

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Triethylammonium N'-(benzylsulfanylthiocarbonyl)-2-hydroxybenzohydrazidate

Mamata Singh,^a* Ajay K. Srivastava,^a N. K. Singh,^a Anuraag Shrivastav^b and R. K. Sharma^b

^aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, and ^bDepartment of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 20 Campus Drive, Saskatoon, SK, Canada S7N 4H4 Correspondence e-mail: singhnk_bhu@yahoo.com

Received 2 November 2007; accepted 14 December 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.056; wR factor = 0.118; data-to-parameter ratio = 15.3.

In the title compound, $C_6H_{16}N^+ \cdot C_{15}H_{13}N_2O_2S_2^-$, the thione S atom is in a *cis* configuration with respect to the phenyl and benzene rings, while it adopts a *trans* configuration with respect to the carbonyl group. The dihedral angle between the benzene and phenyl rings is 78.81 (2)°. The molecular conformation is stabilized by intramolecular O-H···O and $N-H\cdots$ S hydrogen bonds, while intermolecular $N-H\cdots$ O, $N-H \cdots N$ and weak $C-H \cdots O$ interactions help to stabilize the crystal structure.

Related literature

For related literature, see: Scovill et al. (1982, 1984); West et al. (1989); Gou et al. (1990); Abu-Raguabah et al. (1992); Marchi et al. (1990); Ali & Livingston, (1974); Wu et al. (2000); Boga et al. (1990).

Experimental

Crystal data

 $C_6H_{16}N^+ \cdot C_{15}H_{13}N_2O_2S_2^ M_r = 419.59$ Orthorhombic, Pbca

a = 10.7109 (4) Å b = 18.6807 (6) Å c = 22.1814 (7) Å

V = 4438.2 (3) Å³ 7 - 8Mo $K\alpha$ radiation

Data collection

Nonius KappaCCD diffractometer 3928 independent reflections Absorption correction: none 2542 reflections with $I > 2\sigma(I)$ 26195 measured reflections $R_{\rm int} = 0.138$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ 257 parameters $wR(F^2) = 0.118$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$ S = 1.05 $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ 3928 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···O2	0.84	1.79	2.538 (3)	147
$N1 - H1A \cdot \cdot \cdot S2$	0.88	2.39	2.855 (3)	114
$N3-H3A\cdots O2$	0.93	2.18	2.929 (3)	137
$N3-H3A\cdots N2$	0.93	2.27	3.094 (4)	148
$C9-H9A\cdots S2$	0.99	2.59	3.200 (3)	120
$C21 - H21A \cdots O1^{i}$	0.98	2.56	3.377 (5)	141

Symmetry code: (i) $x - \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank Professor W. Ouail. Saskatchewan Structural Sciences Centre, Canada, for the X-ray diffraction facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2550).

References

- Abu-Raqabah, A., Davies, G., El-Sayed, M. A., El-Toukhy, A., Shaikh, S. N. & Zubieta, J. (1992). Inorg. Chim. Acta, 193, 43-56.
- Ali, M. A. & Livingston, S. E. (1974). Coord. Chem. Rev. 13, 101-132.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Boga, C., Forlani, L., Silverstoni, C., Corradi, A. B. & Sgarabotto, P. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1363-1368.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gou, S. H., You, X. Z., Xu, Z., Yu, K. B. & Zhou, Z. Y. (1990). Polyhedron, 9, 2981-2985.
- Marchi, A., Rossi, R., Magon, L., Duttai, A., Pasqualini, R., Ferretti, V. & Bertolasi, V. (1990). J. Chem. Soc. Dalton Trans. pp. 1411-1416.
- Nonius (1998). COLLECT Nonius BV Delft The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Scovill, J. P., Klayman, D. L. & Franchino, C. F. (1982). J. Med. Chem. 25, 1261-1264.
- Scovill, J. P., Klayman, D. L., Lambros, C., Childs, G. E. & Nortsh, J. D. (1984). J. Med. Chem. 27, 87-91.

© 2008 International Union of Crystallography

0339

Sheldrick, G. M. (1997). SHELXL97, University of Göttingen, Germany. West, D. X. & Pannell, L. K. (1989). Transition Met. Chem. 14, 457-462.

 $\mu = 0.26 \text{ mm}^{-1}$

T = 173 (2) K

 $0.08 \times 0.08 \times 0.05 \; \rm mm$

supporting information

Acta Cryst. (2008). E64, o339 [https://doi.org/10.1107/S1600536807067037] Triethylammonium N'-(benzylsulfanylthiocarbonyl)-2-hydroxybenzohydrazidate Mamata Singh, Ajay K. Srivastava, N. K. Singh, Anuraag Shrivastav and R. K. Sharma

S1. Comment

Dithiocarbazates and their derivatives have attracted much attention as they have potential applications as antitumor, antibacterial and antifungal agents (Scovill *et al.*, 1982,1984, West & Pannell, 1989, Gou *et al.*, 1990). Interest in these systems is also stimulated by their unusual physico-chemical (Abu-Raquabah *et al.*1992, Marchi *et al.*, 1990) and chemotherapeutic properties (Ali & Livingston, 1974). Although *N*-acyl hydrazine carbodithioates are structurally similar to the derivatives of dithiocarbazates, little data is available on their synthesis and characterization. As part of our ongoing investigation, we report here the synthesis and structure determination of the title compound (I) which was obtained from the reaction of salicylic acid hydrazide, CS₂ and benzyl chloride in the presence of triethylamine.

The molecular structure of (I), together with atom labeling scheme is shown in Fig 1. The Hydrazinic H atom on N1 is *trans* with respect to the carbonyl group and *cis* with respect to the thione S atom. The C7—N1 distance of 1.329 (4) Å is intermediate between 1.47 Å for a C—N single bond and 1.29 Å for a double bond (Boga *et al.*, 1999). The N1—N2 distance of 1.396 (3) Å [single bond (N—N) = 1.45 Å and double bond (N=N) = 1.25 Å] and the O2—C7 distance of 1.257 (4) Å suggest extensive delocalization in this part of the molecule. In the crystal structure, there is a weak C—H··· π interaction (Fig 2) [C5—H5···*Cg* = 140.65°, H5···*Cg* = 2.976 Å and C5···*Cg* = 3.759 Å, where *Cg* is the centroid of the phenyl ring]. The molecular conformation is stabilized by intramolecular O—H···O and N—H···S hydrogen bonds while intermolecular N—H···O, N—H···N and weak C—H···O interactions help stabilize the crystal structure.

S2. Experimental

The title compound was synthesized by the reaction of CS₂ (1.99 g, 26.29 mmol) with a solution of salicylic acid hydrazide (4 g, 24.09 mmol) in CHCl₃ (15 ml) in the presence of triethylamine (2 ml, 24.09 mmol). Benzyl chloride (3.5 ml, 26.30 mmol) was added dropwise to the above clear solution, which was stirred continuously for 2 h at room temperature. The product was obtained on evaporation of the solvent at room temperature. Colorless single crystals of (I) (m.p., 418 K) suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution over a period of 10 days. (Yield 58%). Elemental analysis: Anal. Calcd (%): C, 60.11; H, 6.97; N, 10.01; S, 15.28; Found (%) for C₂₁H₂₉N₃O₂S₂ (419.59): C,60.01; H, 6.87; N, 10.30; S, 15.06. Spectroscopic analysis: ¹H NMR (CDCl₃, TMS, δ , p.p.m.) 11.66, 12.38 (s, 2H, NH), 7.92–6.9 (m, 4H, benzene ring), 7.18 - 6.89 (m, 5H, phenyl), 4.48 (s, 1H, OH), 4.25 (s, 2H, CH₂), 2.49 (s, 6H, CH₂ of Et₃NH⁺), 1.15 (s, 9H, CH₃ of Et₃NH⁺).¹³C NMR (CDCl₃, TMS, δ , p.p.m.): 117.25 (C1), 158.94 (C2), 116.30 (C3), 134.06 (C4), 118.99 (C5), 128.42 (C6), 165.85 (C7), 174.23 (C8), 35.66 (C9), 139.52 (C10), 127.60 (C11, C15), 129.09 (C12, C14), 126.38 (C13), 45.77 (C16, C18, C20), 8.59 (C17, C19, C21).

S3. Refinement

All H atoms were initially located in a diffrence Fourier map. They were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95-0.99 Å; N—H = 0.84Å and O—H = 0.84Å and U_{iso} (H) =

1.2 $U_{eq}(C,N)$ or $1.5U_{eq}(C_{methyl},O)$.

Figure 1

The molecular structure showing the atom-numbering scheme and displacement ellipsoids the 30% probability level. Hydrogen atoms are not shown.

Figure 2

Part of the crystal structure showing hydrogen bonds as dashed lines. Some H atoms have not been shown but the H atom of the benzene ring which is involved in a C—H $\cdots\pi$ interaction with the phenyl ring is shown.

Triethylammonium N'-(benzylsulfanylthiocarbonyl)-2-hydroxybenzohydrazidate

Crystal data	
$C_6H_{16}N^+\!\cdot\!C_{15}H_{13}N_2O_2S_2^-$	Hall symbol: -P 2ac 2ab
$M_r = 419.59$	a = 10.7109 (4) Å
Orthorhombic, Pbca	b = 18.6807 (6) Å

Cell parameters from 16320 reflections

 $\theta = 1.0-26.0^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$

T = 173 K

Chip, yellow

 $0.08 \times 0.08 \times 0.05 \text{ mm}$

c = 22.1814 (7) Å V = 4438.2 (3) Å³ Z = 8 F(000) = 1792 $D_x = 1.256$ Mg m⁻³ Melting point: 418 K Mo K α radiation, $\lambda = 0.71073$ Å

Data collection

Nonius KappaCCD diffractometer	3928 independent reflections 2542 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.138$
Horizonally mounted graphite crystal	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
monochromator	$h = -12 \rightarrow 12$
φ scans and ω scans with κ offsets	$k = -22 \rightarrow 20$
26195 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.056$	$w = 1/[\sigma^2(F_o^2) + (0.033P)^2 + 3.4211P]$
$wR(F^2) = 0.118$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3928 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
257 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.15592 (9)	0.33158 (5)	-0.05488 (4)	0.0436 (2)	
S2	0.34667 (8)	0.44725 (4)	-0.01971 (4)	0.0380 (2)	
01	0.5287 (2)	0.23266 (12)	0.22154 (10)	0.0454 (6)	
H1	0.4638	0.2259	0.2010	0.068*	
O2	0.3691 (2)	0.25376 (12)	0.13887 (10)	0.0427 (6)	
N1	0.3824 (2)	0.35026 (14)	0.07825 (12)	0.0351 (7)	
H1A	0.4152	0.3928	0.0719	0.042*	
N2	0.2880 (2)	0.32553 (13)	0.04023 (11)	0.0335 (6)	
C1	0.5386 (3)	0.33468 (16)	0.15530 (13)	0.0302 (7)	
C2	0.5870(3)	0.29257 (17)	0.20199 (14)	0.0348 (8)	
C3	0.6992 (3)	0.31114 (19)	0.22951 (15)	0.0434 (9)	
H3	0.7313	0.2825	0.2613	0.052*	
C4	0.7638 (3)	0.3707 (2)	0.21095 (16)	0.0462 (9)	
H4	0.8408	0.3826	0.2297	0.055*	

C5	0.7178 (3)	0.41331 (19)	0.16532 (15)	0.0431 (9)
Н5	0.7627	0.4546	0.1528	0.052*
C6	0.6067 (3)	0.39574 (17)	0.13812 (15)	0.0376 (8)
H6	0.5751	0.4256	0.1070	0.045*
C7	0.4235 (3)	0.31073 (17)	0.12389 (14)	0.0332 (8)
C8	0.2719 (3)	0.36876 (16)	-0.00578 (14)	0.0320 (7)
C9	0.1697 (3)	0.38403 (17)	-0.12303 (14)	0.0395 (8)
H9A	0.2505	0.4097	-0.1220	0.047*
H9B	0.1719	0.3509	-0.1579	0.047*
C10	0.0678 (3)	0.43768 (17)	-0.13339 (14)	0.0355 (8)
C11	0.0125 (4)	0.4435 (2)	-0.18983 (16)	0.0501 (10)
H11	0.0358	0.4115	-0.2212	0.060*
C12	-0.0765 (4)	0.4959 (2)	-0.20057 (19)	0.0637 (12)
H12	-0.1135	0.4995	-0.2394	0.076*
C13	-0.1118 (4)	0.5423 (2)	-0.1562 (2)	0.0597 (11)
H13	-0.1723	0.5782	-0.1641	0.072*
C14	-0.0587 (4)	0.53656 (19)	-0.09972 (17)	0.0498 (10)
H14	-0.0833	0.5684	-0.0685	0.060*
C15	0.0300 (3)	0.48471 (17)	-0.08859 (15)	0.0394 (8)
H15	0.0659	0.4812	-0.0495	0.047*
N3	0.1590 (3)	0.18429 (14)	0.07791 (13)	0.0420 (7)
H3A	0.2145	0.2224	0.0807	0.050*
C16	0.1821 (3)	0.14954 (19)	0.01787 (16)	0.0476 (9)
H16A	0.1311	0.1055	0.0149	0.057*
H16B	0.1549	0.1825	-0.0146	0.057*
C17	0.3143 (4)	0.1311 (2)	0.0086 (2)	0.0683 (12)
H17A	0.3663	0.1730	0.0173	0.102*
H17B	0.3271	0.1163	-0.0333	0.102*
H17C	0.3374	0.0919	0.0357	0.102*
C18	0.1836 (3)	0.13709 (19)	0.13117 (17)	0.0498 (10)
H18A	0.1716	0.1655	0.1684	0.060*
H18B	0.2721	0.1218	0.1300	0.060*
C19	0.1015 (4)	0.0707 (2)	0.13475 (18)	0.0589 (11)
H19A	0.0137	0.0851	0.1377	0.088*
H19B	0.1243	0.0426	0.1704	0.088*
H19C	0.1135	0.0416	0.0985	0.088*
C20	0.0303 (4)	0.2161 (2)	0.07594 (17)	0.0527 (10)
H20A	0.0230	0.2461	0.0393	0.063*
H20B	-0.0313	0.1768	0.0725	0.063*
C21	-0.0019 (4)	0.2601 (2)	0.1287 (2)	0.0746 (13)
H21A	-0.0068	0.2295	0.1645	0.112*
H21B	-0.0827	0.2833	0.1220	0.112*
H21C	0.0625	0.2967	0.1347	0.112*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
S1	0.0456 (5)	0.0354 (5)	0.0496 (5)	-0.0055 (4)	-0.0148 (5)	0.0072 (4)

supporting information

S2	0.0395 (5)	0.0281 (4)	0.0464 (5)	-0.0009 (4)	-0.0008 (4)	0.0027 (4)
01	0.0535 (16)	0.0388 (14)	0.0439 (14)	-0.0102 (12)	-0.0090 (12)	0.0085 (11)
O2	0.0475 (15)	0.0396 (13)	0.0410 (13)	-0.0169 (12)	-0.0066 (11)	0.0058 (11)
N1	0.0346 (16)	0.0280 (14)	0.0427 (16)	-0.0063 (12)	-0.0066 (13)	0.0005 (12)
N2	0.0323 (16)	0.0312 (15)	0.0371 (15)	-0.0019 (12)	-0.0062 (12)	-0.0018 (12)
C1	0.0301 (18)	0.0315 (17)	0.0289 (17)	-0.0010 (15)	0.0045 (14)	-0.0056 (14)
C2	0.038 (2)	0.0342 (18)	0.0325 (18)	-0.0005 (15)	0.0032 (15)	-0.0045 (15)
C3	0.041 (2)	0.048 (2)	0.041 (2)	0.0036 (17)	-0.0057 (17)	-0.0026 (17)
C4	0.032 (2)	0.057 (2)	0.050(2)	-0.0019 (18)	-0.0008 (18)	-0.0114 (19)
C5	0.037 (2)	0.045 (2)	0.047 (2)	-0.0115 (17)	0.0063 (17)	-0.0070 (17)
C6	0.042 (2)	0.038 (2)	0.0331 (19)	-0.0028 (16)	0.0044 (16)	-0.0010 (15)
C7	0.035 (2)	0.0324 (18)	0.0322 (18)	0.0019 (15)	-0.0003 (15)	-0.0051 (15)
C8	0.0289 (18)	0.0287 (17)	0.0384 (18)	0.0060 (14)	0.0033 (15)	-0.0024 (15)
C9	0.045 (2)	0.0400 (19)	0.0338 (18)	0.0037 (17)	-0.0032 (16)	-0.0013 (15)
C10	0.0373 (19)	0.0338 (18)	0.0354 (19)	-0.0067 (15)	-0.0019 (16)	0.0044 (15)
C11	0.062 (3)	0.046 (2)	0.043 (2)	0.001 (2)	-0.0073 (19)	0.0019 (17)
C12	0.077 (3)	0.056 (3)	0.058 (3)	0.011 (2)	-0.025 (2)	0.017 (2)
C13	0.059 (3)	0.043 (2)	0.078 (3)	0.010 (2)	-0.002 (2)	0.014 (2)
C14	0.054 (3)	0.041 (2)	0.054 (2)	0.0064 (19)	0.009 (2)	0.0055 (18)
C15	0.041 (2)	0.040 (2)	0.0371 (19)	-0.0008 (17)	0.0039 (16)	0.0043 (16)
N3	0.0357 (16)	0.0339 (15)	0.0564 (18)	-0.0110 (13)	0.0012 (15)	-0.0074 (14)
C16	0.051 (2)	0.040 (2)	0.052 (2)	-0.0060 (18)	-0.0023 (19)	-0.0038 (18)
C17	0.053 (3)	0.066 (3)	0.086 (3)	-0.002 (2)	0.005 (2)	-0.018 (2)
C18	0.046 (2)	0.051 (2)	0.053 (2)	-0.0111 (18)	-0.0063 (19)	-0.0081 (18)
C19	0.062 (3)	0.057 (3)	0.058 (3)	-0.016 (2)	-0.007 (2)	0.006 (2)
C20	0.046 (2)	0.053 (2)	0.059 (2)	-0.0035 (19)	-0.001 (2)	-0.0003 (19)
C21	0.076 (3)	0.068 (3)	0.080 (3)	0.013 (2)	0.008 (3)	-0.021 (2)

Geometric parameters (Å, °)

S1—C8	1.793 (3)	C12—H12	0.9500
S1—C9	1.807 (3)	C13—C14	1.379 (5)
S2—C8	1.699 (3)	C13—H13	0.9500
O1—C2	1.353 (4)	C14—C15	1.379 (5)
01—H1	0.8400	C14—H14	0.9500
O2—C7	1.258 (4)	C15—H15	0.9500
N1—C7	1.328 (4)	N3—C18	1.498 (4)
N1—N2	1.395 (3)	N3—C20	1.502 (4)
N1—H1A	0.8800	N3—C16	1.502 (4)
N2	1.313 (4)	N3—H3A	0.9300
C1—C2	1.400 (4)	C16—C17	1.471 (5)
C1—C6	1.407 (4)	C16—H16A	0.9900
C1—C7	1.485 (4)	C16—H16B	0.9900
C2—C3	1.392 (5)	C17—H17A	0.9800
C3—C4	1.374 (5)	C17—H17B	0.9800
С3—Н3	0.9500	C17—H17C	0.9800
C4—C5	1.379 (5)	C18—C19	1.523 (5)
C4—H4	0.9500	C18—H18A	0.9900

supporting information

C5 C6	1374(4)	C18 H18B	0 0000
C5 H5	0.0500		0.9900
	0.9500	C19—H19A	0.9600
	0.9500	CI9—HI9B	0.9800
C9—C10	1.499 (4)	C19—H19C	0.9800
С9—Н9А	0.9900	C20—C21	1.470 (5)
С9—Н9В	0.9900	C20—H20A	0.9900
C10—C15	1.387 (4)	C20—H20B	0.9900
C10—C11	1.389 (5)	C21—H21A	0.9800
C11—C12	1.387 (5)	C21—H21B	0.9800
C11—H11	0.9500	C21—H21C	0.9800
C12—C13	1.365 (6)		
C9 S1 C0	102 00 (15)	C12 C14 C15	120 1 (4)
$C_{0} = S_{1} = C_{2}$	100.5	$C_{13} = C_{14} = C_{15}$	120.1 (4)
C2_01_11	109.5	C15 - C14 - 1114	120.0
C/=NI=N2	121.1 (3)	C13—C14—H14	120.0
C/—NI—HIA	119.4	C14 - C15 - C10	121.2 (3)
N2—N1—H1A	119.4	С14—С15—Н15	119.4
C8—N2—N1	111.2 (3)	C10—C15—H15	119.4
C2—C1—C6	117.7 (3)	C18—N3—C20	114.7 (3)
C2—C1—C7	119.0 (3)	C18—N3—C16	114.6 (3)
C6—C1—C7	123.2 (3)	C20—N3—C16	107.3 (3)
O1—C2—C3	117.7 (3)	C18—N3—H3A	106.6
O1—C2—C1	122.1 (3)	C20—N3—H3A	106.6
C3—C2—C1	120.3 (3)	C16—N3—H3A	106.6
C4—C3—C2	120.4 (3)	C17—C16—N3	112.5 (3)
С4—С3—Н3	119.8	C17—C16—H16A	109.1
С2—С3—Н3	119.8	N3—C16—H16A	109.1
C3—C4—C5	120.5 (3)	C17—C16—H16B	109.1
C3—C4—H4	119.8	N3—C16—H16B	109.1
C5—C4—H4	119.8	H16A—C16—H16B	107.8
C6-C5-C4	1196(3)	C16—C17—H17A	109.5
C6-C5-H5	120.2	C16 - C17 - H17B	109.5
C4-C5-H5	120.2	H17A_C17_H17B	109.5
C_{5} C_{6} C_{1}	120.2	C16 C17 H17C	109.5
$C_{5} = C_{6} = C_{1}$	121.0 (3)		109.5
C_{1} C_{6} H_{6}	119.2	H17P C17 H17C	109.5
$C_1 = C_0 = H_0$	117.2	$M_{11}^{-1} = C_{11}^{-1} = M_{11}^{-1} C_{11}^{-1}$	109.3 114.9(2)
02 - C7 - N1	121.2(3)	$N_{2} = C_{10} = U_{10}$	114.8 (5)
	121.0 (3)	N3 - C18 - H18A	108.6
	117.8 (3)	C19—C18—H18A	108.6
N2-C8-S2	127.6 (2)	N3—C18—H18B	108.6
N2-C8-S1	109.0 (2)	C19—C18—H18B	108.6
\$2—C8—S1	123.40 (18)	H18A—C18—H18B	107.6
C10—C9—S1	115.5 (2)	C18—C19—H19A	109.5
С10—С9—Н9А	108.4	C18—C19—H19B	109.5
S1—C9—H9A	108.4	H19A—C19—H19B	109.5
С10—С9—Н9В	108.4	C18—C19—H19C	109.5
S1—C9—H9B	108.4	H19A—C19—H19C	109.5
Н9А—С9—Н9В	107.5	H19B—C19—H19C	109.5

C15—C10—C11	118.2 (3)	C21—C20—N3	114.4 (3)
C15—C10—C9	121.7 (3)	C21—C20—H20A	108.7
C11—C10—C9	120.0 (3)	N3—C20—H20A	108.7
C12—C11—C10	120.2 (4)	C21—C20—H20B	108.7
C12—C11—H11	119.9	N3—C20—H20B	108.7
C10-C11-H11	119.9	H20A-C20-H20B	107.6
C13—C12—C11	121.0 (4)	C20—C21—H21A	109.5
C13—C12—H12	119.5	C20—C21—H21B	109.5
C11—C12—H12	119.5	H21A—C21—H21B	109.5
C12—C13—C14	119.4 (4)	C20—C21—H21C	109.5
С12—С13—Н13	120.3	H21A—C21—H21C	109.5
C14—C13—H13	120.3	H21B—C21—H21C	109.5
C7—N1—N2—C8	-172.4 (3)	C9—S1—C8—N2	-167.1 (2)
C6—C1—C2—O1	-179.7 (3)	C9—S1—C8—S2	12.3 (2)
C7—C1—C2—O1	-3.5 (4)	C8—S1—C9—C10	-105.5 (3)
C6—C1—C2—C3	-0.5 (4)	S1—C9—C10—C15	48.7 (4)
C7—C1—C2—C3	175.7 (3)	S1—C9—C10—C11	-134.3 (3)
O1—C2—C3—C4	178.9 (3)	C15—C10—C11—C12	0.9 (5)
C1—C2—C3—C4	-0.3 (5)	C9-C10-C11-C12	-176.2 (3)
C2—C3—C4—C5	0.7 (5)	C10-C11-C12-C13	-0.2 (6)
C3—C4—C5—C6	-0.3 (5)	C11—C12—C13—C14	-0.6 (6)
C4—C5—C6—C1	-0.6 (5)	C12—C13—C14—C15	0.6 (6)
C2-C1-C6-C5	0.9 (5)	C13—C14—C15—C10	0.1 (5)
C7—C1—C6—C5	-175.1 (3)	C11—C10—C15—C14	-0.9 (5)
N2—N1—C7—O2	-8.7 (5)	C9-C10-C15-C14	176.2 (3)
N2—N1—C7—C1	169.2 (3)	C18—N3—C16—C17	-64.9 (4)
C2-C1-C7-O2	0.4 (4)	C20-N3-C16-C17	166.6 (3)
C6-C1-C7-O2	176.4 (3)	C20—N3—C18—C19	62.5 (4)
C2-C1-C7-N1	-177.5 (3)	C16—N3—C18—C19	-62.2 (4)
C6-C1-C7-N1	-1.5 (4)	C18—N3—C20—C21	58.6 (4)
N1—N2—C8—S2	-2.5 (4)	C16—N3—C20—C21	-172.9 (3)
N1—N2—C8—S1	176.84 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
O1—H1…O2	0.84	1.79	2.538 (3)	147	
N1—H1A····S2	0.88	2.39	2.855 (3)	114	
N3—H3 <i>A</i> ···O2	0.93	2.18	2.929 (3)	137	
N3—H3 <i>A</i> ···N2	0.93	2.27	3.094 (4)	148	
C9—H9A…S2	0.99	2.59	3.200 (3)	120	
C21—H21A····O1 ⁱ	0.98	2.56	3.377 (5)	141	

Symmetry code: (i) x-1/2, y, -z+1/2.