metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di-μ4-4,4′-oxydiphthalato-tetra­kis­[μ2-1,1′-(p-phenyl­enedi­methyl­ene)di-1H-imidazole]tetra­copper(II)] monohydrate]

aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China, and bSchool of Computer and Information Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China
*Correspondence e-mail: zhw@henu.edu.cn

(Received 23 November 2007; accepted 5 December 2007; online 12 December 2007)

In the title compound, {[Cu4(C16H6O9)2(C14H14N4)4]·H2O}n, the water mol­ecule is disordered over two positions; site-occupancy factors were fixed at 0.25. The CuII atom exhibits a square-planar coordination geometry with two O atoms of the two 4,4′-oxydiphthalate ligands and two N atoms of the two 1,4-bis­(imidazol-1-ylmeth­yl)benzene groups. A three-dimensional honeycomb framework structure is formed. Aromatic ππ stacking inter­actions are observed, with a centroid–centroid distance of 3.373 (5) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4(C16H6O9)2(C14H14N4)4]·H2O

  • Mr = 1909.76

  • Monoclinic, P 21 /n

  • a = 18.750 (3) Å

  • b = 10.3283 (17) Å

  • c = 22.386 (4) Å

  • β = 97.388 (3)°

  • V = 4299.1 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 294 (2) K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 18013 measured reflections

  • 7404 independent reflections

  • 4497 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.169

  • S = 1.02

  • 7404 reflections

  • 586 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SHELXTL, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SHELXTL, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2005[Bruker (2005). SHELXTL, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies, we synthesized the title compound, (I), and report herein its crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). When the crystal structure was solved, the water molecule was found to be disordered.

The CuII atom exhibits a square-planar coordination geometry with two O atoms of the two 4,4'-oxydiphthalic acid (H4ODPA) and two N atoms of the two 1,4-bis(imidazol-1-yl-methyl)benzene (BIX) groups, respectively. Four carboxylic O atoms of H4ODPA coordinate four different Cu ion and a three-dimensional honeycomb framework built from Cu ion and H4ODPA (Figs. 2 and 3) joined by BIX groups (Fig. 4).

The π-π stacking interactions between aromatic rings of Cg1 and Cg2 [Cg1 and Cg2 are (N7,N8,C16—C18) and (N3i,N4i,C31i—C33i) ring centroids, respectively, symmetry code: (i) 2 - x, 1 - y, 1 - z] are observed, with a centroid-centroid distance of 3.373 (5) Å.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

The compound, (I), was synthesized hydrothermally in a Teflon-lined autoclave (23 ml) by heating a mixture of H4ODPA (0.1 mmol), BIX (0.1 mmol), Cu(NO3)2.4H2O (0.2 mmol) and one drop of Et3N (pH ~ 8–9) in water (10 ml) at 393 K for 3 d. Blue single crystals were collected in 55% yield based on Cu(NO3)2.4H2O.

Refinement top

When the crystal structure was solved, the water molecule was found to be disordered. During refinement, the occupancies of disordered O and H atoms were kept fixed as 0.25. H atoms were positioned geometrically, with O—H = 0.85 Å (for H2O) and C—H = 0.93 and 0.97 Å for aromatic and methylene H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,O).

Structure description top

As part of our ongoing studies, we synthesized the title compound, (I), and report herein its crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). When the crystal structure was solved, the water molecule was found to be disordered.

The CuII atom exhibits a square-planar coordination geometry with two O atoms of the two 4,4'-oxydiphthalic acid (H4ODPA) and two N atoms of the two 1,4-bis(imidazol-1-yl-methyl)benzene (BIX) groups, respectively. Four carboxylic O atoms of H4ODPA coordinate four different Cu ion and a three-dimensional honeycomb framework built from Cu ion and H4ODPA (Figs. 2 and 3) joined by BIX groups (Fig. 4).

The π-π stacking interactions between aromatic rings of Cg1 and Cg2 [Cg1 and Cg2 are (N7,N8,C16—C18) and (N3i,N4i,C31i—C33i) ring centroids, respectively, symmetry code: (i) 2 - x, 1 - y, 1 - z] are observed, with a centroid-centroid distance of 3.373 (5) Å.

For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. The three-dimensional framework built from Cu ion and H4ODPA.
[Figure 3] Fig. 3. The three-dimensional framework built from Cu ion and H4ODPA, viewed along the a axis.
[Figure 4] Fig. 4. The crystal structure of (I), viewed along the b axis.
poly[[di-µ4-4,4'-oxydiphthalato-tetrakis[µ2-1,1'-(p- phenylenedimethylene)di-1H-imidazole]tetracopper(II)] monohydrate] top
Crystal data top
[Cu4(C16H6O9)2(C14H14N4)4]·H2OF(000) = 1956
Mr = 1909.76Dx = 1.475 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2326 reflections
a = 18.750 (3) Åθ = 4.8–40.6°
b = 10.3283 (17) ŵ = 1.06 mm1
c = 22.386 (4) ÅT = 294 K
β = 97.388 (3)°Block, blue
V = 4299.1 (13) Å30.22 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4497 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
φ and ω scansh = 2122
18013 measured reflectionsk = 1211
7404 independent reflectionsl = 2621
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7404 reflectionsΔρmax = 0.75 e Å3
586 parametersΔρmin = 0.45 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu4(C16H6O9)2(C14H14N4)4]·H2OV = 4299.1 (13) Å3
Mr = 1909.76Z = 2
Monoclinic, P21/nMo Kα radiation
a = 18.750 (3) ŵ = 1.06 mm1
b = 10.3283 (17) ÅT = 294 K
c = 22.386 (4) Å0.22 × 0.18 × 0.16 mm
β = 97.388 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4497 reflections with I > 2σ(I)
18013 measured reflectionsRint = 0.068
7404 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064586 parameters
wR(F2) = 0.169H-atom parameters constrained
S = 1.02Δρmax = 0.75 e Å3
7404 reflectionsΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.89629 (4)0.53392 (7)0.32168 (3)0.0318 (2)
Cu20.76895 (4)0.45820 (7)0.61410 (3)0.0365 (2)
O10.2712 (2)0.0667 (5)0.2379 (2)0.0592 (14)
O20.3459 (2)0.1096 (4)0.17161 (17)0.0389 (10)
O30.4802 (2)0.0241 (4)0.25179 (18)0.0470 (11)
O40.53069 (19)0.1398 (3)0.20835 (17)0.0356 (10)
O50.4896 (2)0.4422 (4)0.39105 (18)0.0486 (12)
O60.81238 (19)0.4642 (4)0.35422 (17)0.0369 (10)
O70.8091 (2)0.6633 (4)0.3895 (2)0.0621 (14)
O80.7925 (2)0.4500 (5)0.49595 (19)0.0681 (16)
O90.7022 (2)0.5057 (4)0.54384 (17)0.0391 (10)
N10.6103 (4)0.1859 (7)0.6206 (3)0.087 (2)
N20.7097 (4)0.2996 (6)0.6185 (3)0.0688 (19)
N30.8023 (2)0.6380 (4)0.6258 (2)0.0314 (11)
N40.8525 (3)0.8122 (5)0.6697 (2)0.0401 (13)
N51.2382 (3)0.9385 (5)0.6755 (2)0.0461 (14)
N61.3302 (3)0.9248 (5)0.7477 (2)0.0404 (13)
N70.9593 (2)0.4597 (4)0.3892 (2)0.0292 (11)
N80.9949 (3)0.3544 (4)0.4721 (2)0.0340 (12)
C10.3260 (3)0.1165 (6)0.2242 (3)0.0349 (14)
C20.3741 (3)0.1944 (5)0.2689 (2)0.0293 (13)
C30.3417 (3)0.2817 (6)0.3037 (3)0.0464 (17)
H30.29170.28530.29970.056*
C40.3806 (3)0.3634 (6)0.3439 (3)0.0465 (18)
H40.35750.42090.36700.056*
C50.4546 (3)0.3585 (6)0.3493 (3)0.0358 (15)
C60.4879 (3)0.2719 (6)0.3161 (2)0.0326 (14)
H60.53780.26790.32070.039*
C70.4484 (3)0.1900 (5)0.2756 (2)0.0280 (13)
C80.4889 (3)0.0921 (6)0.2425 (2)0.0308 (14)
C90.5605 (3)0.4739 (6)0.3875 (3)0.0356 (14)
C100.6079 (3)0.4676 (6)0.4391 (2)0.0344 (14)
H100.59130.44420.47500.041*
C110.6802 (3)0.4953 (5)0.4390 (2)0.0305 (14)
C120.7040 (3)0.5312 (5)0.3850 (2)0.0310 (13)
C130.6548 (3)0.5428 (6)0.3346 (3)0.0430 (16)
H130.67040.57070.29900.052*
C140.5830 (3)0.5145 (6)0.3348 (3)0.0435 (16)
H140.55050.52290.29990.052*
C150.7821 (3)0.5590 (6)0.3789 (3)0.0369 (15)
C160.9387 (3)0.3942 (5)0.4348 (2)0.0312 (14)
H160.89110.37840.44000.037*
C171.0338 (3)0.4608 (5)0.3990 (3)0.0347 (14)
H171.06370.50010.37430.042*
C181.0554 (3)0.3968 (6)0.4493 (3)0.0407 (15)
H181.10280.38300.46610.049*
C190.9927 (4)0.2740 (6)0.5262 (3)0.0477 (17)
H19A0.94860.29170.54310.057*
H19B1.03280.29700.55620.057*
C200.9965 (4)0.1321 (6)0.5124 (3)0.0426 (16)
C211.0591 (4)0.0760 (7)0.4987 (3)0.0533 (19)
H211.09970.12700.49730.064*
C220.9378 (4)0.0547 (6)0.5130 (3)0.0498 (18)
H220.89480.09070.52150.060*
C230.7299 (3)0.4818 (6)0.4961 (3)0.0380 (15)
C240.4858 (6)0.1297 (12)0.5001 (5)0.124 (4)
H240.47660.21820.49920.149*
C250.5183 (5)0.0706 (10)0.5526 (4)0.094 (3)
C260.5323 (6)0.0552 (11)0.5505 (5)0.121 (4)
H260.55560.09480.58490.145*
C270.5349 (5)0.1519 (10)0.6110 (4)0.107 (3)
H27A0.50600.23010.60770.128*
H27B0.52270.10250.64510.128*
C280.6384 (5)0.2971 (8)0.6047 (3)0.069 (2)
H280.61150.36490.58610.082*
C290.6657 (6)0.1172 (11)0.6487 (5)0.104 (3)
H290.66320.03610.66640.125*
C300.7242 (6)0.1869 (9)0.6463 (4)0.096 (3)
H300.77020.16050.66210.115*
C310.8442 (3)0.6847 (6)0.6730 (3)0.0341 (14)
H310.86540.63420.70480.041*
C320.7838 (3)0.7438 (6)0.5905 (3)0.0455 (17)
H320.75410.74230.55380.055*
C330.8146 (4)0.8496 (7)0.6164 (3)0.0502 (18)
H330.81090.93340.60110.060*
C340.8975 (3)0.8937 (7)0.7129 (3)0.0510 (18)
H34A0.90390.85100.75180.061*
H34B0.87290.97510.71740.061*
C350.9698 (3)0.9209 (6)0.6940 (3)0.0388 (15)
C361.0180 (3)0.8213 (6)0.6928 (3)0.0466 (17)
H361.00550.73850.70410.056*
C371.0846 (4)0.8426 (6)0.6749 (3)0.0508 (18)
H371.11610.77370.67290.061*
C381.1049 (3)0.9674 (7)0.6599 (3)0.0428 (16)
C391.0563 (4)1.0655 (6)0.6628 (3)0.0463 (17)
H391.06881.14960.65330.056*
C400.9896 (4)1.0418 (6)0.6793 (3)0.0443 (16)
H400.95741.10990.68050.053*
C411.1763 (4)0.9926 (7)0.6379 (3)0.0539 (19)
H41A1.17480.95710.59760.065*
H41B1.18301.08540.63510.065*
C421.2778 (3)0.9996 (6)0.7212 (3)0.0423 (17)
H421.26951.08410.73290.051*
C431.2665 (4)0.8178 (7)0.6734 (3)0.056 (2)
H431.25000.75270.64640.067*
C441.3231 (3)0.8088 (7)0.7177 (3)0.0507 (18)
H441.35210.73630.72630.061*
O1W0.7029 (11)0.8502 (19)0.4349 (8)0.078 (6)0.25
H1WA0.66790.84010.40720.094*0.25
H1WB0.69810.92390.45080.094*0.25
O2W0.2753 (15)0.958 (3)0.5136 (11)0.132 (10)0.25
H2WA0.25090.88980.50570.158*0.25
H2WB0.31300.93780.53700.158*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0238 (4)0.0364 (4)0.0365 (4)0.0029 (3)0.0080 (3)0.0031 (3)
Cu20.0295 (4)0.0462 (5)0.0309 (4)0.0004 (4)0.0069 (3)0.0008 (4)
O10.036 (3)0.081 (4)0.061 (3)0.020 (3)0.012 (2)0.026 (3)
O20.027 (2)0.057 (3)0.030 (2)0.004 (2)0.0077 (19)0.006 (2)
O30.050 (3)0.043 (3)0.049 (3)0.002 (2)0.010 (2)0.002 (2)
O40.026 (2)0.037 (2)0.048 (3)0.0025 (18)0.020 (2)0.0085 (19)
O50.018 (2)0.084 (3)0.043 (3)0.006 (2)0.001 (2)0.032 (2)
O60.022 (2)0.045 (3)0.045 (2)0.008 (2)0.0082 (19)0.005 (2)
O70.042 (3)0.051 (3)0.096 (4)0.021 (2)0.017 (3)0.021 (3)
O80.021 (3)0.142 (5)0.038 (3)0.015 (3)0.005 (2)0.008 (3)
O90.030 (2)0.061 (3)0.025 (2)0.004 (2)0.0029 (19)0.0044 (19)
N10.086 (6)0.090 (5)0.077 (5)0.041 (5)0.023 (4)0.017 (4)
N20.079 (5)0.043 (4)0.072 (4)0.005 (3)0.035 (4)0.012 (3)
N30.020 (3)0.040 (3)0.034 (3)0.001 (2)0.001 (2)0.000 (2)
N40.030 (3)0.046 (4)0.042 (3)0.007 (2)0.002 (3)0.004 (3)
N50.038 (3)0.053 (4)0.047 (3)0.011 (3)0.003 (3)0.007 (3)
N60.028 (3)0.052 (4)0.042 (3)0.002 (3)0.007 (3)0.010 (3)
N70.023 (3)0.029 (3)0.035 (3)0.003 (2)0.002 (2)0.005 (2)
N80.039 (3)0.028 (3)0.034 (3)0.000 (2)0.002 (3)0.001 (2)
C10.019 (3)0.041 (4)0.042 (4)0.007 (3)0.006 (3)0.005 (3)
C20.023 (3)0.038 (3)0.027 (3)0.002 (3)0.001 (3)0.004 (3)
C30.015 (3)0.070 (5)0.054 (4)0.003 (3)0.002 (3)0.021 (4)
C40.024 (4)0.064 (5)0.051 (4)0.002 (3)0.005 (3)0.029 (4)
C50.022 (3)0.055 (4)0.030 (3)0.002 (3)0.001 (3)0.012 (3)
C60.018 (3)0.050 (4)0.030 (3)0.001 (3)0.003 (3)0.005 (3)
C70.024 (3)0.037 (3)0.024 (3)0.005 (3)0.006 (3)0.000 (3)
C80.020 (3)0.039 (4)0.030 (3)0.001 (3)0.010 (3)0.007 (3)
C90.021 (3)0.049 (4)0.035 (4)0.003 (3)0.001 (3)0.015 (3)
C100.026 (3)0.054 (4)0.024 (3)0.005 (3)0.007 (3)0.007 (3)
C110.024 (3)0.040 (4)0.026 (3)0.002 (3)0.002 (3)0.007 (3)
C120.023 (3)0.038 (3)0.032 (3)0.001 (3)0.002 (3)0.003 (3)
C130.032 (4)0.069 (5)0.029 (3)0.004 (3)0.006 (3)0.002 (3)
C140.035 (4)0.063 (5)0.028 (3)0.000 (3)0.012 (3)0.003 (3)
C150.028 (4)0.049 (4)0.032 (3)0.003 (3)0.001 (3)0.006 (3)
C160.029 (3)0.032 (3)0.035 (3)0.002 (3)0.009 (3)0.007 (3)
C170.031 (4)0.033 (3)0.040 (4)0.000 (3)0.007 (3)0.000 (3)
C180.028 (4)0.035 (4)0.058 (4)0.005 (3)0.002 (3)0.003 (3)
C190.069 (5)0.038 (4)0.035 (4)0.004 (3)0.003 (3)0.000 (3)
C200.059 (5)0.038 (4)0.028 (3)0.003 (4)0.004 (3)0.004 (3)
C210.047 (5)0.048 (5)0.064 (5)0.010 (3)0.003 (4)0.002 (4)
C220.048 (4)0.043 (4)0.059 (4)0.008 (4)0.011 (4)0.003 (3)
C230.027 (4)0.054 (4)0.033 (4)0.008 (3)0.003 (3)0.001 (3)
C240.128 (4)0.122 (4)0.123 (4)0.004 (2)0.015 (2)0.002 (2)
C250.095 (3)0.093 (3)0.092 (3)0.005 (2)0.007 (2)0.000 (2)
C260.123 (4)0.120 (4)0.118 (4)0.001 (2)0.012 (2)0.001 (2)
C270.108 (4)0.107 (4)0.106 (4)0.006 (2)0.014 (2)0.002 (2)
C280.074 (6)0.061 (5)0.067 (5)0.024 (5)0.009 (5)0.011 (4)
C290.105 (4)0.102 (4)0.104 (4)0.002 (2)0.009 (2)0.004 (2)
C300.095 (3)0.093 (3)0.097 (3)0.001 (2)0.008 (2)0.002 (2)
C310.027 (4)0.039 (4)0.036 (4)0.008 (3)0.002 (3)0.000 (3)
C320.045 (4)0.052 (4)0.036 (4)0.001 (3)0.007 (3)0.000 (3)
C330.052 (5)0.038 (4)0.059 (5)0.009 (3)0.003 (4)0.010 (4)
C340.052 (5)0.052 (4)0.047 (4)0.001 (4)0.001 (4)0.022 (3)
C350.036 (4)0.046 (4)0.031 (3)0.000 (3)0.007 (3)0.013 (3)
C360.043 (4)0.038 (4)0.057 (4)0.007 (3)0.004 (4)0.009 (3)
C370.048 (5)0.041 (4)0.059 (5)0.000 (3)0.007 (4)0.011 (3)
C380.042 (4)0.049 (4)0.034 (3)0.007 (4)0.010 (3)0.002 (3)
C390.056 (5)0.041 (4)0.037 (4)0.006 (3)0.011 (4)0.001 (3)
C400.048 (4)0.042 (4)0.039 (4)0.002 (3)0.009 (3)0.009 (3)
C410.050 (5)0.067 (5)0.040 (4)0.011 (4)0.014 (4)0.001 (3)
C420.040 (4)0.048 (4)0.039 (4)0.003 (3)0.005 (3)0.012 (3)
C430.043 (4)0.054 (5)0.068 (5)0.004 (4)0.003 (4)0.027 (4)
C440.035 (4)0.047 (4)0.071 (5)0.002 (3)0.007 (4)0.014 (4)
O1W0.103 (14)0.074 (12)0.067 (11)0.033 (11)0.046 (11)0.003 (10)
O2W0.136 (17)0.177 (18)0.097 (14)0.039 (14)0.068 (13)0.054 (14)
Geometric parameters (Å, º) top
Cu1—O4i1.939 (3)C12—C151.516 (8)
Cu1—N71.951 (4)C13—C141.379 (8)
Cu1—O61.954 (4)C13—H130.9300
Cu1—N6ii1.983 (5)C14—H140.9300
Cu2—O2iii1.937 (4)C16—H160.9300
Cu2—O91.943 (4)C17—C181.324 (8)
Cu2—N31.966 (5)C17—H170.9300
Cu2—N21.989 (6)C18—H180.9300
N1—C281.331 (9)C19—C201.502 (8)
N1—C291.346 (11)C19—H19A0.9700
N1—C271.445 (10)C19—H19B0.9700
N2—C301.332 (10)C20—C221.361 (8)
N2—C281.333 (9)C20—C211.379 (9)
N3—C311.324 (7)C21—C22vii1.377 (9)
N3—C321.367 (7)C21—H210.9300
N4—C311.329 (7)C22—C21vii1.377 (9)
N4—C331.362 (7)C22—H220.9300
N4—C341.465 (7)C24—C26viii1.375 (12)
N5—C421.341 (7)C24—C251.393 (12)
N5—C431.358 (8)C24—H240.9300
N5—C411.455 (8)C25—C261.328 (12)
N6—C421.329 (7)C25—C271.552 (12)
N6—C441.372 (7)C26—C24viii1.375 (12)
N6—Cu1iv1.983 (5)C26—H260.9300
N7—C161.324 (7)C27—H27A0.9700
N7—C171.386 (7)C27—H27B0.9700
N8—C161.323 (7)C28—H280.9300
N8—C181.374 (7)C29—C301.319 (12)
N8—C191.474 (7)C29—H290.9300
O1—C11.224 (7)C30—H300.9300
O2—C11.281 (7)C31—H310.9300
O2—Cu2v1.937 (4)C32—C331.334 (8)
O3—C81.233 (7)C32—H320.9300
O4—C81.262 (6)C33—H330.9300
O4—Cu1vi1.939 (3)C34—C351.498 (8)
O5—C51.376 (6)C34—H34A0.9700
O5—C91.382 (6)C34—H34B0.9700
O6—C151.291 (7)C35—C401.355 (8)
O7—C151.201 (7)C35—C361.371 (8)
O8—C231.219 (7)C36—C371.377 (8)
O9—C231.271 (7)C36—H360.9300
C1—C21.494 (7)C37—C381.398 (8)
C2—C71.382 (7)C37—H370.9300
C2—C31.383 (7)C38—C391.369 (9)
C3—C41.373 (8)C38—C411.508 (9)
C3—H30.9300C39—C401.372 (9)
C4—C51.378 (8)C39—H390.9300
C4—H40.9300C40—H400.9300
C5—C61.364 (7)C41—H41A0.9700
C6—C71.383 (7)C41—H41B0.9700
C6—H60.9300C42—H420.9300
C7—C81.515 (7)C43—C441.360 (8)
C9—C101.364 (8)C43—H430.9300
C9—C141.369 (8)C44—H440.9300
C10—C111.387 (7)O1W—H1WA0.8506
C10—H100.9300O1W—H1WB0.8499
C11—C121.390 (7)O2W—H2WA0.8504
C11—C231.488 (8)O2W—H2WB0.8500
C12—C131.367 (8)
O4i—Cu1—N796.09 (17)N8—C18—H18126.3
O4i—Cu1—O6167.24 (17)N8—C19—C20111.9 (5)
N7—Cu1—O690.15 (17)N8—C19—H19A109.2
O4i—Cu1—N6ii88.99 (18)C20—C19—H19A109.2
N7—Cu1—N6ii169.2 (2)N8—C19—H19B109.2
O6—Cu1—N6ii86.79 (18)C20—C19—H19B109.2
O2iii—Cu2—O9167.58 (17)H19A—C19—H19B107.9
O2iii—Cu2—N393.20 (18)C22—C20—C21117.9 (6)
O9—Cu2—N391.71 (18)C22—C20—C19120.8 (6)
O2iii—Cu2—N292.5 (2)C21—C20—C19121.3 (6)
O9—Cu2—N286.7 (2)C22vii—C21—C20120.8 (6)
N3—Cu2—N2160.3 (2)C22vii—C21—H21119.6
C28—N1—C29105.8 (8)C20—C21—H21119.6
C28—N1—C27125.6 (8)C20—C22—C21vii121.3 (6)
C29—N1—C27128.6 (8)C20—C22—H22119.4
C30—N2—C28103.3 (7)C21vii—C22—H22119.4
C30—N2—Cu2131.3 (6)O8—C23—O9123.5 (6)
C28—N2—Cu2123.7 (5)O8—C23—C11121.3 (5)
C31—N3—C32104.5 (5)O9—C23—C11115.3 (5)
C31—N3—Cu2126.6 (4)C26viii—C24—C25119.0 (11)
C32—N3—Cu2128.7 (4)C26viii—C24—H24120.5
C31—N4—C33106.2 (5)C25—C24—H24120.5
C31—N4—C34126.4 (5)C26—C25—C24117.8 (10)
C33—N4—C34127.3 (6)C26—C25—C27122.6 (10)
C42—N5—C43106.1 (6)C24—C25—C27119.5 (10)
C42—N5—C41125.6 (6)C25—C26—C24viii123.2 (11)
C43—N5—C41128.2 (6)C25—C26—H26118.4
C42—N6—C44105.6 (5)C24viii—C26—H26118.4
C42—N6—Cu1iv126.5 (4)N1—C27—C25110.1 (8)
C44—N6—Cu1iv127.4 (5)N1—C27—H27A109.6
C16—N7—C17105.7 (5)C25—C27—H27A109.6
C16—N7—Cu1126.2 (4)N1—C27—H27B109.6
C17—N7—Cu1128.1 (4)C25—C27—H27B109.6
C16—N8—C18107.2 (5)H27A—C27—H27B108.2
C16—N8—C19126.1 (5)N1—C28—N2112.0 (8)
C18—N8—C19126.6 (5)N1—C28—H28124.0
C1—O2—Cu2v110.5 (4)N2—C28—H28124.0
C8—O4—Cu1vi120.7 (4)C30—C29—N1106.8 (10)
C5—O5—C9119.2 (4)C30—C29—H29126.6
C15—O6—Cu1107.4 (4)N1—C29—H29126.6
C23—O9—Cu2110.0 (4)C29—C30—N2112.0 (10)
O1—C1—O2124.1 (6)C29—C30—H30124.0
O1—C1—C2120.9 (5)N2—C30—H30124.0
O2—C1—C2115.0 (5)N3—C31—N4112.2 (5)
C7—C2—C3118.1 (5)N3—C31—H31123.9
C7—C2—C1124.6 (5)N4—C31—H31123.9
C3—C2—C1117.2 (5)C33—C32—N3109.8 (6)
C4—C3—C2122.3 (5)C33—C32—H32125.1
C4—C3—H3118.9N3—C32—H32125.1
C2—C3—H3118.9C32—C33—N4107.3 (6)
C3—C4—C5118.7 (5)C32—C33—H33126.4
C3—C4—H4120.7N4—C33—H33126.4
C5—C4—H4120.7N4—C34—C35112.7 (5)
C6—C5—O5124.8 (5)N4—C34—H34A109.1
C6—C5—C4120.1 (5)C35—C34—H34A109.1
O5—C5—C4115.0 (5)N4—C34—H34B109.1
C5—C6—C7121.0 (5)C35—C34—H34B109.1
C5—C6—H6119.5H34A—C34—H34B107.8
C7—C6—H6119.5C40—C35—C36119.0 (6)
C2—C7—C6119.8 (5)C40—C35—C34121.8 (6)
C2—C7—C8122.1 (5)C36—C35—C34119.2 (6)
C6—C7—C8118.0 (5)C35—C36—C37120.7 (6)
O3—C8—O4126.0 (5)C35—C36—H36119.7
O3—C8—C7118.8 (5)C37—C36—H36119.7
O4—C8—C7115.2 (5)C36—C37—C38120.2 (6)
C10—C9—C14120.3 (5)C36—C37—H37119.9
C10—C9—O5117.8 (5)C38—C37—H37119.9
C14—C9—O5121.8 (5)C39—C38—C37117.9 (6)
C9—C10—C11121.3 (5)C39—C38—C41120.8 (6)
C9—C10—H10119.4C37—C38—C41121.3 (6)
C11—C10—H10119.4C38—C39—C40121.0 (6)
C10—C11—C12118.6 (5)C38—C39—H39119.5
C10—C11—C23118.9 (5)C40—C39—H39119.5
C12—C11—C23122.5 (5)C35—C40—C39121.2 (6)
C13—C12—C11118.9 (5)C35—C40—H40119.4
C13—C12—C15117.7 (5)C39—C40—H40119.4
C11—C12—C15123.4 (5)N5—C41—C38114.9 (5)
C12—C13—C14122.3 (5)N5—C41—H41A108.6
C12—C13—H13118.8C38—C41—H41A108.6
C14—C13—H13118.8N5—C41—H41B108.6
C9—C14—C13118.4 (6)C38—C41—H41B108.6
C9—C14—H14120.8H41A—C41—H41B107.5
C13—C14—H14120.8N6—C42—N5111.9 (6)
O7—C15—O6124.6 (6)N6—C42—H42124.1
O7—C15—C12122.6 (6)N5—C42—H42124.1
O6—C15—C12112.2 (5)N5—C43—C44108.0 (6)
N8—C16—N7111.0 (5)N5—C43—H43126.0
N8—C16—H16124.5C44—C43—H43126.0
N7—C16—H16124.5C43—C44—N6108.4 (6)
C18—C17—N7108.8 (5)C43—C44—H44125.8
C18—C17—H17125.6N6—C44—H44125.8
N7—C17—H17125.6H1WA—O1W—H1WB107.7
C17—C18—N8107.4 (5)H2WA—O2W—H2WB107.7
C17—C18—H18126.3
O2iii—Cu2—N2—C306.4 (8)C17—N7—C16—N80.2 (6)
O9—Cu2—N2—C30161.2 (8)Cu1—N7—C16—N8178.3 (3)
N3—Cu2—N2—C30113.0 (9)C16—N7—C17—C180.2 (6)
O2iii—Cu2—N2—C28156.5 (6)Cu1—N7—C17—C18178.3 (4)
O9—Cu2—N2—C2835.9 (6)N7—C17—C18—N80.1 (7)
N3—Cu2—N2—C2849.9 (10)C16—N8—C18—C170.0 (6)
O2iii—Cu2—N3—C3121.3 (4)C19—N8—C18—C17177.2 (5)
O9—Cu2—N3—C31170.1 (4)C16—N8—C19—C2090.6 (7)
N2—Cu2—N3—C3185.2 (8)C18—N8—C19—C2086.1 (7)
O2iii—Cu2—N3—C32164.4 (5)N8—C19—C20—C22108.8 (7)
O9—Cu2—N3—C324.2 (5)N8—C19—C20—C2171.3 (8)
N2—Cu2—N3—C3289.1 (8)C22—C20—C21—C22vii1.0 (11)
O4i—Cu1—N7—C16167.2 (4)C19—C20—C21—C22vii178.9 (6)
O6—Cu1—N7—C161.6 (5)C21—C20—C22—C21vii1.0 (11)
N6ii—Cu1—N7—C1675.0 (11)C19—C20—C22—C21vii178.9 (6)
O4i—Cu1—N7—C1714.6 (5)Cu2—O9—C23—O88.9 (8)
O6—Cu1—N7—C17176.5 (5)Cu2—O9—C23—C11171.2 (4)
N6ii—Cu1—N7—C17103.1 (10)C10—C11—C23—O8148.2 (6)
O4i—Cu1—O6—C1516.0 (9)C12—C11—C23—O830.0 (9)
N7—Cu1—O6—C15103.5 (4)C10—C11—C23—O931.9 (8)
N6ii—Cu1—O6—C1586.9 (4)C12—C11—C23—O9149.9 (6)
O2iii—Cu2—O9—C2315.4 (10)C26viii—C24—C25—C262.2 (18)
N3—Cu2—O9—C2397.9 (4)C26viii—C24—C25—C27176.4 (9)
N2—Cu2—O9—C23101.8 (4)C24—C25—C26—C24viii2.3 (19)
Cu2v—O2—C1—O111.7 (8)C27—C25—C26—C24viii176.2 (10)
Cu2v—O2—C1—C2166.8 (4)C28—N1—C27—C2596.3 (11)
O1—C1—C2—C7139.2 (6)C29—N1—C27—C2586.4 (12)
O2—C1—C2—C742.3 (8)C26—C25—C27—N180.0 (12)
O1—C1—C2—C344.3 (8)C24—C25—C27—N1101.5 (11)
O2—C1—C2—C3134.2 (6)C29—N1—C28—N23.2 (10)
C7—C2—C3—C40.4 (9)C27—N1—C28—N2178.9 (8)
C1—C2—C3—C4176.4 (6)C30—N2—C28—N12.7 (10)
C2—C3—C4—C50.5 (10)Cu2—N2—C28—N1169.6 (5)
C9—O5—C5—C621.9 (9)C28—N1—C29—C302.4 (11)
C9—O5—C5—C4160.5 (6)C27—N1—C29—C30179.8 (9)
C3—C4—C5—C61.4 (10)N1—C29—C30—N20.8 (12)
C3—C4—C5—O5179.2 (6)C28—N2—C30—C291.1 (11)
O5—C5—C6—C7179.0 (5)Cu2—N2—C30—C29166.6 (7)
C4—C5—C6—C71.6 (9)C32—N3—C31—N40.5 (6)
C3—C2—C7—C60.3 (8)Cu2—N3—C31—N4174.9 (4)
C1—C2—C7—C6176.2 (5)C33—N4—C31—N31.2 (6)
C3—C2—C7—C8176.1 (5)C34—N4—C31—N3177.4 (5)
C1—C2—C7—C87.4 (9)C31—N3—C32—C330.4 (7)
C5—C6—C7—C20.7 (8)Cu2—N3—C32—C33175.7 (4)
C5—C6—C7—C8177.2 (5)N3—C32—C33—N41.1 (7)
Cu1vi—O4—C8—O313.5 (8)C31—N4—C33—C321.3 (7)
Cu1vi—O4—C8—C7164.6 (3)C34—N4—C33—C32177.5 (5)
C2—C7—C8—O361.2 (7)C31—N4—C34—C3596.8 (7)
C6—C7—C8—O3115.3 (6)C33—N4—C34—C3578.6 (8)
C2—C7—C8—O4120.6 (6)N4—C34—C35—C40114.0 (6)
C6—C7—C8—O463.0 (7)N4—C34—C35—C3667.6 (8)
C5—O5—C9—C10132.2 (6)C40—C35—C36—C372.3 (9)
C5—O5—C9—C1449.9 (8)C34—C35—C36—C37179.3 (6)
C14—C9—C10—C113.4 (9)C35—C36—C37—C382.4 (10)
O5—C9—C10—C11178.6 (5)C36—C37—C38—C391.0 (9)
C9—C10—C11—C120.6 (9)C36—C37—C38—C41177.5 (6)
C9—C10—C11—C23177.6 (5)C37—C38—C39—C400.5 (9)
C10—C11—C12—C132.5 (8)C41—C38—C39—C40176.0 (6)
C23—C11—C12—C13179.3 (6)C36—C35—C40—C390.8 (9)
C10—C11—C12—C15177.7 (6)C34—C35—C40—C39179.2 (5)
C23—C11—C12—C150.5 (9)C38—C39—C40—C350.6 (9)
C11—C12—C13—C143.0 (9)C42—N5—C41—C3891.1 (7)
C15—C12—C13—C14177.3 (6)C43—N5—C41—C3886.8 (8)
C10—C9—C14—C133.0 (9)C39—C38—C41—N5132.6 (6)
O5—C9—C14—C13179.1 (6)C37—C38—C41—N550.9 (8)
C12—C13—C14—C90.2 (10)C44—N6—C42—N50.8 (7)
Cu1—O6—C15—O713.0 (7)Cu1iv—N6—C42—N5173.7 (4)
Cu1—O6—C15—C12158.9 (4)C43—N5—C42—N60.8 (7)
C13—C12—C15—O794.4 (8)C41—N5—C42—N6179.1 (5)
C11—C12—C15—O785.4 (8)C42—N5—C43—C440.5 (7)
C13—C12—C15—O677.7 (7)C41—N5—C43—C44178.7 (6)
C11—C12—C15—O6102.5 (6)N5—C43—C44—N60.0 (8)
C18—N8—C16—N70.1 (6)C42—N6—C44—C430.5 (7)
C19—N8—C16—N7177.1 (5)Cu1iv—N6—C44—C43173.3 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x1/2, y+1/2, z1/2; (vi) x+3/2, y1/2, z+1/2; (vii) x+2, y, z+1; (viii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu4(C16H6O9)2(C14H14N4)4]·H2O
Mr1909.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)18.750 (3), 10.3283 (17), 22.386 (4)
β (°) 97.388 (3)
V3)4299.1 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18013, 7404, 4497
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.169, 1.02
No. of reflections7404
No. of parameters586
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005).

 

Acknowledgements

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). SHELXTL, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds