metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-2,3-bis­­(imidazol-1-ylmeth­yl)quinoxaline]disilver(I) bis­­(tetra­fluoridoborate)

aCollege of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China, and bSchool of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
*Correspondence e-mail: dujl@mail.hbu.edu.cn

(Received 15 November 2007; accepted 6 December 2007; online 12 December 2007)

The title compound, [Ag2(C16H14N6)2](BF4)2, forms a centrosymmetric 22-membered metallamacrocycle via two AgI ions bridging two 2,3-bis­(imidazol-1-ylmeth­yl)quinoxaline ligands. The AgI ions are coordinated by two N donors of the imidazole groups, forming an approximately linear coordination geometry.

Related literature

For related literature, see: Li, Liu et al. (2007[Li, C. Y., Liu, C. S., Li, J. R. & Bu, X. H. (2007). Cryst. Growth Des. 7, 286-295.]); Li, Tao et al. (2007[Li, J. R., Tao, Y., Yu, Q. & Bu, X. H. (2007). Chem. Commun. pp. 1527-1529.]); Zhang et al. (2006[Zhang, Z. H., Song, Y., Okamura, T., Hasegawa, Y., Sun, W. Y. & Ueyama, N. (2006). Inorg. Chem. 45, 2896-2902.]); Zou et al. (2004[Zou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. & Bu, X. H. (2004). Cryst. Growth Des. 4, 79-84.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C16H14N6)2](BF4)2

  • Mr = 970.02

  • Triclinic, [P \overline 1]

  • a = 8.5398 (19) Å

  • b = 9.311 (2) Å

  • c = 12.104 (3) Å

  • α = 76.350 (4)°

  • β = 76.603 (4)°

  • γ = 73.208 (4)°

  • V = 881.4 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.796, Tmax = 0.831

  • 5006 measured reflections

  • 3556 independent reflections

  • 2326 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.108

  • S = 1.00

  • 3556 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N1 2.105 (4)
Ag1—N6i 2.112 (4)
N1—Ag1—N6i 178.55 (16)
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of metal-organic macrocyclic and polymeric compounds have drawn much attention in rcecnt years not only because of their interesting properties and potential applications, but also due to variety of structural topologies (Zou, et al., 2004; Zhang et al., 2006; Li Tao et al., 2007). Much progress has been reported in the study of cyrstal engineering of supramolecular architectures using N-donor ligands (Li, Liu et al., 2007). The title compound (I) is a dinuclear Ag(I) complex formed with two 2,3-bis(imidazol-1-ylmethyl)quinoxaline ligands (Fig.1). The AgI atoms are coordinated by two N donors of the imiazole groups, forming a approximately linear coordination geometry. The molecular structure forms a centrosymmetric 22-membered metallacrocycle.

Related literature top

For related literature, see: Li, Liu et al. (2007); Li, Tao et al. (2007); Zhang et al. (2006); Zou et al. (2004).

Experimental top

2,3-bis(imidazol-1-ylmethyl)quinoxaline was synthesized by a modified literature method (Li, Liu et al., 2007). A solution of 2,3-bis(imidazol-1-ylmethyl)quinoxaline (32 mg, 0.1 mmol) in MeOH (10 ml) was carefully layered on top of a AgBF4 (20 mg, 0.1 mmol) solution in H2O in a test-tube, which was placed in the darkness. After 10 d at room temperature, coloress single crystals of (I) were obtained (yield: 30 mg, 30%).

Refinement top

The H atoms were placed in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 and 0.97 Å; Uiso(H) = 1.2 Ueq.

Structure description top

The synthesis of metal-organic macrocyclic and polymeric compounds have drawn much attention in rcecnt years not only because of their interesting properties and potential applications, but also due to variety of structural topologies (Zou, et al., 2004; Zhang et al., 2006; Li Tao et al., 2007). Much progress has been reported in the study of cyrstal engineering of supramolecular architectures using N-donor ligands (Li, Liu et al., 2007). The title compound (I) is a dinuclear Ag(I) complex formed with two 2,3-bis(imidazol-1-ylmethyl)quinoxaline ligands (Fig.1). The AgI atoms are coordinated by two N donors of the imiazole groups, forming a approximately linear coordination geometry. The molecular structure forms a centrosymmetric 22-membered metallacrocycle.

For related literature, see: Li, Liu et al. (2007); Li, Tao et al. (2007); Zhang et al. (2006); Zou et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. the molecular with 30% displacement probability. Unlabelled atoms are generated by the symmetry operation (- x, - y, - z). Only the symmetry unique BF4 anion is shown.
Bis[µ-2,3-bis(imidazol-1-ylmethyl)quinoxaline]disilver(I) bis(tetrafluoridoborate) top
Crystal data top
[Ag2(C16H14N6)2](BF4)2Z = 1
Mr = 970.02F(000) = 480
Triclinic, P1Dx = 1.827 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5398 (19) ÅCell parameters from 1538 reflections
b = 9.311 (2) Åθ = 2.3–23.9°
c = 12.104 (3) ŵ = 1.20 mm1
α = 76.350 (4)°T = 293 K
β = 76.603 (4)°Block, colorless
γ = 73.208 (4)°0.20 × 0.18 × 0.16 mm
V = 881.4 (4) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3556 independent reflections
Radiation source: fine-focus sealed tube2326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.796, Tmax = 0.831k = 1110
5006 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.1091P]
where P = (Fo2 + 2Fc2)/3
3556 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ag2(C16H14N6)2](BF4)2γ = 73.208 (4)°
Mr = 970.02V = 881.4 (4) Å3
Triclinic, P1Z = 1
a = 8.5398 (19) ÅMo Kα radiation
b = 9.311 (2) ŵ = 1.20 mm1
c = 12.104 (3) ÅT = 293 K
α = 76.350 (4)°0.20 × 0.18 × 0.16 mm
β = 76.603 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3556 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2326 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.831Rint = 0.023
5006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.00Δρmax = 0.61 e Å3
3556 reflectionsΔρmin = 0.47 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.19306 (5)0.02219 (5)0.09278 (4)0.05500 (18)
N10.2915 (5)0.1119 (5)0.0225 (3)0.0468 (11)
N20.3706 (5)0.2045 (4)0.1003 (3)0.0396 (10)
N30.5399 (5)0.0159 (5)0.3042 (3)0.0401 (10)
N40.2569 (5)0.0400 (5)0.4717 (3)0.0405 (10)
N50.0162 (4)0.2173 (4)0.2876 (3)0.0375 (9)
N60.0997 (5)0.1574 (5)0.1666 (3)0.0406 (10)
C10.3174 (6)0.0900 (6)0.0840 (4)0.0386 (11)
H1A0.30100.00610.14060.046*
C20.3313 (8)0.2453 (7)0.0763 (5)0.0663 (17)
H2A0.32550.28960.15310.080*
C30.3806 (8)0.3042 (7)0.0024 (5)0.0647 (17)
H3A0.41460.39440.01810.078*
C40.4059 (6)0.2277 (6)0.2072 (4)0.0429 (12)
H4A0.32480.31620.23230.051*
H4B0.51490.24790.19190.051*
C50.4007 (6)0.0904 (5)0.3025 (4)0.0368 (11)
C60.5423 (6)0.1396 (5)0.3899 (4)0.0385 (12)
C70.6913 (6)0.2570 (6)0.3952 (5)0.0484 (13)
H7A0.78580.24940.33990.058*
C80.6947 (7)0.3806 (6)0.4817 (5)0.0511 (14)
H8A0.79160.45840.48420.061*
C90.5553 (7)0.3927 (6)0.5666 (5)0.0526 (15)
H9A0.56070.47730.62590.063*
C100.4105 (7)0.2807 (6)0.5633 (5)0.0496 (14)
H10A0.31770.29010.61980.060*
C110.4018 (6)0.1520 (5)0.4748 (4)0.0398 (12)
C120.2574 (6)0.0785 (5)0.3867 (4)0.0366 (11)
C130.0938 (6)0.2008 (6)0.3887 (4)0.0444 (13)
H13A0.01750.17470.45880.053*
H13B0.11380.29770.39000.053*
C140.0340 (6)0.1069 (5)0.2612 (4)0.0393 (11)
H14A0.02370.00850.30390.047*
C150.0222 (6)0.3462 (6)0.2053 (5)0.0490 (13)
H15A0.00290.44080.20110.059*
C160.0935 (6)0.3070 (6)0.1324 (5)0.0512 (14)
H16A0.13270.37200.06810.061*
B10.1799 (10)0.6832 (8)0.2227 (7)0.0602 (19)
F10.2917 (7)0.5925 (6)0.1565 (6)0.162 (2)
F20.2537 (7)0.7599 (6)0.2651 (5)0.1363 (19)
F30.1090 (6)0.5843 (5)0.3089 (4)0.1135 (15)
F40.0645 (7)0.7784 (6)0.1667 (5)0.158 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0564 (3)0.0600 (3)0.0593 (3)0.0085 (2)0.0270 (2)0.0223 (2)
N10.052 (3)0.053 (3)0.039 (2)0.010 (2)0.013 (2)0.012 (2)
N20.046 (2)0.037 (2)0.041 (2)0.0140 (19)0.0130 (19)0.0062 (19)
N30.040 (2)0.045 (3)0.042 (2)0.011 (2)0.0138 (19)0.013 (2)
N40.045 (2)0.043 (2)0.036 (2)0.006 (2)0.0160 (19)0.0107 (19)
N50.036 (2)0.037 (2)0.043 (2)0.0073 (18)0.0128 (18)0.0086 (19)
N60.038 (2)0.045 (3)0.042 (2)0.009 (2)0.0150 (19)0.0063 (19)
C10.041 (3)0.039 (3)0.037 (3)0.013 (2)0.006 (2)0.007 (2)
C20.102 (5)0.068 (4)0.037 (3)0.034 (4)0.023 (3)0.004 (3)
C30.100 (5)0.058 (4)0.044 (3)0.044 (4)0.016 (3)0.009 (3)
C40.047 (3)0.041 (3)0.048 (3)0.016 (2)0.012 (2)0.013 (2)
C50.040 (3)0.035 (3)0.041 (3)0.010 (2)0.020 (2)0.006 (2)
C60.042 (3)0.038 (3)0.041 (3)0.004 (2)0.019 (2)0.014 (2)
C70.044 (3)0.050 (3)0.053 (3)0.002 (3)0.018 (3)0.015 (3)
C80.053 (3)0.038 (3)0.069 (4)0.004 (3)0.031 (3)0.020 (3)
C90.070 (4)0.036 (3)0.057 (3)0.006 (3)0.035 (3)0.005 (2)
C100.054 (3)0.047 (3)0.049 (3)0.006 (3)0.019 (3)0.010 (3)
C110.043 (3)0.041 (3)0.041 (3)0.000 (2)0.020 (2)0.019 (2)
C120.040 (3)0.039 (3)0.037 (3)0.007 (2)0.017 (2)0.014 (2)
C130.043 (3)0.046 (3)0.047 (3)0.000 (2)0.018 (2)0.018 (2)
C140.040 (3)0.034 (3)0.042 (3)0.004 (2)0.010 (2)0.006 (2)
C150.054 (3)0.031 (3)0.063 (4)0.006 (2)0.027 (3)0.000 (3)
C160.056 (3)0.043 (3)0.055 (3)0.009 (3)0.031 (3)0.006 (3)
B10.074 (5)0.035 (4)0.072 (5)0.012 (4)0.025 (4)0.002 (3)
F10.146 (5)0.094 (4)0.223 (6)0.029 (3)0.056 (4)0.072 (4)
F20.184 (5)0.103 (4)0.162 (5)0.071 (4)0.066 (4)0.022 (3)
F30.114 (3)0.109 (4)0.120 (4)0.053 (3)0.038 (3)0.024 (3)
F40.170 (5)0.121 (4)0.154 (5)0.030 (4)0.099 (4)0.016 (3)
Geometric parameters (Å, º) top
Ag1—N12.105 (4)C4—H4B0.9700
Ag1—N6i2.112 (4)C5—C121.413 (7)
Ag1—Ag1i3.5081 (11)C6—C111.400 (7)
N1—C11.317 (5)C6—C71.421 (7)
N1—C21.357 (7)C7—C81.359 (8)
N2—C11.342 (6)C7—H7A0.9300
N2—C31.367 (7)C8—C91.393 (8)
N2—C41.471 (5)C8—H8A0.9300
N3—C51.309 (6)C9—C101.370 (7)
N3—C61.355 (6)C9—H9A0.9300
N4—C121.319 (6)C10—C111.403 (7)
N4—C111.370 (6)C10—H10A0.9300
N5—C141.348 (6)C12—C131.525 (6)
N5—C151.378 (6)C13—H13A0.9700
N5—C131.479 (5)C13—H13B0.9700
N6—C141.319 (5)C14—H14A0.9300
N6—C161.369 (6)C15—C161.346 (7)
N6—Ag1i2.112 (4)C15—H15A0.9300
C1—H1A0.9300C16—H16A0.9300
C2—C31.348 (7)B1—F41.318 (8)
C2—H2A0.9300B1—F21.324 (8)
C3—H3A0.9300B1—F11.328 (8)
C4—C51.510 (7)B1—F31.370 (8)
C4—H4A0.9700
N1—Ag1—N6i178.55 (16)C8—C7—H7A120.2
N1—Ag1—Ag1i97.02 (11)C6—C7—H7A120.2
N6i—Ag1—Ag1i84.42 (11)C7—C8—C9121.1 (5)
C1—N1—C2105.7 (4)C7—C8—H8A119.5
C1—N1—Ag1127.6 (4)C9—C8—H8A119.5
C2—N1—Ag1126.6 (3)C10—C9—C8120.4 (5)
C1—N2—C3107.0 (4)C10—C9—H9A119.8
C1—N2—C4128.5 (4)C8—C9—H9A119.8
C3—N2—C4124.4 (4)C9—C10—C11120.2 (5)
C5—N3—C6117.6 (4)C9—C10—H10A119.9
C12—N4—C11117.1 (4)C11—C10—H10A119.9
C14—N5—C15107.3 (4)N4—C11—C6120.5 (5)
C14—N5—C13125.3 (4)N4—C11—C10120.1 (5)
C15—N5—C13127.4 (4)C6—C11—C10119.3 (4)
C14—N6—C16106.0 (4)N4—C12—C5121.7 (4)
C14—N6—Ag1i123.6 (3)N4—C12—C13114.8 (4)
C16—N6—Ag1i130.3 (3)C5—C12—C13123.4 (4)
N1—C1—N2111.2 (4)N5—C13—C12112.3 (3)
N1—C1—H1A124.4N5—C13—H13A109.2
N2—C1—H1A124.4C12—C13—H13A109.2
C3—C2—N1110.2 (5)N5—C13—H13B109.2
C3—C2—H2A124.9C12—C13—H13B109.2
N1—C2—H2A124.9H13A—C13—H13B107.9
C2—C3—N2106.0 (5)N6—C14—N5110.7 (4)
C2—C3—H3A127.0N6—C14—H14A124.6
N2—C3—H3A127.0N5—C14—H14A124.6
N2—C4—C5111.8 (4)C16—C15—N5105.9 (5)
N2—C4—H4A109.3C16—C15—H15A127.1
C5—C4—H4A109.3N5—C15—H15A127.1
N2—C4—H4B109.3C15—C16—N6110.1 (4)
C5—C4—H4B109.3C15—C16—H16A125.0
H4A—C4—H4B107.9N6—C16—H16A125.0
N3—C5—C12121.8 (4)F4—B1—F2110.1 (6)
N3—C5—C4115.6 (4)F4—B1—F1112.2 (7)
C12—C5—C4122.6 (4)F2—B1—F1110.3 (7)
N3—C6—C11121.2 (4)F4—B1—F3109.3 (7)
N3—C6—C7119.3 (5)F2—B1—F3111.0 (6)
C11—C6—C7119.5 (5)F1—B1—F3103.8 (6)
C8—C7—C6119.5 (5)
Ag1i—Ag1—N1—C160.4 (4)N3—C6—C11—N41.3 (6)
Ag1i—Ag1—N1—C2114.9 (5)C7—C6—C11—N4179.8 (4)
C2—N1—C1—N20.5 (6)N3—C6—C11—C10178.8 (4)
Ag1—N1—C1—N2175.5 (3)C7—C6—C11—C100.3 (6)
C3—N2—C1—N10.6 (6)C9—C10—C11—N4179.9 (4)
C4—N2—C1—N1176.8 (4)C9—C10—C11—C60.3 (7)
C1—N1—C2—C30.2 (7)C11—N4—C12—C50.1 (6)
Ag1—N1—C2—C3175.9 (4)C11—N4—C12—C13179.0 (4)
N1—C2—C3—N20.2 (7)N3—C5—C12—N40.4 (7)
C1—N2—C3—C20.5 (6)C4—C5—C12—N4177.7 (4)
C4—N2—C3—C2177.1 (5)N3—C5—C12—C13179.1 (4)
C1—N2—C4—C58.8 (7)C4—C5—C12—C131.1 (6)
C3—N2—C4—C5174.2 (5)C14—N5—C13—C1261.3 (6)
C6—N3—C5—C120.2 (6)C15—N5—C13—C12120.5 (5)
C6—N3—C5—C4178.4 (4)N4—C12—C13—N5115.4 (5)
N2—C4—C5—N386.7 (5)C5—C12—C13—N565.7 (6)
N2—C4—C5—C1295.2 (5)C16—N6—C14—N51.0 (5)
C5—N3—C6—C111.1 (6)Ag1i—N6—C14—N5179.5 (3)
C5—N3—C6—C7179.6 (4)C15—N5—C14—N60.8 (5)
N3—C6—C7—C8179.4 (4)C13—N5—C14—N6179.3 (4)
C11—C6—C7—C80.8 (7)C14—N5—C15—C160.3 (6)
C6—C7—C8—C91.3 (7)C13—N5—C15—C16178.8 (4)
C7—C8—C9—C101.2 (8)N5—C15—C16—N60.3 (6)
C8—C9—C10—C110.7 (7)C14—N6—C16—C150.8 (6)
C12—N4—C11—C60.7 (6)Ag1i—N6—C16—C15179.7 (3)
C12—N4—C11—C10179.5 (4)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Ag2(C16H14N6)2](BF4)2
Mr970.02
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5398 (19), 9.311 (2), 12.104 (3)
α, β, γ (°)76.350 (4), 76.603 (4), 73.208 (4)
V3)881.4 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.796, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
5006, 3556, 2326
Rint0.023
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.108, 1.00
No. of reflections3556
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.47

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
Ag1—N12.105 (4)Ag1—N6i2.112 (4)
N1—Ag1—N6i178.55 (16)
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank Hebei University for supporting this work.

References

First citationBruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, C. Y., Liu, C. S., Li, J. R. & Bu, X. H. (2007). Cryst. Growth Des. 7, 286–295.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J. R., Tao, Y., Yu, Q. & Bu, X. H. (2007). Chem. Commun. pp. 1527–1529.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationZhang, Z. H., Song, Y., Okamura, T., Hasegawa, Y., Sun, W. Y. & Ueyama, N. (2006). Inorg. Chem. 45, 2896–2902.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. & Bu, X. H. (2004). Cryst. Growth Des. 4, 79–84.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds