organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-tert-Butyl-4-oxo-3,4-di­hydro­phthalazin-1-yl 3,5-di­methyl­benzoate

aChangsha University of Science and Technology, Changsha, Hunan 410076, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People's Republic of China, and cHunan Research Institute of Chemical Industry, Changsha 410007, People's Republic of China
*Correspondence e-mail: daoxinwu@163.com

(Received 16 November 2007; accepted 20 November 2007; online 6 December 2007)

The title compound, C21H22N2O3, was synthesized by the reaction of tert-butyl­hydrazine with phthalic anhydride and further O-benzoyl­ation of the resulting inter­mediate by 3,5-dimethyl­benzoyl chloride. Inter­molecular C—H⋯O=C inter­actions link the mol­ecules into layers.

Related literature

For ecdysone agonists, see: Wing (1988[Wing, K. D. (1988). Science, 241, 467-469.]). For the synthesis, see: Hou et al. (2002[Hou, Z.-K., Ren, Y.-G. & Zhang, L.-J. (2002). Chin. J. Pestic. Sci. 4, 72-74.]). For C—N bond lengths, see: Sasada (1984[Sasada, Y. (1984). Molecular and Crystal Structure in Chemistry Handbook, 3rd ed. Tokyo: Maruzen Press/The Chemistry Society of Japan.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O3

  • Mr = 350.41

  • Monoclinic, P 21 /n

  • a = 8.7974 (2) Å

  • b = 18.7622 (4) Å

  • c = 11.7405 (3) Å

  • β = 92.634 (2)°

  • V = 1935.82 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 (2) K

  • 0.54 × 0.52 × 0.48 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 14969 measured reflections

  • 3804 independent reflections

  • 2879 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.137

  • S = 1.06

  • 3804 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.56 3.391 (2) 149
C12—H12⋯O3ii 0.93 2.27 3.149 (2) 157
Symmetry codes: (i) -x, -y, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.059) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.059) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

DibendzoyIhydrazines insect growth regulators are well known as nonsteroidal ecdysone agonists, which induce prematurely abnormal and ultimately lethal larval molting (Wing, 1988). The title compound, (I), was obtained unintentionally as the product of an attempted synthesis of a dibendzoylhydrazine and we present its crystal structure here. The molecular structure of (I) is shown in Fig.1. The bond length of C18—N2 [1.517 (2) Å] is slightly greater than the normal value of C—N [1.47 Å; Sasada, 1984] because of the larger terminal group tert-butyl moiety. The crystal structure of (I) also involves two weak C—H···O?C hydrogen-bonding interactions, which link the molecules into layers which lie parallel to the (101) plane. (Fig. 2 and Table 1).

Related literature top

For ecdysone agonists, see: Wing (1988). For the synthesis, see: Hou et al. (2002). For C—N bond lengths, see: Sasada (1984).

Experimental top

Phthalic anhydride (0.015 mol) was heated to 323 K in acetic acid, tert-butyldrazine (0.015 mol) was added dropwise, the solution was stirred for 3 h at 383 K. Then the mixture was condensed and washed with water and filtered, which afforded 2-tert-butyl-4-hydroxyphthalazin-1(2H)-one (m.p. 391–393 K). This compound (0.01 mol) was heated to 333 K in butyl acetate (30 ml) and water (20 ml) in the presence of DMPA catalyst (0.1 g), 3,5-Dimethylbenzoyl chloride (0.01 mol) and a saturated solution of Na2CO3(0.02 mol) which were added dropwise, then the mixture reacted for 4 h (Hou et al., 2002). The solution was cooled, washed with water and dried. The product was concentrated and purified by column chromatography (silica gel, petroleum ether-acetate 10:1) to give the title compound, (I) (yield 46%, m.p. 421–422 K). 1H NMR (CDCl3, δ, p.p.m): 1.71 (9H, s), 2.43 (6H, s), 7.33–7.26 (1H, s), 7.74–7.57 (1H, s), 7.79–7.75 (2H, m), 7.90–7.89 (2H, s), 8.46–8.43 (1H, m). Compound (I) was recrystallized from ethyl acetate. Single crystals of (I), suitable for X-ray analysis, were grown by natural evaporation of the solvent.

Refinement top

The C—H atoms were constrained to an ideal geometry, with C(methyl)—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), and C(phenyl)—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

DibendzoyIhydrazines insect growth regulators are well known as nonsteroidal ecdysone agonists, which induce prematurely abnormal and ultimately lethal larval molting (Wing, 1988). The title compound, (I), was obtained unintentionally as the product of an attempted synthesis of a dibendzoylhydrazine and we present its crystal structure here. The molecular structure of (I) is shown in Fig.1. The bond length of C18—N2 [1.517 (2) Å] is slightly greater than the normal value of C—N [1.47 Å; Sasada, 1984] because of the larger terminal group tert-butyl moiety. The crystal structure of (I) also involves two weak C—H···O?C hydrogen-bonding interactions, which link the molecules into layers which lie parallel to the (101) plane. (Fig. 2 and Table 1).

For ecdysone agonists, see: Wing (1988). For the synthesis, see: Hou et al. (2002). For C—N bond lengths, see: Sasada (1984).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the a axis. The dashed lines indicate C—H···O interations.
3-tert-Butyl-4-oxo-3,4-dihydrophthalazin-1-yl 3,5-dimethylbenzoate top
Crystal data top
C21H22N2O3F(000) = 744
Mr = 350.41Dx = 1.202 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4673 reflections
a = 8.7974 (2) Åθ = 2.6–26.8°
b = 18.7622 (4) ŵ = 0.08 mm1
c = 11.7405 (3) ÅT = 296 K
β = 92.634 (2)°Block, colourless
V = 1935.82 (8) Å30.54 × 0.52 × 0.48 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2879 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
phi and ω scansh = 810
14969 measured reflectionsk = 2323
3804 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.3695P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3804 reflectionsΔρmax = 0.23 e Å3
241 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (2)
Crystal data top
C21H22N2O3V = 1935.82 (8) Å3
Mr = 350.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7974 (2) ŵ = 0.08 mm1
b = 18.7622 (4) ÅT = 296 K
c = 11.7405 (3) Å0.54 × 0.52 × 0.48 mm
β = 92.634 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2879 reflections with I > 2σ(I)
14969 measured reflectionsRint = 0.024
3804 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
3804 reflectionsΔρmin = 0.21 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1890 (3)0.01591 (13)0.3028 (2)0.0934 (7)
H1A0.26100.01370.23890.140*
H1B0.24060.00800.37200.140*
H1C0.14170.06200.30550.140*
C20.06900 (19)0.04061 (9)0.29032 (15)0.0586 (4)
C30.0157 (2)0.08071 (10)0.38294 (14)0.0628 (5)
H30.05470.07200.45390.075*
C40.0936 (2)0.13334 (9)0.37380 (13)0.0563 (4)
C50.1455 (3)0.17747 (12)0.47572 (16)0.0809 (6)
H5A0.07570.17140.53540.121*
H5B0.14870.22680.45430.121*
H5C0.24520.16230.50220.121*
C60.15174 (18)0.14558 (8)0.26761 (13)0.0484 (4)
H60.22630.18010.25940.058*
C70.09907 (16)0.10652 (8)0.17396 (12)0.0438 (3)
C80.01108 (17)0.05444 (9)0.18535 (14)0.0509 (4)
H80.04610.02870.12180.061*
C90.15521 (17)0.11830 (8)0.05858 (13)0.0463 (4)
C100.33337 (17)0.17600 (8)0.04896 (12)0.0468 (4)
C110.26329 (16)0.22905 (8)0.12040 (12)0.0463 (4)
C120.14226 (19)0.27236 (10)0.09065 (14)0.0578 (4)
H120.10170.26810.01920.069*
C130.0840 (2)0.32105 (11)0.16753 (17)0.0676 (5)
H130.00350.35000.14780.081*
C140.1433 (2)0.32802 (10)0.27457 (17)0.0662 (5)
H140.10150.36100.32620.079*
C150.26313 (19)0.28648 (9)0.30426 (14)0.0561 (4)
H150.30340.29160.37570.067*
C160.32475 (16)0.23645 (8)0.22752 (12)0.0465 (4)
C170.45363 (18)0.19228 (9)0.25804 (13)0.0536 (4)
C180.65359 (19)0.10239 (10)0.19097 (16)0.0624 (5)
C190.6200 (3)0.04906 (15)0.2852 (2)0.1083 (9)
H19A0.71140.02370.30110.163*
H19B0.58300.07360.35260.163*
H19C0.54430.01600.26180.163*
C200.7848 (2)0.15067 (13)0.2199 (3)0.0987 (8)
H20A0.80190.18510.16020.148*
H20B0.76030.17490.29040.148*
H20C0.87500.12260.22750.148*
C210.6985 (3)0.06425 (15)0.0799 (2)0.1006 (8)
H21A0.79240.03910.08830.151*
H21B0.62020.03100.06190.151*
H21C0.71120.09860.01960.151*
N10.44872 (15)0.13807 (7)0.07117 (11)0.0521 (3)
N20.51350 (15)0.14770 (7)0.17419 (11)0.0531 (4)
O10.10477 (15)0.09179 (7)0.02755 (9)0.0687 (4)
O20.27700 (12)0.16353 (6)0.05844 (8)0.0525 (3)
O30.50744 (16)0.19522 (9)0.35226 (10)0.0811 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0836 (15)0.1065 (17)0.0913 (15)0.0374 (13)0.0168 (12)0.0187 (13)
C20.0530 (9)0.0635 (10)0.0599 (10)0.0050 (8)0.0100 (8)0.0118 (8)
C30.0667 (11)0.0748 (12)0.0481 (9)0.0025 (9)0.0174 (8)0.0133 (9)
C40.0660 (11)0.0594 (10)0.0438 (8)0.0052 (8)0.0057 (7)0.0035 (7)
C50.1118 (17)0.0858 (14)0.0454 (10)0.0070 (12)0.0064 (10)0.0040 (9)
C60.0504 (9)0.0490 (8)0.0461 (8)0.0003 (7)0.0052 (6)0.0036 (7)
C70.0421 (8)0.0469 (8)0.0428 (7)0.0039 (6)0.0067 (6)0.0030 (6)
C80.0482 (9)0.0533 (9)0.0516 (9)0.0023 (7)0.0051 (7)0.0016 (7)
C90.0461 (8)0.0484 (8)0.0448 (8)0.0023 (6)0.0054 (6)0.0002 (7)
C100.0441 (8)0.0591 (9)0.0379 (7)0.0071 (7)0.0091 (6)0.0019 (7)
C110.0410 (8)0.0560 (9)0.0423 (8)0.0064 (6)0.0072 (6)0.0055 (7)
C120.0516 (9)0.0696 (11)0.0533 (9)0.0013 (8)0.0153 (7)0.0044 (8)
C130.0540 (10)0.0737 (12)0.0757 (12)0.0110 (9)0.0101 (9)0.0027 (10)
C140.0611 (11)0.0718 (11)0.0650 (11)0.0046 (9)0.0037 (9)0.0100 (9)
C150.0551 (10)0.0677 (10)0.0459 (8)0.0044 (8)0.0046 (7)0.0018 (8)
C160.0420 (8)0.0576 (9)0.0401 (7)0.0058 (7)0.0060 (6)0.0031 (7)
C170.0480 (9)0.0685 (10)0.0452 (8)0.0028 (8)0.0126 (7)0.0021 (8)
C180.0509 (10)0.0663 (11)0.0710 (11)0.0090 (8)0.0148 (8)0.0055 (9)
C190.0810 (16)0.1075 (18)0.136 (2)0.0210 (14)0.0026 (15)0.0579 (17)
C200.0515 (12)0.0989 (17)0.148 (2)0.0077 (11)0.0250 (13)0.0081 (16)
C210.0916 (17)0.1129 (19)0.0984 (17)0.0488 (15)0.0183 (13)0.0172 (14)
N10.0488 (8)0.0610 (8)0.0472 (7)0.0021 (6)0.0103 (6)0.0013 (6)
N20.0481 (8)0.0622 (8)0.0501 (7)0.0044 (6)0.0150 (6)0.0003 (6)
O10.0797 (9)0.0804 (9)0.0463 (6)0.0271 (7)0.0065 (6)0.0067 (6)
O20.0512 (6)0.0686 (7)0.0383 (5)0.0120 (5)0.0102 (4)0.0012 (5)
O30.0777 (9)0.1161 (11)0.0520 (7)0.0211 (8)0.0310 (6)0.0112 (7)
Geometric parameters (Å, º) top
C1—C21.508 (3)C12—C131.367 (3)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.389 (3)
C1—H1C0.9600C13—H130.9300
C2—C81.380 (2)C14—C151.369 (2)
C2—C31.386 (3)C14—H140.9300
C3—C41.386 (2)C15—C161.393 (2)
C3—H30.9300C15—H150.9300
C4—C61.388 (2)C16—C171.462 (2)
C4—C51.509 (3)C17—O31.2243 (18)
C5—H5A0.9600C17—N21.378 (2)
C5—H5B0.9600C18—C191.511 (3)
C5—H5C0.9600C18—N21.517 (2)
C6—C71.383 (2)C18—C201.518 (3)
C6—H60.9300C18—C211.523 (3)
C7—C81.387 (2)C19—H19A0.9600
C7—C91.4796 (19)C19—H19B0.9600
C8—H80.9300C19—H19C0.9600
C9—O11.1939 (18)C20—H20A0.9600
C9—O21.3668 (18)C20—H20B0.9600
C10—N11.276 (2)C20—H20C0.9600
C10—O21.3958 (17)C21—H21A0.9600
C10—C111.424 (2)C21—H21B0.9600
C11—C161.3985 (19)C21—H21C0.9600
C11—C121.397 (2)N1—N21.3725 (17)
C2—C1—H1A109.5C12—C13—H13119.5
C2—C1—H1B109.5C14—C13—H13119.5
H1A—C1—H1B109.5C15—C14—C13120.16 (17)
C2—C1—H1C109.5C15—C14—H14119.9
H1A—C1—H1C109.5C13—C14—H14119.9
H1B—C1—H1C109.5C14—C15—C16120.01 (15)
C8—C2—C3118.23 (15)C14—C15—H15120.0
C8—C2—C1120.53 (17)C16—C15—H15120.0
C3—C2—C1121.24 (16)C15—C16—C11119.56 (14)
C2—C3—C4122.48 (15)C15—C16—C17120.42 (14)
C2—C3—H3118.8C11—C16—C17120.02 (14)
C4—C3—H3118.8O3—C17—N2121.47 (15)
C3—C4—C6118.23 (15)O3—C17—C16122.15 (16)
C3—C4—C5121.03 (16)N2—C17—C16116.37 (13)
C6—C4—C5120.73 (16)C19—C18—N2109.48 (15)
C4—C5—H5A109.5C19—C18—C20110.88 (19)
C4—C5—H5B109.5N2—C18—C20108.96 (15)
H5A—C5—H5B109.5C19—C18—C21110.5 (2)
C4—C5—H5C109.5N2—C18—C21109.42 (14)
H5A—C5—H5C109.5C20—C18—C21107.58 (19)
H5B—C5—H5C109.5C18—C19—H19A109.5
C7—C6—C4120.15 (15)C18—C19—H19B109.5
C7—C6—H6119.9H19A—C19—H19B109.5
C4—C6—H6119.9C18—C19—H19C109.5
C6—C7—C8120.43 (14)H19A—C19—H19C109.5
C6—C7—C9122.33 (13)H19B—C19—H19C109.5
C8—C7—C9117.24 (13)C18—C20—H20A109.5
C2—C8—C7120.47 (15)C18—C20—H20B109.5
C2—C8—H8119.8H20A—C20—H20B109.5
C7—C8—H8119.8C18—C20—H20C109.5
O1—C9—O2121.23 (13)H20A—C20—H20C109.5
O1—C9—C7125.91 (14)H20B—C20—H20C109.5
O2—C9—C7112.86 (12)C18—C21—H21A109.5
N1—C10—O2114.20 (14)C18—C21—H21B109.5
N1—C10—C11126.62 (13)H21A—C21—H21B109.5
O2—C10—C11119.16 (13)C18—C21—H21C109.5
C16—C11—C12119.86 (15)H21A—C21—H21C109.5
C16—C11—C10115.11 (13)H21B—C21—H21C109.5
C12—C11—C10125.03 (14)C10—N1—N2118.22 (13)
C13—C12—C11119.38 (15)N1—N2—C17123.30 (13)
C13—C12—H12120.3N1—N2—C18114.41 (13)
C11—C12—H12120.3C17—N2—C18122.24 (13)
C12—C13—C14121.03 (17)C9—O2—C10114.60 (11)
C8—C2—C3—C40.5 (3)C12—C11—C16—C150.8 (2)
C1—C2—C3—C4179.50 (18)C10—C11—C16—C15179.37 (14)
C2—C3—C4—C60.4 (3)C12—C11—C16—C17178.66 (14)
C2—C3—C4—C5178.11 (18)C10—C11—C16—C171.1 (2)
C3—C4—C6—C70.9 (2)C15—C16—C17—O33.2 (3)
C5—C4—C6—C7177.60 (16)C11—C16—C17—O3177.35 (16)
C4—C6—C7—C80.6 (2)C15—C16—C17—N2175.80 (14)
C4—C6—C7—C9178.92 (14)C11—C16—C17—N23.7 (2)
C3—C2—C8—C70.9 (2)O2—C10—N1—N2178.84 (12)
C1—C2—C8—C7179.90 (17)C11—C10—N1—N20.7 (2)
C6—C7—C8—C20.4 (2)C10—N1—N2—C175.0 (2)
C9—C7—C8—C2179.87 (14)C10—N1—N2—C18177.70 (14)
C6—C7—C9—O1172.15 (16)O3—C17—N2—N1174.04 (16)
C8—C7—C9—O17.3 (2)C16—C17—N2—N17.0 (2)
C6—C7—C9—O28.7 (2)O3—C17—N2—C183.0 (3)
C8—C7—C9—O2171.80 (13)C16—C17—N2—C18175.93 (14)
N1—C10—C11—C163.6 (2)C19—C18—N2—N1113.71 (19)
O2—C10—C11—C16178.33 (13)C20—C18—N2—N1124.88 (18)
N1—C10—C11—C12176.22 (16)C21—C18—N2—N17.5 (2)
O2—C10—C11—C121.9 (2)C19—C18—N2—C1763.6 (2)
C16—C11—C12—C130.8 (2)C20—C18—N2—C1757.8 (2)
C10—C11—C12—C13179.44 (16)C21—C18—N2—C17175.19 (18)
C11—C12—C13—C140.0 (3)O1—C9—O2—C100.8 (2)
C12—C13—C14—C150.8 (3)C7—C9—O2—C10179.99 (12)
C13—C14—C15—C160.8 (3)N1—C10—O2—C997.91 (16)
C14—C15—C16—C110.1 (2)C11—C10—O2—C983.76 (17)
C14—C15—C16—C17179.44 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.563.391 (2)149
C12—H12···O3ii0.932.273.149 (2)157
Symmetry codes: (i) x, y, z; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H22N2O3
Mr350.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.7974 (2), 18.7622 (4), 11.7405 (3)
β (°) 92.634 (2)
V3)1935.82 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.52 × 0.48
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14969, 3804, 2879
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.137, 1.06
No. of reflections3804
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.563.391 (2)149
C12—H12···O3ii0.932.273.149 (2)157
Symmetry codes: (i) x, y, z; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the National Eleventh–Five Key Project of the People's Republic of China (2006BAE01A01-4).

References

First citationBruker (1997). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SMART (Version 5.059) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, Z.-K., Ren, Y.-G. & Zhang, L.-J. (2002). Chin. J. Pestic. Sci. 4, 72–74.  CAS Google Scholar
First citationSasada, Y. (1984). Molecular and Crystal Structure in Chemistry Handbook, 3rd ed. Tokyo: Maruzen Press/The Chemistry Society of Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationWing, K. D. (1988). Science, 241, 467–469.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds