metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[6-(3,5-di­methyl-1H-pyrazol-1-yl)picolinato]nickel(II)–aqua­[6-(3,5-di­methyl-1H-pyrazol-1-yl)picolinic acid]di­thio­cyanato­nickel(II) (1/1)

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 13 November 2007; accepted 27 November 2007; online 6 December 2007)

In the title cocrystal, [Ni(C11H10N3O2)2]·[Ni(NCS)2(C11H11N3O2)(H2O)], both NiII ions are in disorted octa­hedral coordination environments. One NiII ion is coordinated by four N atoms and two O atoms from two tridentate 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate (DPP) ligands, while the other NiII ion is coordinated by a tridentate 6-((3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid (DPPH) ligand and by two N atoms and one O atom from two thio­cyanate and one water ligand, respectively. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds, forming extended chains along [010].

Related literature

For related literature, see: Bhatia et al. (1981[Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.]); Costamagna et al. (1992[Costamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67-88.]); Yin et al. (2007[Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H10N3O2)2]·[Ni(NCS)2(C11H11N3O2)(H2O)]

  • Mr = 901.26

  • Monoclinic, P 21 /c

  • a = 13.8022 (11) Å

  • b = 9.0399 (10) Å

  • c = 31.836 (2) Å

  • β = 99.086 (2)°

  • V = 3922.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 298 (2) K

  • 0.48 × 0.33 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.613, Tmax = 0.750

  • 19154 measured reflections

  • 6905 independent reflections

  • 4381 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.114

  • S = 1.03

  • 6905 reflections

  • 514 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N5 1.998 (4)
Ni1—N1 2.025 (3)
Ni1—N4 2.060 (4)
Ni1—N3 2.111 (3)
Ni1—O3 2.121 (3)
Ni1—O1 2.168 (3)
Ni2—N9 1.983 (3)
Ni2—N6 1.991 (3)
Ni2—O6 2.074 (3)
Ni2—N8 2.114 (4)
Ni2—O4 2.119 (3)
Ni2—N11 2.140 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.82 1.67 2.479 (4) 170
O3—H3A⋯O7ii 0.85 1.82 2.674 (4) 180
O3—H3B⋯S1iii 0.85 2.38 3.221 (3) 173
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z.

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, there has been an increasing interest in coordination chemistry due to the increased recognition of it's role in catalysis, enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). Recently we reported the crystal structure of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II) trihydrate (Yin et al., 2007). As a continuation of our investigations, we report herein the crystal structure of the title co-crystal (I).

The title co-crystal consists of two neutral mononuclear Ni(II) complex molecules, shown in Fig. 1. In one molecule the NiII ion is six-coordinated by four N atoms and two O atoms from two tridentate DDP ligands that define a distorted octahedral cis-N4O2 donor set and in the other molecule the NiII ion is six-coordinated by four N atoms and two O atoms from one tridentate DDPH ligand, two thiocyanate ligands and one water ligand which again defines a distorted octahedral cis-N4O2 donor set. In the crystal structure, molecules are connected, by intermolecular O—H···O and O—H···S hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: Bhatia et al. (1981); Costamagna et al. (1992); Yin et al. (2007).

Experimental top

6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid, KSCN and NiCl2. 6H2O were available commercially and were used without further purification. Equimolar 6-(3,5-dimethyl-1H-pyrazol-1-yl) picolinic acid (1 mmol, 217 mg) and KSCN (2 mmol, 194 mg) was dissolved in anhydrous alcohol (15 ml). The mixture was stirred to give a clear solution, To this solution was added NiCl2.6H2O (1 mmol, 231 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, blue prisms of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 75%). Elemental analysis: found: C, 46.54; H, 3.79; N, 17.00; O, 12.53.; calc. for C35H33NiN11O7S2: C, 46.64; H, 3.69; N, 17.10; O, 12.43.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H and C—H distances of 0.82–0.85 Å and 0.93–0.96 Å, respectively. They were treated as riding atoms, with Uiso(H) = 1.2Ueq(C or water O atoms) and and Uiso(H) = 1.5Ueq(hydroxyl O or methyl C atoms).

Structure description top

In recent years, there has been an increasing interest in coordination chemistry due to the increased recognition of it's role in catalysis, enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). Recently we reported the crystal structure of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II) trihydrate (Yin et al., 2007). As a continuation of our investigations, we report herein the crystal structure of the title co-crystal (I).

The title co-crystal consists of two neutral mononuclear Ni(II) complex molecules, shown in Fig. 1. In one molecule the NiII ion is six-coordinated by four N atoms and two O atoms from two tridentate DDP ligands that define a distorted octahedral cis-N4O2 donor set and in the other molecule the NiII ion is six-coordinated by four N atoms and two O atoms from one tridentate DDPH ligand, two thiocyanate ligands and one water ligand which again defines a distorted octahedral cis-N4O2 donor set. In the crystal structure, molecules are connected, by intermolecular O—H···O and O—H···S hydrogen bonds (Fig. 2).

For related literature, see: Bhatia et al. (1981); Costamagna et al. (1992); Yin et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure showing the hydrogen bonded interactions as dashed lines.
Bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]nickel(II)–aqua[6- (3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid]dithiocyanatonickel(II) (1/1) top
Crystal data top
[Ni(C11H10N3O2)2]·[Ni(NCS)2(C11H11N3O2)(H2O)]F(000) = 1856
Mr = 901.26Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3753 reflections
a = 13.8022 (11) Åθ = 2.6–22.9°
b = 9.0399 (10) ŵ = 1.13 mm1
c = 31.836 (2) ÅT = 298 K
β = 99.086 (2)°Prism, blue
V = 3922.4 (6) Å30.48 × 0.33 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
6905 independent reflections
Radiation source: fine-focus sealed tube4381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1216
Tmin = 0.613, Tmax = 0.750k = 1010
19154 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0377P)2 + 2.9546P]
where P = (Fo2 + 2Fc2)/3
6905 reflections(Δ/σ)max = 0.002
514 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ni(C11H10N3O2)2]·[Ni(NCS)2(C11H11N3O2)(H2O)]V = 3922.4 (6) Å3
Mr = 901.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8022 (11) ŵ = 1.13 mm1
b = 9.0399 (10) ÅT = 298 K
c = 31.836 (2) Å0.48 × 0.33 × 0.27 mm
β = 99.086 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6905 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4381 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.750Rint = 0.053
19154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.03Δρmax = 0.60 e Å3
6905 reflectionsΔρmin = 0.46 e Å3
514 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.24058 (4)0.42965 (6)0.686675 (15)0.03842 (17)
Ni20.19482 (4)1.00803 (6)0.438647 (16)0.03771 (17)
N10.1467 (2)0.4084 (4)0.72917 (9)0.0320 (8)
N20.2749 (2)0.3082 (4)0.77386 (9)0.0358 (8)
N30.3262 (2)0.3327 (4)0.74042 (10)0.0390 (9)
N40.2669 (3)0.6460 (5)0.70537 (12)0.0549 (11)
N50.3293 (3)0.4463 (5)0.64300 (12)0.0596 (11)
N60.1458 (2)1.1195 (4)0.48498 (10)0.0371 (8)
N70.1818 (3)0.9150 (4)0.52584 (11)0.0464 (9)
N80.2156 (3)0.8587 (4)0.49037 (11)0.0480 (10)
N90.2380 (2)0.9084 (4)0.38931 (10)0.0350 (8)
N100.3919 (2)0.9966 (4)0.41309 (11)0.0456 (9)
N110.3475 (3)1.0611 (4)0.44472 (11)0.0445 (9)
O10.1022 (2)0.5021 (3)0.65064 (8)0.0431 (7)
O20.0545 (2)0.5399 (3)0.65829 (9)0.0503 (8)
H20.06070.56080.63290.075*
O30.1967 (2)0.2198 (3)0.66053 (8)0.0434 (7)
H3A0.13460.21260.65750.052*
H3B0.22140.15210.67740.052*
O40.1493 (2)1.2102 (3)0.40810 (8)0.0443 (8)
O50.0809 (2)1.4260 (4)0.41996 (9)0.0555 (9)
O60.0634 (2)0.9185 (4)0.40887 (10)0.0503 (8)
O70.0013 (2)0.8022 (4)0.34892 (10)0.0617 (9)
S10.27353 (13)0.94691 (16)0.72189 (5)0.0834 (5)
S20.47389 (11)0.47417 (19)0.59247 (5)0.0798 (5)
C10.0358 (3)0.5031 (5)0.67191 (13)0.0390 (10)
C20.0546 (3)0.4568 (4)0.71798 (12)0.0335 (10)
C30.0118 (3)0.4582 (5)0.74606 (13)0.0398 (11)
H30.07530.49360.73810.048*
C40.0204 (3)0.4045 (5)0.78678 (12)0.0445 (11)
H40.02230.40350.80660.053*
C50.1146 (3)0.3528 (5)0.79809 (13)0.0420 (11)
H50.13610.31670.82530.050*
C60.1763 (3)0.3558 (4)0.76794 (12)0.0321 (9)
C70.3009 (4)0.1860 (6)0.84664 (13)0.0617 (15)
H7A0.28170.26890.86230.093*
H7B0.35410.13480.86370.093*
H7C0.24630.12000.83970.093*
C80.3330 (3)0.2391 (5)0.80689 (12)0.0399 (11)
C90.4223 (3)0.2198 (5)0.79409 (13)0.0508 (13)
H90.47740.17560.80970.061*
C100.4148 (3)0.2792 (5)0.75302 (13)0.0463 (12)
C110.4895 (3)0.2788 (7)0.72406 (15)0.0754 (17)
H11A0.45820.29910.69550.113*
H11B0.52060.18360.72500.113*
H11C0.53790.35340.73300.113*
C120.2685 (3)0.7709 (6)0.71093 (13)0.0510 (13)
C130.3893 (3)0.4586 (5)0.62209 (14)0.0462 (12)
C140.1163 (3)1.3025 (5)0.43136 (13)0.0401 (11)
C150.1182 (3)1.2592 (5)0.47733 (12)0.0381 (10)
C160.0964 (3)1.3499 (5)0.50913 (13)0.0508 (12)
H160.07741.44750.50350.061*
C170.1033 (4)1.2930 (6)0.54967 (15)0.0628 (15)
H170.09031.35310.57180.075*
C180.1292 (4)1.1482 (6)0.55737 (14)0.0615 (14)
H180.13241.10800.58440.074*
C190.1505 (3)1.0632 (5)0.52399 (12)0.0418 (11)
C200.1528 (4)0.8318 (6)0.59934 (14)0.0778 (18)
H20A0.15160.73800.61340.117*
H20B0.08810.87350.59480.117*
H20C0.19680.89750.61680.117*
C210.1873 (4)0.8106 (6)0.55735 (15)0.0553 (13)
C220.2273 (4)0.6904 (6)0.54170 (17)0.0657 (16)
H220.24160.60130.55590.079*
C230.2435 (3)0.7226 (5)0.50052 (16)0.0541 (13)
C240.2874 (4)0.6305 (6)0.46946 (17)0.0754 (16)
H24A0.24160.62190.44350.113*
H24B0.30240.53390.48120.113*
H24C0.34650.67660.46360.113*
C250.0685 (3)0.8525 (5)0.37462 (15)0.0445 (11)
C260.1699 (3)0.8374 (5)0.36265 (13)0.0414 (11)
C270.1926 (4)0.7616 (6)0.32851 (15)0.0631 (15)
H270.14430.71410.30960.076*
C280.2895 (4)0.7578 (7)0.32308 (17)0.090 (2)
H280.30740.70370.30070.108*
C290.3604 (4)0.8323 (7)0.35006 (16)0.0724 (17)
H290.42580.83040.34630.087*
C300.3305 (3)0.9101 (5)0.38296 (13)0.0432 (11)
C310.5563 (4)0.9984 (8)0.3858 (2)0.101 (2)
H31A0.61651.05280.39250.152*
H31B0.52671.01950.35710.152*
H31C0.56970.89440.38870.152*
C320.4878 (3)1.0429 (6)0.41551 (18)0.0625 (15)
C330.5031 (4)1.1323 (6)0.44985 (19)0.0762 (17)
H330.56191.17920.46040.091*
C340.4170 (4)1.1430 (6)0.46687 (16)0.0598 (14)
C350.3967 (4)1.2296 (7)0.50418 (18)0.092 (2)
H35A0.33991.29050.49600.139*
H35B0.45221.29110.51430.139*
H35C0.38501.16320.52640.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0413 (3)0.0431 (4)0.0317 (3)0.0045 (3)0.0085 (2)0.0046 (3)
Ni20.0444 (3)0.0363 (4)0.0326 (3)0.0026 (3)0.0067 (2)0.0028 (3)
N10.038 (2)0.032 (2)0.0249 (17)0.0001 (16)0.0012 (14)0.0001 (15)
N20.037 (2)0.041 (2)0.0298 (18)0.0009 (17)0.0051 (15)0.0014 (16)
N30.036 (2)0.051 (3)0.0311 (19)0.0031 (17)0.0079 (16)0.0024 (17)
N40.072 (3)0.044 (3)0.048 (2)0.011 (2)0.005 (2)0.004 (2)
N50.056 (3)0.075 (3)0.052 (2)0.011 (2)0.019 (2)0.011 (2)
N60.049 (2)0.035 (2)0.0282 (18)0.0041 (17)0.0076 (16)0.0030 (16)
N70.062 (3)0.041 (3)0.036 (2)0.001 (2)0.0063 (18)0.0093 (19)
N80.056 (2)0.036 (2)0.052 (2)0.0029 (19)0.0059 (19)0.0076 (19)
N90.0298 (19)0.038 (2)0.0371 (19)0.0013 (16)0.0039 (15)0.0049 (16)
N100.035 (2)0.052 (3)0.048 (2)0.0079 (19)0.0024 (17)0.005 (2)
N110.047 (2)0.042 (2)0.042 (2)0.0011 (19)0.0036 (17)0.0094 (18)
O10.0486 (18)0.0445 (19)0.0367 (16)0.0003 (15)0.0083 (14)0.0117 (14)
O20.053 (2)0.057 (2)0.0382 (16)0.0213 (16)0.0000 (14)0.0132 (15)
O30.0409 (17)0.047 (2)0.0415 (17)0.0019 (14)0.0045 (13)0.0029 (14)
O40.062 (2)0.0406 (19)0.0318 (16)0.0103 (16)0.0115 (14)0.0055 (14)
O50.081 (2)0.041 (2)0.0403 (17)0.0192 (18)0.0033 (16)0.0046 (16)
O60.0394 (18)0.058 (2)0.0552 (19)0.0019 (16)0.0116 (15)0.0110 (17)
O70.0389 (19)0.062 (2)0.079 (2)0.0089 (17)0.0065 (17)0.0135 (19)
S10.1254 (14)0.0401 (9)0.0742 (10)0.0016 (9)0.0166 (9)0.0096 (7)
S20.0663 (9)0.1134 (14)0.0672 (9)0.0227 (9)0.0334 (7)0.0160 (9)
C10.053 (3)0.028 (3)0.034 (2)0.005 (2)0.002 (2)0.002 (2)
C20.041 (3)0.029 (3)0.030 (2)0.0036 (19)0.0027 (19)0.0012 (18)
C30.037 (2)0.044 (3)0.039 (2)0.008 (2)0.0085 (19)0.000 (2)
C40.050 (3)0.055 (3)0.033 (2)0.001 (2)0.020 (2)0.001 (2)
C50.044 (3)0.049 (3)0.034 (2)0.005 (2)0.010 (2)0.002 (2)
C60.036 (2)0.029 (2)0.031 (2)0.0036 (19)0.0049 (18)0.0006 (18)
C70.066 (3)0.079 (4)0.039 (3)0.024 (3)0.003 (2)0.021 (3)
C80.051 (3)0.041 (3)0.026 (2)0.007 (2)0.000 (2)0.001 (2)
C90.041 (3)0.069 (4)0.039 (3)0.011 (2)0.004 (2)0.003 (2)
C100.033 (3)0.066 (3)0.040 (3)0.002 (2)0.005 (2)0.004 (2)
C110.045 (3)0.122 (5)0.062 (3)0.011 (3)0.018 (3)0.008 (3)
C120.057 (3)0.058 (4)0.033 (3)0.004 (3)0.008 (2)0.013 (2)
C130.049 (3)0.049 (3)0.040 (3)0.010 (2)0.006 (2)0.003 (2)
C140.046 (3)0.041 (3)0.031 (2)0.001 (2)0.001 (2)0.001 (2)
C150.044 (3)0.041 (3)0.028 (2)0.003 (2)0.0025 (19)0.000 (2)
C160.066 (3)0.044 (3)0.044 (3)0.020 (2)0.013 (2)0.003 (2)
C170.086 (4)0.065 (4)0.042 (3)0.017 (3)0.026 (3)0.004 (3)
C180.090 (4)0.067 (4)0.032 (3)0.009 (3)0.022 (3)0.006 (3)
C190.046 (3)0.047 (3)0.033 (2)0.002 (2)0.009 (2)0.007 (2)
C200.100 (4)0.086 (5)0.048 (3)0.016 (3)0.012 (3)0.034 (3)
C210.061 (3)0.048 (3)0.053 (3)0.009 (3)0.004 (3)0.026 (3)
C220.074 (4)0.044 (4)0.070 (4)0.014 (3)0.016 (3)0.029 (3)
C230.054 (3)0.033 (3)0.070 (3)0.000 (2)0.007 (3)0.010 (3)
C240.083 (4)0.041 (3)0.100 (4)0.011 (3)0.008 (3)0.002 (3)
C250.038 (3)0.037 (3)0.056 (3)0.001 (2)0.001 (2)0.003 (2)
C260.037 (3)0.042 (3)0.042 (3)0.003 (2)0.002 (2)0.009 (2)
C270.059 (3)0.078 (4)0.052 (3)0.016 (3)0.006 (3)0.032 (3)
C280.071 (4)0.134 (6)0.071 (4)0.017 (4)0.030 (3)0.062 (4)
C290.044 (3)0.110 (5)0.068 (3)0.007 (3)0.024 (3)0.035 (3)
C300.040 (3)0.047 (3)0.042 (2)0.002 (2)0.006 (2)0.006 (2)
C310.045 (3)0.144 (6)0.120 (5)0.025 (4)0.029 (3)0.015 (5)
C320.038 (3)0.065 (4)0.079 (4)0.011 (3)0.005 (3)0.014 (3)
C330.051 (4)0.070 (4)0.098 (4)0.018 (3)0.018 (3)0.010 (4)
C340.060 (4)0.043 (3)0.065 (3)0.001 (3)0.024 (3)0.008 (3)
C350.103 (5)0.075 (5)0.085 (4)0.009 (4)0.029 (4)0.041 (4)
Geometric parameters (Å, º) top
Ni1—N51.998 (4)C5—H50.9300
Ni1—N12.025 (3)C7—C81.485 (6)
Ni1—N42.060 (4)C7—H7A0.9600
Ni1—N32.111 (3)C7—H7B0.9600
Ni1—O32.121 (3)C7—H7C0.9600
Ni1—O12.168 (3)C8—C91.369 (6)
Ni2—N91.983 (3)C9—C101.402 (6)
Ni2—N61.991 (3)C9—H90.9300
Ni2—O62.074 (3)C10—C111.488 (6)
Ni2—N82.114 (4)C11—H11A0.9600
Ni2—O42.119 (3)C11—H11B0.9600
Ni2—N112.140 (4)C11—H11C0.9600
N1—C61.325 (4)C14—C151.511 (5)
N1—C21.339 (5)C15—C161.372 (5)
N2—C81.369 (5)C16—C171.378 (6)
N2—N31.387 (4)C16—H160.9300
N2—C61.411 (5)C17—C181.369 (7)
N3—C101.316 (5)C17—H170.9300
N4—C121.143 (6)C18—C191.380 (6)
N5—C131.147 (5)C18—H180.9300
N6—C151.331 (5)C20—C211.501 (6)
N6—C191.334 (5)C20—H20A0.9600
N7—C211.370 (5)C20—H20B0.9600
N7—N81.385 (5)C20—H20C0.9600
N7—C191.406 (5)C21—C221.349 (7)
N8—C231.313 (5)C22—C231.395 (7)
N9—C301.324 (5)C22—H220.9300
N9—C261.328 (5)C23—C241.493 (7)
N10—C321.379 (5)C24—H24A0.9600
N10—N111.387 (5)C24—H24B0.9600
N10—C301.411 (5)C24—H24C0.9600
N11—C341.324 (5)C25—C261.513 (6)
O1—C11.223 (5)C26—C271.362 (6)
O2—C11.296 (5)C27—C281.376 (7)
O2—H20.8200C27—H270.9300
O3—H3A0.8500C28—C291.372 (7)
O3—H3B0.8500C28—H280.9300
O4—C141.248 (5)C29—C301.377 (6)
O5—C141.250 (5)C29—H290.9300
O6—C251.255 (5)C31—C321.494 (7)
O7—C251.248 (5)C31—H31A0.9600
S1—C121.628 (6)C31—H31B0.9600
S2—C131.618 (5)C31—H31C0.9600
C1—C21.508 (5)C32—C331.349 (7)
C2—C31.377 (5)C33—C341.386 (7)
C3—C41.390 (5)C33—H330.9300
C3—H30.9300C34—C351.486 (7)
C4—C51.374 (6)C35—H35A0.9600
C4—H40.9300C35—H35B0.9600
C5—C61.380 (5)C35—H35C0.9600
N5—Ni1—N1177.66 (14)C8—C9—C10106.9 (4)
N5—Ni1—N491.74 (17)C8—C9—H9126.5
N1—Ni1—N489.96 (14)C10—C9—H9126.5
N5—Ni1—N3105.60 (15)N3—C10—C9110.7 (4)
N1—Ni1—N375.79 (12)N3—C10—C11120.9 (4)
N4—Ni1—N396.29 (14)C9—C10—C11128.3 (4)
N5—Ni1—O387.85 (14)C10—C11—H11A109.5
N1—Ni1—O390.23 (12)C10—C11—H11B109.5
N4—Ni1—O3171.48 (13)H11A—C11—H11B109.5
N3—Ni1—O392.01 (12)C10—C11—H11C109.5
N5—Ni1—O1101.21 (14)H11A—C11—H11C109.5
N1—Ni1—O177.24 (11)H11B—C11—H11C109.5
N4—Ni1—O188.07 (14)N4—C12—S1176.5 (4)
N3—Ni1—O1152.66 (12)N5—C13—S2179.4 (5)
O3—Ni1—O183.67 (11)O4—C14—O5126.0 (4)
N9—Ni2—N6175.49 (14)O4—C14—C15116.7 (4)
N9—Ni2—O679.14 (12)O5—C14—C15117.3 (4)
N6—Ni2—O699.25 (13)N6—C15—C16121.4 (4)
N9—Ni2—N8107.83 (14)N6—C15—C14112.6 (4)
N6—Ni2—N876.48 (14)C16—C15—C14126.0 (4)
O6—Ni2—N896.22 (13)C15—C16—C17118.5 (4)
N9—Ni2—O497.64 (12)C15—C16—H16120.7
N6—Ni2—O478.03 (12)C17—C16—H16120.7
O6—Ni2—O487.26 (12)C18—C17—C16120.1 (4)
N8—Ni2—O4154.51 (13)C18—C17—H17119.9
N9—Ni2—N1176.01 (13)C16—C17—H17119.9
N6—Ni2—N11105.36 (14)C17—C18—C19118.4 (4)
O6—Ni2—N11155.04 (13)C17—C18—H18120.8
N8—Ni2—N1193.56 (14)C19—C18—H18120.8
O4—Ni2—N1193.71 (13)N6—C19—C18121.3 (4)
C6—N1—C2120.3 (3)N6—C19—N7111.8 (4)
C6—N1—Ni1121.4 (3)C18—C19—N7126.8 (4)
C2—N1—Ni1118.2 (2)C21—C20—H20A109.5
C8—N2—N3110.7 (3)C21—C20—H20B109.5
C8—N2—C6132.7 (3)H20A—C20—H20B109.5
N3—N2—C6116.6 (3)C21—C20—H20C109.5
C10—N3—N2105.7 (3)H20A—C20—H20C109.5
C10—N3—Ni1140.7 (3)H20B—C20—H20C109.5
N2—N3—Ni1113.6 (2)C22—C21—N7105.2 (4)
C12—N4—Ni1168.9 (4)C22—C21—C20129.6 (5)
C13—N5—Ni1171.5 (4)N7—C21—C20125.1 (5)
C15—N6—C19120.2 (4)C21—C22—C23108.3 (4)
C15—N6—Ni2117.7 (3)C21—C22—H22125.8
C19—N6—Ni2121.6 (3)C23—C22—H22125.8
C21—N7—N8110.9 (4)N8—C23—C22110.0 (5)
C21—N7—C19131.9 (4)N8—C23—C24119.5 (5)
N8—N7—C19117.2 (3)C22—C23—C24130.4 (5)
C23—N8—N7105.5 (4)C23—C24—H24A109.5
C23—N8—Ni2142.0 (3)C23—C24—H24B109.5
N7—N8—Ni2112.3 (3)H24A—C24—H24B109.5
C30—N9—C26120.7 (4)C23—C24—H24C109.5
C30—N9—Ni2122.3 (3)H24A—C24—H24C109.5
C26—N9—Ni2117.0 (3)H24B—C24—H24C109.5
C32—N10—N11111.2 (4)O7—C25—O6126.8 (4)
C32—N10—C30132.4 (4)O7—C25—C26116.8 (4)
N11—N10—C30116.1 (3)O6—C25—C26116.3 (4)
C34—N11—N10104.8 (4)N9—C26—C27121.6 (4)
C34—N11—Ni2142.5 (4)N9—C26—C25112.6 (4)
N10—N11—Ni2112.4 (2)C27—C26—C25125.8 (4)
C1—O1—Ni1112.6 (3)C26—C27—C28117.6 (4)
C1—O2—H2109.5C26—C27—H27121.2
Ni1—O3—H3A109.5C28—C27—H27121.2
Ni1—O3—H3B109.6C29—C28—C27121.4 (5)
H3A—O3—H3B108.2C29—C28—H28119.3
C14—O4—Ni2114.4 (3)C27—C28—H28119.3
C25—O6—Ni2114.7 (3)C28—C29—C30117.2 (5)
O1—C1—O2125.6 (4)C28—C29—H29121.4
O1—C1—C2120.5 (4)C30—C29—H29121.4
O2—C1—C2113.9 (4)N9—C30—C29121.5 (4)
N1—C2—C3122.1 (3)N9—C30—N10113.1 (4)
N1—C2—C1111.1 (3)C29—C30—N10125.5 (4)
C3—C2—C1126.8 (4)C32—C31—H31A109.5
C2—C3—C4117.1 (4)C32—C31—H31B109.5
C2—C3—H3121.5H31A—C31—H31B109.5
C4—C3—H3121.5C32—C31—H31C109.5
C5—C4—C3120.8 (4)H31A—C31—H31C109.5
C5—C4—H4119.6H31B—C31—H31C109.5
C3—C4—H4119.6C33—C32—N10104.7 (5)
C4—C5—C6118.2 (4)C33—C32—C31129.8 (5)
C4—C5—H5120.9N10—C32—C31125.5 (5)
C6—C5—H5120.9C32—C33—C34108.9 (5)
N1—C6—C5121.4 (4)C32—C33—H33125.5
N1—C6—N2112.5 (3)C34—C33—H33125.5
C5—C6—N2126.1 (3)N11—C34—C33110.3 (5)
C8—C7—H7A109.5N11—C34—C35120.6 (5)
C8—C7—H7B109.5C33—C34—C35129.1 (5)
H7A—C7—H7B109.5C34—C35—H35A109.5
C8—C7—H7C109.5C34—C35—H35B109.5
H7A—C7—H7C109.5H35A—C35—H35B109.5
H7B—C7—H7C109.5C34—C35—H35C109.5
N2—C8—C9106.0 (4)H35A—C35—H35C109.5
N2—C8—C7125.8 (4)H35B—C35—H35C109.5
C9—C8—C7128.0 (4)
N4—Ni1—N1—C693.8 (3)C2—C3—C4—C50.1 (6)
N3—Ni1—N1—C62.7 (3)C3—C4—C5—C60.1 (7)
O3—Ni1—N1—C694.7 (3)C2—N1—C6—C51.6 (6)
O1—Ni1—N1—C6178.1 (3)Ni1—N1—C6—C5174.5 (3)
N4—Ni1—N1—C282.4 (3)C2—N1—C6—N2179.2 (3)
N3—Ni1—N1—C2178.9 (3)Ni1—N1—C6—N24.6 (5)
O3—Ni1—N1—C289.1 (3)C4—C5—C6—N10.7 (6)
O1—Ni1—N1—C25.6 (3)C4—C5—C6—N2179.7 (4)
C8—N2—N3—C100.1 (4)C8—N2—C6—N1175.0 (4)
C6—N2—N3—C10179.7 (4)N3—N2—C6—N14.4 (5)
C8—N2—N3—Ni1177.2 (3)C8—N2—C6—C55.8 (7)
C6—N2—N3—Ni12.4 (4)N3—N2—C6—C5174.7 (4)
N5—Ni1—N3—C102.2 (5)N3—N2—C8—C90.0 (5)
N1—Ni1—N3—C10175.9 (5)C6—N2—C8—C9179.5 (4)
N4—Ni1—N3—C1095.7 (5)N3—N2—C8—C7175.4 (4)
O3—Ni1—N3—C1086.2 (5)C6—N2—C8—C74.1 (7)
O1—Ni1—N3—C10166.3 (4)N2—C8—C9—C100.1 (5)
N5—Ni1—N3—N2178.1 (3)C7—C8—C9—C10175.3 (4)
N1—Ni1—N3—N20.0 (2)N2—N3—C10—C90.2 (5)
N4—Ni1—N3—N288.3 (3)Ni1—N3—C10—C9175.9 (4)
O3—Ni1—N3—N289.8 (3)N2—N3—C10—C11176.7 (4)
O1—Ni1—N3—N29.7 (4)Ni1—N3—C10—C110.6 (8)
N5—Ni1—N4—C1291 (2)C8—C9—C10—N30.2 (5)
N1—Ni1—N4—C1287 (2)C8—C9—C10—C11176.3 (5)
N3—Ni1—N4—C12163 (2)Ni2—O4—C14—O5176.4 (4)
O1—Ni1—N4—C1210 (2)Ni2—O4—C14—C152.7 (5)
O6—Ni2—N6—C1590.5 (3)C19—N6—C15—C161.6 (6)
N8—Ni2—N6—C15175.3 (3)Ni2—N6—C15—C16170.9 (3)
O4—Ni2—N6—C155.3 (3)C19—N6—C15—C14179.4 (4)
N11—Ni2—N6—C1585.2 (3)Ni2—N6—C15—C148.0 (5)
O6—Ni2—N6—C1997.0 (3)O4—C14—C15—N67.0 (6)
N8—Ni2—N6—C192.8 (3)O5—C14—C15—N6172.2 (4)
O4—Ni2—N6—C19177.8 (3)O4—C14—C15—C16172.0 (4)
N11—Ni2—N6—C1987.2 (3)O5—C14—C15—C168.9 (7)
C21—N7—N8—C231.4 (5)N6—C15—C16—C170.2 (7)
C19—N7—N8—C23177.7 (4)C14—C15—C16—C17179.0 (4)
C21—N7—N8—Ni2174.0 (3)C15—C16—C17—C181.5 (8)
C19—N7—N8—Ni26.9 (4)C16—C17—C18—C191.7 (8)
N9—Ni2—N8—C233.5 (5)C15—N6—C19—C181.4 (6)
N6—Ni2—N8—C23175.1 (5)Ni2—N6—C19—C18170.9 (4)
O6—Ni2—N8—C2377.0 (5)C15—N6—C19—N7179.4 (4)
O4—Ni2—N8—C23173.7 (4)Ni2—N6—C19—N77.2 (5)
N11—Ni2—N8—C2380.0 (5)C17—C18—C19—N60.3 (7)
N9—Ni2—N8—N7176.3 (3)C17—C18—C19—N7177.4 (5)
N6—Ni2—N8—N72.3 (3)C21—N7—C19—N6172.1 (4)
O6—Ni2—N8—N795.7 (3)N8—N7—C19—N69.0 (5)
O4—Ni2—N8—N71.0 (5)C21—N7—C19—C1810.0 (8)
N11—Ni2—N8—N7107.3 (3)N8—N7—C19—C18168.9 (4)
O6—Ni2—N9—C30179.3 (4)N8—N7—C21—C221.7 (5)
N8—Ni2—N9—C3086.2 (3)C19—N7—C21—C22177.3 (4)
O4—Ni2—N9—C3095.0 (3)N8—N7—C21—C20177.2 (4)
N11—Ni2—N9—C303.0 (3)C19—N7—C21—C203.9 (8)
O6—Ni2—N9—C260.0 (3)N7—C21—C22—C231.3 (6)
N8—Ni2—N9—C2693.1 (3)C20—C21—C22—C23177.5 (5)
O4—Ni2—N9—C2685.8 (3)N7—N8—C23—C220.5 (5)
N11—Ni2—N9—C26177.7 (3)Ni2—N8—C23—C22172.5 (4)
C32—N10—N11—C341.6 (5)N7—N8—C23—C24178.0 (4)
C30—N10—N11—C34175.9 (4)Ni2—N8—C23—C249.0 (8)
C32—N10—N11—Ni2174.7 (3)C21—C22—C23—N80.5 (6)
C30—N10—N11—Ni20.3 (4)C21—C22—C23—C24178.8 (5)
N9—Ni2—N11—C34172.4 (5)Ni2—O6—C25—O7172.6 (4)
N6—Ni2—N11—C343.1 (5)Ni2—O6—C25—C265.1 (5)
O6—Ni2—N11—C34167.0 (4)C30—N9—C26—C271.4 (7)
N8—Ni2—N11—C3480.1 (5)Ni2—N9—C26—C27177.9 (4)
O4—Ni2—N11—C3475.5 (5)C30—N9—C26—C25178.2 (4)
N9—Ni2—N11—N101.6 (3)Ni2—N9—C26—C252.5 (5)
N6—Ni2—N11—N10177.2 (3)O7—C25—C26—N9172.8 (4)
O6—Ni2—N11—N107.1 (5)O6—C25—C26—N95.1 (6)
N8—Ni2—N11—N10105.9 (3)O7—C25—C26—C276.7 (7)
O4—Ni2—N11—N1098.6 (3)O6—C25—C26—C27175.3 (5)
N5—Ni1—O1—C1178.8 (3)N9—C26—C27—C281.6 (8)
N1—Ni1—O1—C13.0 (3)C25—C26—C27—C28178.9 (5)
N4—Ni1—O1—C187.4 (3)C26—C27—C28—C292.4 (9)
N3—Ni1—O1—C112.5 (4)C27—C28—C29—C300.4 (10)
O3—Ni1—O1—C194.6 (3)C26—N9—C30—C293.5 (7)
N9—Ni2—O4—C14179.9 (3)Ni2—N9—C30—C29175.7 (4)
N6—Ni2—O4—C141.2 (3)C26—N9—C30—N10177.0 (4)
O6—Ni2—O4—C14101.2 (3)Ni2—N9—C30—N103.7 (5)
N8—Ni2—O4—C142.5 (5)C28—C29—C30—N92.6 (8)
N11—Ni2—O4—C14103.8 (3)C28—C29—C30—N10178.1 (5)
N9—Ni2—O6—C253.0 (3)C32—N10—C30—N9170.9 (4)
N6—Ni2—O6—C25172.8 (3)N11—N10—C30—N91.9 (5)
N8—Ni2—O6—C25110.0 (3)C32—N10—C30—C299.7 (8)
O4—Ni2—O6—C2595.4 (3)N11—N10—C30—C29177.5 (5)
N11—Ni2—O6—C252.5 (5)N11—N10—C32—C332.1 (5)
Ni1—O1—C1—O2179.1 (3)C30—N10—C32—C33175.2 (5)
Ni1—O1—C1—C20.2 (5)N11—N10—C32—C31178.4 (5)
C6—N1—C2—C31.8 (6)C30—N10—C32—C315.3 (8)
Ni1—N1—C2—C3174.4 (3)N10—C32—C33—C341.8 (6)
C6—N1—C2—C1176.8 (3)C31—C32—C33—C34178.7 (6)
Ni1—N1—C2—C17.0 (4)N10—N11—C34—C330.4 (5)
O1—C1—C2—N14.3 (6)Ni2—N11—C34—C33173.9 (4)
O2—C1—C2—N1174.7 (3)N10—N11—C34—C35179.6 (4)
O1—C1—C2—C3177.1 (4)Ni2—N11—C34—C356.0 (8)
O2—C1—C2—C33.8 (6)C32—C33—C34—N110.9 (7)
N1—C2—C3—C41.1 (6)C32—C33—C34—C35179.0 (5)
C1—C2—C3—C4177.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.821.672.479 (4)170
O3—H3A···O7ii0.851.822.674 (4)180
O3—H3B···S1iii0.852.383.221 (3)173
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C11H10N3O2)2]·[Ni(NCS)2(C11H11N3O2)(H2O)]
Mr901.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.8022 (11), 9.0399 (10), 31.836 (2)
β (°) 99.086 (2)
V3)3922.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.48 × 0.33 × 0.27
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.613, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
19154, 6905, 4381
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.03
No. of reflections6905
No. of parameters514
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.46

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected bond lengths (Å) top
Ni1—N51.998 (4)Ni2—N91.983 (3)
Ni1—N12.025 (3)Ni2—N61.991 (3)
Ni1—N42.060 (4)Ni2—O62.074 (3)
Ni1—N32.111 (3)Ni2—N82.114 (4)
Ni1—O32.121 (3)Ni2—O42.119 (3)
Ni1—O12.168 (3)Ni2—N112.140 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.821.672.479 (4)170
O3—H3A···O7ii0.851.822.674 (4)180
O3—H3B···S1iii0.852.383.221 (3)173
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20761002) for support. This research was sponsored by the Fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012, 0509ZD047).

References

First citationBhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67–88.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds