1.1314	0.6203	0.2135	0.066*	
C6	1.1639 (5)	0.4735 (6)	0.1456 (2)	0.0445 (11)	
C7	1.0116 (6)	0.5222 (5)	0.1161 (2)	0.0427 (10)	
C8	0.9950 (7)	0.4862 (7)	0.0543 (2)	0.0612 (14)	
H8A	0.9620	0.5861	0.0354	0.092*	
H8B	0.9123	0.4013	0.0487	0.092*	
H8C	1.1002	0.4485	0.0401	0.092*	
C9	0.6421 (6)	0.7398 (5)	0.1432 (2)	0.0445 (11)	
C10	0.4972 (5)	0.7848 (5)	0.10870 (19)	0.0401 (9)	
C11	0.3586 (5)	0.8767 (5)	0.12334 (19)	0.0424 (10)	
H11A	0.3378	0.9267	0.1574	0.051*	
C12	0.2562 (5)	0.8794 (5)	0.07682 (19)	0.0403 (10)	
C13	0.0915 (5)	0.9501 (5)	0.06862 (18)	0.0384 (10)	
C14	0.0112 (6)	0.9482 (7)	0.0169 (2)	0.0552 (13)	
H14A	0.0658	0.9053	-0.0140	0.066*	
C15	-0.1487 (7)	1.0101 (7)	0.0119 (3)	0.0645 (15)	
H15A	-0.2025	1.0052	-0.0221	0.077*	
C16	-0.2297 (6)	1.0789 (7)	0.0566 (2)	0.0594 (14)	
H16A	-0.3361	1.1233	0.0525	0.071*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	-0.1517 (6)	1.0818 (7)	0.1080 (2)	0.0581 (13)
H17A	-0.2059	1.1264	0.1386	0.070*
C18	0.0066 (6)	1.0182 (6)	0.1129 (2)	0.0514 (12)
H18A	0.0584	1.0211	0.1474	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.064 (2)	0.071 (2)	0.024 (2)	0.0045 (16)	-0.0093 (14)	-0.0017 (15)
N1	0.052 (2)	0.058 (2)	0.035 (3)	0.0014 (18)	-0.0090 (18)	0.0042 (18)
N2	0.052 (2)	0.066 (2)	0.030 (2)	0.0052 (19)	-0.0083 (18)	-0.0035 (19)
N3	0.048 (2)	0.062 (2)	0.033 (2)	0.0054 (18)	-0.0069 (17)	-0.0105 (17)
N4	0.050 (2)	0.061 (2)	0.029 (2)	0.0088 (18)	-0.0065 (17)	-0.0093 (17)
C1	0.056 (3)	0.071 (3)	0.053 (4)	0.002 (3)	-0.003 (3)	-0.012 (3)
C2	0.056 (3)	0.072 (4)	0.082 (5)	0.005 (3)	0.000 (3)	-0.011 (3)
C3	0.055 (3)	0.075 (3)	0.054 (4)	-0.003 (3)	-0.010 (3)	0.009 (3)
C4	0.067 (3)	0.075 (3)	0.044 (4)	-0.008(3)	-0.008(3)	0.004 (3)
C5	0.060 (3)	0.056 (3)	0.048 (4)	0.002 (2)	-0.007(2)	-0.002 (2)
C6	0.045 (2)	0.045 (2)	0.043 (3)	-0.005(2)	0.004 (2)	0.005 (2)
C7	0.047 (2)	0.052 (2)	0.029 (3)	-0.004(2)	0.0008 (19)	-0.001(2)
C8	0.067 (3)	0.076 (3)	0.041 (4)	0.004 (3)	0.001 (2)	-0.004(2)
C9	0.053 (3)	0.050 (3)	0.031 (3)	-0.009 (2)	-0.004(2)	0.003 (2)
C10	0.049 (2)	0.050(2)	0.022 (2)	-0.003(2)	-0.0065 (18)	-0.0004 (18)
C11	0.055 (3)	0.046 (2)	0.027 (3)	-0.001 (2)	-0.003 (2)	-0.0047 (18)
C12	0.049 (2)	0.047 (2)	0.024 (3)	-0.0011 (19)	-0.0063 (18)	-0.0003 (19)
C13	0.047 (2)	0.042 (2)	0.026 (3)	0.0015 (18)	0.0018 (18)	0.0020 (18)
C14	0.064 (3)	0.074 (3)	0.028 (3)	0.018 (3)	-0.005 (2)	-0.003 (2)
C15	0.068 (3)	0.095 (4)	0.031 (3)	0.022 (3)	-0.011 (2)	0.007 (3)
C16	0.054 (3)	0.075 (3)	0.049 (4)	0.015 (2)	0.001 (2)	0.012 (2)
C17	0.059 (3)	0.077 (3)	0.039 (3)	0.013 (3)	0.009 (2)	0.000 (2)
C18	0.060 (3)	0.068 (3)	0.026 (3)	0.000 (2)	0.002 (2)	-0.002 (2)

Geometric parameters (Å, °)

01—C9	1.234 (6)	С7—С8	1.526 (7)
N1—C7	1.285 (6)	C8—H8A	0.9600
N1—N2	1.378 (5)	C8—H8B	0.9600
N2—C9	1.344 (6)	C8—H8C	0.9600
N2—H2A	0.8600	C9—C10	1.474 (6)
N3—N4	1.328 (5)	C10—C11	1.380 (6)
N3—C10	1.346 (6)	C11—C12	1.392 (6)
N4—C12	1.357 (6)	C11—H11A	0.9300
N4—H4A	0.8600	C12—C13	1.451 (6)
C1—C2	1.375 (8)	C13—C18	1.381 (7)
C1—C6	1.391 (7)	C13—C14	1.406 (7)
C1—H1B	0.9300	C14—C15	1.380 (7)
C2—C3	1.385 (8)	C14—H14A	0.9300
C2—H2B	0.9300	C15—C16	1.376 (8)

C3—C4	1.376 (8)	C15—H15A	0.9300
С3—Н3В	0.9300	C16—C17	1.389 (7)
C4—C5	1.371 (7)	C16—H16A	0.9300
C4—H4B	0.9300	C17—C18	1.373 (7)
C5—C6	1.408 (7)	C17—H17A	0.9300
С5—Н5А	0.9300	C18—H18A	0.9300
C6—C7	1.466 (7)		
C7—N1—N2	117.2 (4)	H8A—C8—H8C	109.5
C9—N2—N1	119.9 (4)	H8B—C8—H8C	109.5
C9—N2—H2A	120.1	O1—C9—N2	125.0 (4)
N1—N2—H2A	120.1	O1—C9—C10	120.8 (4)
N4—N3—C10	104.6 (4)	N2-C9-C10	114.2 (4)
N3—N4—C12	113.7 (4)	N3—C10—C11	110.9 (4)
N3—N4—H4A	123.1	N3—C10—C9	120.7 (4)
C12—N4—H4A	123.1	C11—C10—C9	128.4 (4)
C2—C1—C6	121.4 (6)	C10-C11-C12	106.1 (4)
C2—C1—H1B	119.3	C10-C11-H11A	127.0
C6—C1—H1B	119.3	C12—C11—H11A	127.0
C1—C2—C3	120.6 (5)	N4—C12—C11	104.6 (4)
C1—C2—H2B	119.7	N4—C12—C13	124.6 (4)
С3—С2—Н2В	119.7	C11—C12—C13	130.8 (4)
C4—C3—C2	118.5 (5)	C18—C13—C14	117.9 (4)
С4—С3—Н3В	120.7	C18—C13—C12	119.8 (4)
С2—С3—Н3В	120.7	C14—C13—C12	122.3 (4)
C5—C4—C3	121.6 (5)	C15—C14—C13	119.9 (5)
C5—C4—H4B	119.2	C15—C14—H14A	120.1
C3—C4—H4B	119.2	C13—C14—H14A	120.1
C4—C5—C6	120.5 (5)	C16—C15—C14	121.0 (5)
C4—C5—H5A	119.8	C16—C15—H15A	119.5
С6—С5—Н5А	119.8	C14—C15—H15A	119.5
C1—C6—C5	117.4 (4)	C15—C16—C17	119.6 (5)
C1—C6—C7	121.8 (5)	C15—C16—H16A	120.2
C5—C6—C7	120.8 (4)	C17—C16—H16A	120.2
N1—C7—C6	116.8 (4)	C18—C17—C16	119.2 (5)
N1—C7—C8	123.4 (4)	C18—C17—H17A	120.4
C6—C7—C8	119.8 (4)	C16—C17—H17A	120.4
С7—С8—Н8А	109.5	C17—C18—C13	122.3 (5)
C7—C8—H8B	109.5	C17—C18—H18A	118.8
H8A—C8—H8B	109.5	C13—C18—H18A	118.8
C7—C8—H8C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A…N3	0.86	2.34	2.714 (2)	107

N4—H4A····O1 ⁱ	0.86	1.98	2.788 (2)	157

Symmetry code: (i) -x+1, -y, z-1/2.