organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4,5-Di­hydro-1,3-oxazol-2-yl)quinoline

aNúcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil, and bLaboratório de Materiais Inorgânicos, Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
*Correspondence e-mail: rburrow@ewald.base.ufsm.br, mmartins@base.ufsm.br

(Received 27 August 2007; accepted 13 September 2007; online 6 December 2007)

The title compound, C12H10N2O, is approximately planar. The angle between the quinoline and 4,5-dihydro­oxazole ring systems is 11.91 (12)°. The mol­ecules pack into a herringbone array with no significant ππ inter­actions. The dihydro­oxazole N and O atoms are disordered over two positions, with almost equal site occupancy factors.

Related literature

For related 2-substituted quinoline compounds, see: Mague et al. (1997[Mague, J. T., Vang, S., Berge, D. G. & Wacholtz, W. F. (1997). Acta Cryst. C53, 973-979.]); Yang et al. (2001[Yang, Q.-Y., Zhou, Z.-Y. & Qi, J.-Y. (2001). Acta Cryst. E57, o971-o972.]); Qi et al. (2003[Qi, J. Y., Qiu, L. Q., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o104-o105.]); Xu et al. (2006[Xu, R.-H., Zhou, J., Xu, Y., Qi, L., Shen, X. & Zhu, D.-R. (2006). Acta Cryst. E62, o5234-o5235.]). For the synthesis, see: Ishihara & Togo (2007[Ishihara, M. & Togo, H. (2007). Tetrahedron, 63, 1474-1480.]). For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., de Souza, M. V. N., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]); Hartline et al. (2005[Hartline, C. B., Harden, E. A., Williams-Aziz, S. L., Kushner, N. L., Brideau, R. J. & Kern, E. R. (2005). Antiviral Res. 65, 97-105.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O

  • Mr = 198.22

  • Monoclinic, P 21 /c

  • a = 6.2240 (3) Å

  • b = 13.6649 (6) Å

  • c = 11.8186 (6) Å

  • β = 102.097 (3)°

  • V = 982.86 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.24 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2 (Version 2.1), COSMO (Version 1.56), BIS (Version 2.0.1.9), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.705, Tmax = 1 (expected range = 0.697–0.989)

  • 9874 measured reflections

  • 2183 independent reflections

  • 1128 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.143

  • S = 1.00

  • 2183 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2/COSMO/BIS (Bruker, 2006[Bruker (2006). APEX2 (Version 2.1), COSMO (Version 1.56), BIS (Version 2.0.1.9), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 (Version 2.1), COSMO (Version 1.56), BIS (Version 2.0.1.9), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SADABS (Bruker, 2006[Bruker (2006). APEX2 (Version 2.1), COSMO (Version 1.56), BIS (Version 2.0.1.9), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Version 3.1e. Crystal Impact Gbr, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quinoline derivatives are known to possess a variety of biological properties such as antimalarial and antiviral activity (Cunico et al., 2006; Hartline et al., 2005). In addition, oxazoline-derived complexes of Pd(II) and other metals have attracted a great deal of attention due to their high efficiency in enantioselective catalysis. In this context, we were interested in detailed knowledge of the molecular structure of the above derivatives. In this communication we report the crystal structure of the title compound, 2-(4,5-dihydrooxazol-2-yl)quinoline. The analysis was focused on the planarity of the molecule. Both the quinoline and the 4,5-dihydrooxazole rings are planar, with r.m.s. deviations from planarity of 0.0136 Å for the first and 0.0176 ° for the last. The entire molecule is almost planar; the angle between the two rings is 11.91 (12) °. Quinoline and dihydrooxazole rings are essentially planar, with an average r.m.s. deviation from planarity of 0.06 (3) Å for 552 observations for the first and 0.05 (3) Å for 31 observations for the last in the Cambridge Structural Database [CSD, Version 5.28, update of May 2007; Allen, 2002)]. The molecules pack into a herringbone array with no significant π-π interactions.

Related literature top

For related 2-substituted quinoline compounds, see: Mague et al. (1997); Yang et al. (2001); Qi et al. (2003); Xu et al. (2006). For the synthesis, see: Ishihara & Togo (2007).

For related literature, see: Allen (2002); Cunico et al. (2006); Hartline et al. (2005).

Experimental top

The title compound was synthesized from quinoline-2-carbaldehyde and aminoethanol according to the general procedure of Ishihara & Togo (2007). The crystal used for the data collection was obtained by recrystallization from hexane followed by slow evaporation at room temperature.

Refinement top

All H atoms were refined using a riding model, with C—H = 0.97%A and Uiso(H) = 1.2Ueq(C) for the methylene C atoms and C—H = 0.93 Å and Uiso = 1.2Ueq(C) for the quinoline C atoms.

Structure description top

Quinoline derivatives are known to possess a variety of biological properties such as antimalarial and antiviral activity (Cunico et al., 2006; Hartline et al., 2005). In addition, oxazoline-derived complexes of Pd(II) and other metals have attracted a great deal of attention due to their high efficiency in enantioselective catalysis. In this context, we were interested in detailed knowledge of the molecular structure of the above derivatives. In this communication we report the crystal structure of the title compound, 2-(4,5-dihydrooxazol-2-yl)quinoline. The analysis was focused on the planarity of the molecule. Both the quinoline and the 4,5-dihydrooxazole rings are planar, with r.m.s. deviations from planarity of 0.0136 Å for the first and 0.0176 ° for the last. The entire molecule is almost planar; the angle between the two rings is 11.91 (12) °. Quinoline and dihydrooxazole rings are essentially planar, with an average r.m.s. deviation from planarity of 0.06 (3) Å for 552 observations for the first and 0.05 (3) Å for 31 observations for the last in the Cambridge Structural Database [CSD, Version 5.28, update of May 2007; Allen, 2002)]. The molecules pack into a herringbone array with no significant π-π interactions.

For related 2-substituted quinoline compounds, see: Mague et al. (1997); Yang et al. (2001); Qi et al. (2003); Xu et al. (2006). For the synthesis, see: Ishihara & Togo (2007).

For related literature, see: Allen (2002); Cunico et al. (2006); Hartline et al. (2005).

Computing details top

Data collection: APEX2/COSMO/BIS (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT and SADABS (Bruker, 2006); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
2-(4,5-Dihydro-1,3-oxazol-2-yl)quinoline top
Crystal data top
C12H10N2OF(000) = 416
Mr = 198.22Dx = 1.34 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1185 reflections
a = 6.2240 (3) Åθ = 6.9–40.4°
b = 13.6649 (6) ŵ = 0.09 mm1
c = 11.8186 (6) ÅT = 273 K
β = 102.097 (3)°Block, colourless
V = 982.86 (8) Å30.24 × 0.21 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006) was used to perform the multi-scan semi-empirical (using intensity measurements) absorption correction and to scale the data.
h = 78
Tmin = 0.705, Tmax = 1k = 1616
9874 measured reflectionsl = 1515
2183 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.069P)2]
where P = (Fo2 + 2Fc2)/3
2183 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C12H10N2OV = 982.86 (8) Å3
Mr = 198.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2240 (3) ŵ = 0.09 mm1
b = 13.6649 (6) ÅT = 273 K
c = 11.8186 (6) Å0.24 × 0.21 × 0.13 mm
β = 102.097 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2183 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006) was used to perform the multi-scan semi-empirical (using intensity measurements) absorption correction and to scale the data.
1128 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 1Rint = 0.039
9874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
2183 reflectionsΔρmin = 0.15 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0592 (3)0.64386 (12)0.61057 (14)0.0526 (5)
C20.0108 (3)0.68102 (15)0.49740 (15)0.0664 (5)
H20.14140.65920.45080.080*
C30.1126 (3)0.74813 (14)0.45761 (15)0.0671 (6)
H30.06660.77380.38360.080*
C40.3119 (3)0.77950 (12)0.52818 (13)0.0531 (5)
C50.4498 (3)0.85086 (13)0.49471 (15)0.0644 (5)
H50.41140.87920.42170.077*
C60.6375 (4)0.87843 (14)0.56788 (18)0.0701 (6)
H60.72720.92560.54480.084*
C70.6978 (3)0.83631 (15)0.67849 (17)0.0729 (6)
H70.82670.85610.72830.087*
C80.5700 (3)0.76724 (14)0.71306 (15)0.0644 (5)
H80.61280.73920.78600.077*
C90.3723 (3)0.73727 (12)0.63946 (13)0.0514 (5)
C110.0822 (3)0.57463 (13)0.65666 (15)0.0591 (5)
C120.2299 (4)0.48788 (16)0.77775 (19)0.0812 (7)
H12A0.31460.51890.82800.097*
H12B0.17880.42470.80990.097*
C130.3652 (4)0.47695 (17)0.65699 (18)0.0815 (7)
H13A0.36570.40960.63120.098*
H13B0.51560.49770.65330.098*
N10.2441 (2)0.67018 (10)0.67998 (11)0.0538 (4)
N20.2574 (3)0.54003 (12)0.58733 (13)0.0854 (7)0.473 (17)
O10.0448 (2)0.54973 (11)0.76424 (12)0.0751 (7)0.473 (17)
O1A0.2574 (3)0.54003 (12)0.58733 (13)0.0854 (7)0.527 (17)
N2A0.0448 (2)0.54973 (11)0.76424 (12)0.0751 (7)0.527 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0561 (11)0.0528 (10)0.0477 (10)0.0063 (9)0.0085 (9)0.0031 (8)
C20.0650 (13)0.0777 (13)0.0509 (11)0.0018 (11)0.0007 (9)0.0018 (9)
C30.0771 (14)0.0744 (14)0.0450 (10)0.0102 (11)0.0019 (10)0.0063 (8)
C40.0640 (12)0.0516 (10)0.0448 (9)0.0099 (9)0.0141 (9)0.0004 (7)
C50.0796 (14)0.0627 (12)0.0534 (11)0.0080 (11)0.0194 (11)0.0074 (9)
C60.0747 (14)0.0647 (13)0.0751 (13)0.0037 (11)0.0253 (11)0.0090 (10)
C70.0706 (14)0.0771 (14)0.0676 (13)0.0116 (11)0.0071 (11)0.0052 (10)
C80.0699 (14)0.0682 (13)0.0515 (10)0.0032 (10)0.0047 (10)0.0087 (8)
C90.0583 (11)0.0506 (10)0.0439 (9)0.0083 (9)0.0075 (8)0.0007 (7)
C110.0600 (12)0.0562 (11)0.0604 (12)0.0043 (9)0.0112 (10)0.0050 (9)
C120.0734 (15)0.0889 (15)0.0850 (15)0.0119 (12)0.0249 (12)0.0050 (11)
C130.0698 (14)0.0826 (15)0.0923 (16)0.0137 (11)0.0178 (13)0.0012 (11)
N10.0580 (9)0.0536 (9)0.0481 (8)0.0009 (7)0.0075 (7)0.0019 (6)
N20.0765 (12)0.1034 (13)0.0690 (11)0.0272 (9)0.0013 (9)0.0046 (8)
O10.0772 (12)0.0848 (12)0.0607 (10)0.0168 (8)0.0083 (8)0.0091 (7)
O1A0.0765 (12)0.1034 (13)0.0690 (11)0.0272 (9)0.0013 (9)0.0046 (8)
N2A0.0772 (12)0.0848 (12)0.0607 (10)0.0168 (8)0.0083 (8)0.0091 (7)
Geometric parameters (Å, º) top
C1—N11.315 (2)C7—H70.9300
C1—C21.412 (2)C8—C91.411 (2)
C1—C111.472 (3)C8—H80.9300
C2—C31.343 (3)C9—N11.366 (2)
C2—H20.9300C11—O11.289 (2)
C3—C41.409 (2)C11—N21.307 (2)
C3—H30.9300C12—O11.464 (2)
C4—C51.409 (2)C12—C131.505 (3)
C4—C91.413 (2)C12—H12A0.9700
C5—C61.353 (2)C12—H12B0.9700
C5—H50.9300C13—N21.450 (2)
C6—C71.405 (2)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C7—C81.352 (3)
N1—C1—C2123.27 (18)C9—C8—H8119.7
N1—C1—C11117.23 (15)N1—C9—C8118.48 (15)
C2—C1—C11119.46 (16)N1—C9—C4122.63 (16)
C3—C2—C1119.45 (17)C8—C9—C4118.87 (18)
C3—C2—H2120.3O1—C11—N2118.51 (18)
C1—C2—H2120.3O1—C11—C1122.40 (16)
C2—C3—C4119.85 (16)N2—C11—C1119.03 (16)
C2—C3—H3120.1O1—C12—C13104.53 (16)
C4—C3—H3120.1O1—C12—H12A110.8
C3—C4—C5123.84 (16)C13—C12—H12A110.8
C3—C4—C9117.14 (18)O1—C12—H12B110.8
C5—C4—C9119.01 (17)C13—C12—H12B110.8
C6—C5—C4120.54 (17)H12A—C12—H12B108.9
C6—C5—H5119.7N2—C13—C12104.22 (15)
C4—C5—H5119.7N2—C13—H13A110.9
C5—C6—C7120.47 (19)C12—C13—H13A110.9
C5—C6—H6119.8N2—C13—H13B110.9
C7—C6—H6119.8C12—C13—H13B110.9
C8—C7—C6120.50 (18)H13A—C13—H13B108.9
C8—C7—H7119.7C1—N1—C9117.63 (14)
C6—C7—H7119.7C11—N2—C13106.47 (15)
C7—C8—C9120.60 (17)C11—O1—C12106.02 (16)
C7—C8—H8119.7
N1—C1—C2—C31.4 (3)N1—C1—C11—O18.9 (3)
C11—C1—C2—C3176.45 (16)C2—C1—C11—O1169.11 (17)
C1—C2—C3—C41.1 (3)N1—C1—C11—N2173.99 (16)
C2—C3—C4—C5178.70 (17)C2—C1—C11—N28.0 (3)
C2—C3—C4—C90.2 (3)O1—C12—C13—N24.9 (2)
C3—C4—C5—C6179.00 (17)C2—C1—N1—C90.3 (2)
C9—C4—C5—C60.2 (3)C11—C1—N1—C9177.55 (14)
C4—C5—C6—C70.0 (3)C8—C9—N1—C1179.31 (15)
C5—C6—C7—C80.4 (3)C4—C9—N1—C11.0 (2)
C6—C7—C8—C90.9 (3)O1—C11—N2—C131.2 (2)
C7—C8—C9—N1177.34 (17)C1—C11—N2—C13178.42 (15)
C7—C8—C9—C41.1 (3)C12—C13—N2—C113.8 (2)
C3—C4—C9—N11.3 (2)N2—C11—O1—C122.2 (2)
C5—C4—C9—N1177.67 (14)C1—C11—O1—C12174.98 (16)
C3—C4—C9—C8179.57 (15)C13—C12—O1—C114.4 (2)
C5—C4—C9—C80.6 (2)

Experimental details

Crystal data
Chemical formulaC12H10N2O
Mr198.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)6.2240 (3), 13.6649 (6), 11.8186 (6)
β (°) 102.097 (3)
V3)982.86 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.21 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2006) was used to perform the multi-scan semi-empirical (using intensity measurements) absorption correction and to scale the data.
Tmin, Tmax0.705, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
9874, 2183, 1128
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 1.00
No. of reflections2183
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: APEX2/COSMO/BIS (Bruker, 2006), SAINT (Bruker, 2006), SAINT and SADABS (Bruker, 2006), SHELXTL (Bruker, 2001), DIAMOND (Brandenburg, 2007), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/PRONEX) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support. Fellowships from CNPq and CAPES are also acknowledged. The diffractomer was funded by a CT-INFRA grant from the Financiadora de Estudos e Projetos (FINEP), Brazil.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Version 3.1e. Crystal Impact Gbr, Bonn, Germany.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2 (Version 2.1), COSMO (Version 1.56), BIS (Version 2.0.1.9), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., de Souza, M. V. N., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHartline, C. B., Harden, E. A., Williams-Aziz, S. L., Kushner, N. L., Brideau, R. J. & Kern, E. R. (2005). Antiviral Res. 65, 97–105.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIshihara, M. & Togo, H. (2007). Tetrahedron, 63, 1474–1480.  Web of Science CrossRef CAS Google Scholar
First citationMague, J. T., Vang, S., Berge, D. G. & Wacholtz, W. F. (1997). Acta Cryst. C53, 973–979.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQi, J. Y., Qiu, L. Q., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o104–o105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, R.-H., Zhou, J., Xu, Y., Qi, L., Shen, X. & Zhu, D.-R. (2006). Acta Cryst. E62, o5234–o5235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Q.-Y., Zhou, Z.-Y. & Qi, J.-Y. (2001). Acta Cryst. E57, o971–o972.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds