metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­methyl­ammonium) tetra­chlorido­zincate(II), phase VI

aDepartment of Chemistry, University of Texas San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA, and bDepartment of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019-3051, USA
*Correspondence e-mail: ghezai.musie@utsa.edu

(Received 8 November 2007; accepted 5 December 2007; online 12 December 2007)

Phase VI of bis­(tetra­methyl­ammonium) tetra­chloro­zincate(II), (C4H12N)2[ZnCl4], contains three formula units per asymmetric unit. Several short C—H⋯Cl contacts [2.70 (3) and 2.72 (4) Å] are observed, but they are believed to participate only in van der Waals inter­actions. The crystal studied exhibited inversion twinning.

Related literature

For related literature, see: Madariaga et al. (1987[Madariaga, G., Zuñiga, F. J., Pérez-Mato, J. M. & Tello, M. J. (1987). Acta Cryst. B43, 356-368.]); Ruiz-Larrea et al. (1981[Ruiz-Larrea, I., Lopez-Echarri, A. & Tello, M. J. (1981). J. Phys. C Solid State Phys. 14, 3171-3176.]); Wiesner et al. (1967[Wiesner, J. R., Srivastava, R. C., Kennard, C. H. L., Di Vaira, M. & Lingafelter, E. C. (1967). Acta Cryst. 23, 565-574.]); Zuñiga et al. (1989[Zuñiga, F. J., Madariaga, G. & Pérez-Mato, J. M. (1989). Acta Cryst. B45, 462-466.]); Zhang & Bordwell (1994[Zhang, X.-M. & Bordwell, F. C. (1994). J. Am. Chem. Soc. 116, 968-972.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N)2[ZnCl4]

  • Mr = 355.46

  • Orthorhombic, P 21 21 21

  • a = 8.9114 (18) Å

  • b = 15.105 (3) Å

  • c = 36.493 (7) Å

  • V = 4912.2 (17) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 100.0 (2) K

  • 0.36 × 0.24 × 0.04 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Version 2007/4. University of Göttingen, Germany.]) Tmin = 0.512, Tmax = 0.918

  • 32538 measured reflections

  • 9616 independent reflections

  • 9039 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.055

  • S = 1.00

  • 9616 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 4218 Friedel pairs

  • Flack parameter: 0.611 (6)

Table 1
Selected geometric parameters (Å, °)

Zn1A—Cl4A 2.2645 (8)
Zn1A—Cl2A 2.2743 (8)
Zn1A—Cl1A 2.2807 (8)
Zn1A—Cl3A 2.2836 (8)
Zn1B—Cl1B 2.2677 (8)
Zn1B—Cl4B 2.2709 (7)
Zn1B—Cl3B 2.2797 (8)
Zn1B—Cl2B 2.2857 (8)
Zn1C—Cl1C 2.2620 (8)
Zn1C—Cl2C 2.2726 (8)
Zn1C—Cl3C 2.2770 (8)
Zn1C—Cl4C 2.2814 (8)
Cl4A—Zn1A—Cl2A 110.65 (3)
Cl4A—Zn1A—Cl1A 110.51 (3)
Cl2A—Zn1A—Cl1A 107.40 (3)
Cl4A—Zn1A—Cl3A 108.27 (3)
Cl2A—Zn1A—Cl3A 109.40 (3)
Cl1A—Zn1A—Cl3A 110.60 (3)
Cl1B—Zn1B—Cl4B 111.11 (3)
Cl1B—Zn1B—Cl3B 109.08 (3)
Cl4B—Zn1B—Cl3B 108.58 (3)
Cl1B—Zn1B—Cl2B 110.23 (3)
Cl4B—Zn1B—Cl2B 107.37 (3)
Cl3B—Zn1B—Cl2B 110.46 (3)
Cl1C—Zn1C—Cl2C 112.21 (3)
Cl1C—Zn1C—Cl3C 109.88 (3)
Cl2C—Zn1C—Cl3C 108.62 (3)
Cl1C—Zn1C—Cl4C 109.08 (3)
Cl2C—Zn1C—Cl4C 108.55 (3)
Cl3C—Zn1C—Cl4C 108.42 (3)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis(tetramethylammonium) tetrachlorozincate(II) undergoes five solid-solid phase transitions with decreasing temperature according to a calorimetric study by Ruiz-Larrea et al. (1981). The room temperature phase I crystallized in the space group Pnma with a = 12.276 (2), b = 8.998 (2), and c = 15.541 (2) Å (Wiesner et al., 1967). Weak incommensurate lattice spots in phases II, III, and IV have shown that these two phases are small distortions of the room temperature phase (Madariaga et al., 1987). Similarly, phase V was found to be an incommensurately modulated structure related to phase I (Zuñiga et al., 1989).

No evidence of superlattice spots were observed in the frame data for phase VI. Short C—H···Cl contacts were observed, but because of the very large estimated pKa of 42 for the protons of the cations (Zhang & Bordwell, 1994), it is unlikely that any of these contacts are weak hydrogen bonds. There were three formula units in the asymmetric unit of the cell (Fig. 1).

Related literature top

For related literature, see: Madariaga et al. (1987); Ruiz-Larrea et al. (1981); Wiesner et al. (1967); Zuñiga et al. (1989); Zhang & Bordwell (1994).

Experimental top

Single crystals of bis(tetramethylammonium) tetrachlorozincate(II) were grown by slow diffusion of diethyl ether into a methanol solution of ZnCl2 and N(CH3)4OH in a 1:3 mole ratio over the course of three days.

Refinement top

The methyl H atoms were initially located by geometry. The H atoms were then refined with distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), but each methyl group was allowed to rotate freely about its N—C bond.

The refined Flack parameter indicated racemic twinning in the sample.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL (Sheldrick, 2000); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. View of the unique atoms showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
bis(tetramethylammonium) tetrachlorozincate(II) top
Crystal data top
(C4H12N)2[ZnCl4]F(000) = 2208
Mr = 355.46Dx = 1.442 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6850 reflections
a = 8.9114 (18) Åθ = 2.5–28.2°
b = 15.105 (3) ŵ = 2.13 mm1
c = 36.493 (7) ÅT = 100 K
V = 4912.2 (17) Å3Plate, colourless
Z = 120.36 × 0.24 × 0.04 mm
Data collection top
Bruker APEX CCD
diffractometer
9616 independent reflections
Radiation source: fine-focus sealed tube9039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
\ scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1010
Tmin = 0.512, Tmax = 0.918k = 1818
32538 measured reflectionsl = 4445
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
9616 reflectionsΔρmax = 0.43 e Å3
407 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.611 (6)
Crystal data top
(C4H12N)2[ZnCl4]V = 4912.2 (17) Å3
Mr = 355.46Z = 12
Orthorhombic, P212121Mo Kα radiation
a = 8.9114 (18) ŵ = 2.13 mm1
b = 15.105 (3) ÅT = 100 K
c = 36.493 (7) Å0.36 × 0.24 × 0.04 mm
Data collection top
Bruker APEX CCD
diffractometer
9616 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
9039 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.918Rint = 0.038
32538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.43 e Å3
S = 1.00Δρmin = 0.29 e Å3
9616 reflectionsAbsolute structure: Flack (1983)
407 parametersAbsolute structure parameter: 0.611 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn1A0.22269 (3)0.833130 (18)0.249954 (7)0.01451 (7)
Cl1A0.27151 (7)0.83942 (4)0.311249 (16)0.01927 (14)
Cl2A0.42172 (7)0.89470 (4)0.220415 (17)0.02094 (15)
Cl3A0.01026 (7)0.91090 (4)0.236224 (17)0.02043 (14)
Cl4A0.18901 (8)0.69109 (4)0.231878 (17)0.02295 (15)
Zn1B0.80374 (3)0.648812 (18)0.085633 (7)0.01432 (7)
Cl1B0.78781 (7)0.67180 (4)0.024348 (16)0.01814 (13)
Cl2B0.99810 (7)0.55514 (4)0.098555 (17)0.01982 (15)
Cl3B0.58278 (8)0.59089 (4)0.106043 (18)0.02098 (15)
Cl4B0.84775 (8)0.77752 (4)0.115946 (17)0.01842 (14)
Zn1C0.27960 (3)0.148178 (18)0.084326 (7)0.01390 (7)
Cl1C0.30736 (7)0.14537 (4)0.145927 (16)0.01915 (14)
Cl2C0.32460 (8)0.28462 (4)0.060498 (18)0.02114 (15)
Cl3C0.44003 (8)0.04975 (4)0.057901 (18)0.02362 (16)
Cl4C0.04001 (7)0.10798 (4)0.069889 (17)0.02188 (15)
N1D0.7769 (2)0.34272 (13)0.04975 (5)0.0161 (5)
C1D0.7608 (3)0.34836 (17)0.09057 (6)0.0214 (6)
H1D10.65610.33740.09740.032*
H1D20.79060.40750.09890.032*
H1D30.82530.30390.10210.032*
C2D0.7222 (3)0.25421 (16)0.03673 (7)0.0222 (6)
H2D10.72740.25180.00990.033*
H2D20.61810.24550.04460.033*
H2D30.78540.20740.04710.033*
C3D0.6849 (3)0.41380 (17)0.03245 (7)0.0268 (7)
H3D10.69540.41060.00580.040*
H3D20.71970.47170.04110.040*
H3D30.57930.40580.03910.040*
C4D0.9376 (3)0.35435 (19)0.03958 (7)0.0248 (6)
H4D10.99670.30530.04960.037*
H4D20.97470.41040.04960.037*
H4D30.94730.35500.01280.037*
N1E0.2499 (2)0.40749 (14)0.17102 (5)0.0148 (5)
C1E0.1088 (3)0.36434 (17)0.15805 (8)0.0252 (7)
H1E10.06750.39790.13740.038*
H1E20.03550.36310.17810.038*
H1E30.13060.30370.15020.038*
C2E0.3602 (3)0.41315 (18)0.14052 (7)0.0278 (7)
H2E10.31720.44770.12040.042*
H2E20.38420.35340.13180.042*
H2E30.45200.44200.14930.042*
C3E0.2129 (3)0.49855 (16)0.18458 (7)0.0218 (6)
H3E10.30470.52770.19310.033*
H3E20.14120.49430.20490.033*
H3E30.16850.53320.16460.033*
C4E0.3153 (3)0.35468 (17)0.20164 (7)0.0233 (6)
H4E10.34320.29580.19260.035*
H4E20.24100.34870.22130.035*
H4E30.40460.38480.21110.035*
N1F0.2919 (3)0.82358 (13)0.11507 (5)0.0179 (5)
C1F0.2556 (3)0.74168 (17)0.13618 (8)0.0279 (7)
H1F10.28000.75080.16210.042*
H1F20.31460.69210.12660.042*
H1F30.14850.72840.13370.042*
C2F0.4559 (3)0.84202 (19)0.11789 (8)0.0283 (7)
H2F10.48000.89570.10400.042*
H2F20.51240.79190.10790.042*
H2F30.48310.85060.14370.042*
C3F0.2049 (3)0.89951 (17)0.13031 (8)0.0284 (7)
H3F10.09730.88640.12880.043*
H3F20.22690.95300.11610.043*
H3F30.23320.90890.15600.043*
C4F0.2506 (3)0.8116 (2)0.07569 (7)0.0379 (8)
H4F10.27410.86580.06210.057*
H4F20.14290.79920.07380.057*
H4F30.30750.76200.06540.057*
N1G0.7277 (2)0.63485 (14)0.21747 (5)0.0161 (5)
C1G0.5783 (3)0.5939 (2)0.21077 (8)0.0304 (7)
H1G10.50170.62580.22480.046*
H1G20.58050.53180.21850.046*
H1G30.55440.59730.18460.046*
C2G0.7243 (4)0.73057 (17)0.20696 (7)0.0286 (7)
H2G10.82190.75760.21220.043*
H2G20.64610.76100.22100.043*
H2G30.70260.73590.18070.043*
C3G0.8431 (3)0.58795 (18)0.19485 (7)0.0244 (7)
H3G10.81740.59350.16880.037*
H3G20.84560.52520.20170.037*
H3G30.94190.61450.19920.037*
C4G0.7650 (3)0.62664 (18)0.25733 (7)0.0249 (7)
H4G10.68860.65740.27190.037*
H4G20.86340.65320.26200.037*
H4G30.76730.56390.26420.037*
N1H0.2840 (2)0.56575 (13)0.00491 (5)0.0147 (5)
C1H0.2778 (3)0.46942 (16)0.00445 (7)0.0219 (6)
H1H10.27240.46240.03110.033*
H1H20.36820.44000.00480.033*
H1H30.18890.44280.00680.033*
C2H0.1461 (3)0.61057 (18)0.00861 (8)0.0264 (7)
H2H10.05790.58470.00330.040*
H2H20.15150.67390.00290.040*
H2H30.13810.60270.03520.040*
C3H0.2935 (3)0.57694 (17)0.04539 (6)0.0230 (6)
H3H10.38350.54700.05460.035*
H3H20.29880.64010.05130.035*
H3H30.20430.55100.05690.035*
C4H0.4208 (3)0.60584 (18)0.01198 (8)0.0301 (7)
H4H10.51050.57670.00220.045*
H4H20.41720.59800.03860.045*
H4H30.42440.66920.00620.045*
N1I0.7744 (2)1.07188 (13)0.16264 (5)0.0150 (5)
C1I0.9184 (3)1.11122 (17)0.17517 (7)0.0216 (6)
H1I10.96151.07440.19460.032*
H1I20.90021.17100.18460.032*
H1I30.98861.11430.15450.032*
C2I0.6673 (3)1.06734 (18)0.19391 (7)0.0260 (7)
H2I10.70821.02850.21300.039*
H2I20.57111.04370.18540.039*
H2I30.65231.12680.20400.039*
C3I0.8031 (4)0.98137 (16)0.14806 (7)0.0286 (7)
H3I10.87140.98510.12710.043*
H3I20.70810.95470.14030.043*
H3I30.84870.94480.16720.043*
C4I0.7082 (3)1.12811 (17)0.13312 (7)0.0233 (6)
H4I10.77881.13230.11260.035*
H4I20.68801.18750.14280.035*
H4I30.61421.10140.12460.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn1A0.01419 (16)0.01415 (15)0.01521 (15)0.00001 (13)0.00065 (12)0.00035 (12)
Cl1A0.0185 (3)0.0239 (3)0.0154 (3)0.0007 (3)0.0014 (3)0.0007 (3)
Cl2A0.0165 (3)0.0255 (4)0.0209 (3)0.0037 (3)0.0028 (3)0.0024 (3)
Cl3A0.0162 (3)0.0223 (3)0.0227 (3)0.0038 (3)0.0018 (3)0.0021 (3)
Cl4A0.0318 (4)0.0155 (3)0.0215 (3)0.0028 (3)0.0004 (3)0.0019 (3)
Zn1B0.01474 (15)0.01379 (14)0.01444 (14)0.00018 (13)0.00038 (13)0.00079 (12)
Cl1B0.0189 (3)0.0207 (3)0.0149 (3)0.0009 (3)0.0001 (3)0.0016 (3)
Cl2B0.0205 (4)0.0189 (3)0.0201 (3)0.0046 (3)0.0015 (3)0.0023 (3)
Cl3B0.0177 (4)0.0240 (3)0.0212 (3)0.0048 (3)0.0029 (3)0.0013 (3)
Cl4B0.0204 (4)0.0157 (3)0.0192 (3)0.0012 (3)0.0008 (3)0.0020 (3)
Zn1C0.01250 (15)0.01516 (14)0.01404 (14)0.00037 (13)0.00063 (13)0.00004 (12)
Cl1C0.0193 (3)0.0243 (3)0.0138 (3)0.0011 (3)0.0003 (3)0.0010 (3)
Cl2C0.0212 (4)0.0187 (3)0.0235 (3)0.0020 (3)0.0005 (3)0.0038 (3)
Cl3C0.0237 (4)0.0247 (4)0.0225 (3)0.0072 (3)0.0054 (3)0.0017 (3)
Cl4C0.0145 (4)0.0288 (4)0.0224 (3)0.0039 (3)0.0024 (3)0.0007 (3)
N1D0.0156 (11)0.0178 (11)0.0150 (11)0.0001 (10)0.0002 (9)0.0003 (9)
C1D0.0268 (16)0.0229 (14)0.0146 (13)0.0023 (12)0.0036 (11)0.0007 (11)
C2D0.0252 (16)0.0192 (14)0.0221 (15)0.0005 (13)0.0004 (13)0.0040 (11)
C3D0.0293 (19)0.0248 (15)0.0262 (16)0.0108 (14)0.0038 (14)0.0033 (12)
C4D0.0153 (15)0.0317 (16)0.0274 (15)0.0029 (13)0.0060 (12)0.0017 (13)
N1E0.0126 (13)0.0169 (11)0.0150 (11)0.0003 (9)0.0010 (9)0.0013 (9)
C1E0.0142 (15)0.0238 (15)0.0377 (17)0.0041 (12)0.0099 (13)0.0033 (13)
C2E0.0288 (18)0.0265 (16)0.0280 (16)0.0022 (14)0.0104 (14)0.0014 (13)
C3E0.0208 (16)0.0181 (14)0.0265 (15)0.0017 (13)0.0006 (13)0.0041 (12)
C4E0.0224 (16)0.0277 (15)0.0200 (14)0.0081 (14)0.0014 (12)0.0011 (12)
N1F0.0177 (12)0.0198 (11)0.0163 (11)0.0004 (11)0.0012 (10)0.0019 (9)
C1F0.0236 (17)0.0210 (15)0.0392 (18)0.0014 (12)0.0038 (14)0.0097 (13)
C2F0.0157 (15)0.0356 (17)0.0336 (16)0.0034 (14)0.0017 (12)0.0066 (14)
C3F0.0269 (17)0.0231 (15)0.0352 (17)0.0040 (14)0.0053 (15)0.0052 (13)
C4F0.035 (2)0.060 (2)0.0189 (16)0.0039 (16)0.0039 (13)0.0064 (15)
N1G0.0156 (12)0.0180 (11)0.0146 (11)0.0013 (10)0.0001 (9)0.0000 (9)
C1G0.0191 (16)0.0458 (19)0.0265 (16)0.0087 (15)0.0016 (13)0.0008 (14)
C2G0.044 (2)0.0162 (14)0.0253 (16)0.0071 (14)0.0024 (15)0.0030 (12)
C3G0.0211 (16)0.0253 (15)0.0269 (16)0.0051 (13)0.0043 (13)0.0059 (13)
C4G0.0328 (18)0.0256 (15)0.0164 (14)0.0001 (13)0.0070 (12)0.0015 (12)
N1H0.0152 (12)0.0142 (10)0.0148 (11)0.0031 (10)0.0011 (10)0.0020 (9)
C1H0.0238 (16)0.0156 (13)0.0263 (15)0.0000 (13)0.0017 (13)0.0049 (11)
C2H0.0246 (17)0.0232 (15)0.0313 (16)0.0063 (13)0.0131 (13)0.0006 (13)
C3H0.0274 (17)0.0254 (15)0.0163 (13)0.0005 (14)0.0027 (13)0.0053 (11)
C4H0.0286 (18)0.0240 (16)0.0377 (18)0.0052 (14)0.0139 (14)0.0024 (14)
N1I0.0118 (11)0.0180 (11)0.0153 (11)0.0013 (9)0.0015 (9)0.0001 (9)
C1I0.0171 (15)0.0231 (15)0.0246 (15)0.0039 (13)0.0024 (12)0.0027 (12)
C2I0.0228 (17)0.0345 (17)0.0207 (15)0.0058 (14)0.0032 (13)0.0023 (13)
C3I0.0325 (19)0.0198 (14)0.0336 (17)0.0005 (14)0.0048 (15)0.0094 (13)
C4I0.0198 (15)0.0262 (15)0.0238 (14)0.0029 (13)0.0002 (13)0.0043 (12)
Geometric parameters (Å, º) top
Zn1A—Cl4A2.2645 (8)C3F—H3F10.9800
Zn1A—Cl2A2.2743 (8)C3F—H3F20.9800
Zn1A—Cl1A2.2807 (8)C3F—H3F30.9800
Zn1A—Cl3A2.2836 (8)C4F—H4F10.9800
Zn1B—Cl1B2.2677 (8)C4F—H4F20.9800
Zn1B—Cl4B2.2709 (7)C4F—H4F30.9800
Zn1B—Cl3B2.2797 (8)N1G—C1G1.488 (3)
Zn1B—Cl2B2.2857 (8)N1G—C2G1.496 (3)
Zn1C—Cl1C2.2620 (8)N1G—C3G1.497 (3)
Zn1C—Cl2C2.2726 (8)N1G—C4G1.497 (3)
Zn1C—Cl3C2.2770 (8)C1G—H1G10.9800
Zn1C—Cl4C2.2814 (8)C1G—H1G20.9800
N1D—C4D1.490 (3)C1G—H1G30.9800
N1D—C3D1.491 (3)C2G—H2G10.9800
N1D—C1D1.499 (3)C2G—H2G20.9800
N1D—C2D1.500 (3)C2G—H2G30.9800
C1D—H1D10.9800C3G—H3G10.9800
C1D—H1D20.9800C3G—H3G20.9800
C1D—H1D30.9800C3G—H3G30.9800
C2D—H2D10.9800C4G—H4G10.9800
C2D—H2D20.9800C4G—H4G20.9800
C2D—H2D30.9800C4G—H4G30.9800
C3D—H3D10.9800N1H—C2H1.487 (3)
C3D—H3D20.9800N1H—C3H1.489 (3)
C3D—H3D30.9800N1H—C4H1.494 (3)
C4D—H4D10.9800N1H—C1H1.496 (3)
C4D—H4D20.9800C1H—H1H10.9800
C4D—H4D30.9800C1H—H1H20.9800
N1E—C2E1.488 (3)C1H—H1H30.9800
N1E—C4E1.491 (3)C2H—H2H10.9800
N1E—C1E1.494 (3)C2H—H2H20.9800
N1E—C3E1.498 (3)C2H—H2H30.9800
C1E—H1E10.9800C3H—H3H10.9800
C1E—H1E20.9800C3H—H3H20.9800
C1E—H1E30.9800C3H—H3H30.9800
C2E—H2E10.9800C4H—H4H10.9800
C2E—H2E20.9800C4H—H4H20.9800
C2E—H2E30.9800C4H—H4H30.9800
C3E—H3E10.9800N1I—C1I1.486 (3)
C3E—H3E20.9800N1I—C3I1.489 (3)
C3E—H3E30.9800N1I—C2I1.490 (3)
C4E—H4E10.9800N1I—C4I1.493 (3)
C4E—H4E20.9800C1I—H1I10.9800
C4E—H4E30.9800C1I—H1I20.9800
N1F—C2F1.491 (3)C1I—H1I30.9800
N1F—C3F1.492 (3)C2I—H2I10.9800
N1F—C1F1.493 (3)C2I—H2I20.9800
N1F—C4F1.494 (3)C2I—H2I30.9800
C1F—H1F10.9800C3I—H3I10.9800
C1F—H1F20.9800C3I—H3I20.9800
C1F—H1F30.9800C3I—H3I30.9800
C2F—H2F10.9800C4I—H4I10.9800
C2F—H2F20.9800C4I—H4I20.9800
C2F—H2F30.9800C4I—H4I30.9800
Cl4A—Zn1A—Cl2A110.65 (3)N1F—C3F—H3F3109.5
Cl4A—Zn1A—Cl1A110.51 (3)H3F1—C3F—H3F3109.5
Cl2A—Zn1A—Cl1A107.40 (3)H3F2—C3F—H3F3109.5
Cl4A—Zn1A—Cl3A108.27 (3)N1F—C4F—H4F1109.5
Cl2A—Zn1A—Cl3A109.40 (3)N1F—C4F—H4F2109.5
Cl1A—Zn1A—Cl3A110.60 (3)H4F1—C4F—H4F2109.5
Cl1B—Zn1B—Cl4B111.11 (3)N1F—C4F—H4F3109.5
Cl1B—Zn1B—Cl3B109.08 (3)H4F1—C4F—H4F3109.5
Cl4B—Zn1B—Cl3B108.58 (3)H4F2—C4F—H4F3109.5
Cl1B—Zn1B—Cl2B110.23 (3)C1G—N1G—C2G109.9 (2)
Cl4B—Zn1B—Cl2B107.37 (3)C1G—N1G—C3G109.1 (2)
Cl3B—Zn1B—Cl2B110.46 (3)C2G—N1G—C3G109.3 (2)
Cl1C—Zn1C—Cl2C112.21 (3)C1G—N1G—C4G108.9 (2)
Cl1C—Zn1C—Cl3C109.88 (3)C2G—N1G—C4G109.50 (19)
Cl2C—Zn1C—Cl3C108.62 (3)C3G—N1G—C4G110.1 (2)
Cl1C—Zn1C—Cl4C109.08 (3)N1G—C1G—H1G1109.5
Cl2C—Zn1C—Cl4C108.55 (3)N1G—C1G—H1G2109.5
Cl3C—Zn1C—Cl4C108.42 (3)H1G1—C1G—H1G2109.5
C4D—N1D—C3D109.7 (2)N1G—C1G—H1G3109.5
C4D—N1D—C1D109.4 (2)H1G1—C1G—H1G3109.5
C3D—N1D—C1D109.11 (19)H1G2—C1G—H1G3109.5
C4D—N1D—C2D109.8 (2)N1G—C2G—H2G1109.5
C3D—N1D—C2D109.2 (2)N1G—C2G—H2G2109.5
C1D—N1D—C2D109.54 (19)H2G1—C2G—H2G2109.5
N1D—C1D—H1D1109.5N1G—C2G—H2G3109.5
N1D—C1D—H1D2109.5H2G1—C2G—H2G3109.5
H1D1—C1D—H1D2109.5H2G2—C2G—H2G3109.5
N1D—C1D—H1D3109.5N1G—C3G—H3G1109.5
H1D1—C1D—H1D3109.5N1G—C3G—H3G2109.5
H1D2—C1D—H1D3109.5H3G1—C3G—H3G2109.5
N1D—C2D—H2D1109.5N1G—C3G—H3G3109.5
N1D—C2D—H2D2109.5H3G1—C3G—H3G3109.5
H2D1—C2D—H2D2109.5H3G2—C3G—H3G3109.5
N1D—C2D—H2D3109.5N1G—C4G—H4G1109.5
H2D1—C2D—H2D3109.5N1G—C4G—H4G2109.5
H2D2—C2D—H2D3109.5H4G1—C4G—H4G2109.5
N1D—C3D—H3D1109.5N1G—C4G—H4G3109.5
N1D—C3D—H3D2109.5H4G1—C4G—H4G3109.5
H3D1—C3D—H3D2109.5H4G2—C4G—H4G3109.5
N1D—C3D—H3D3109.5C2H—N1H—C3H108.9 (2)
H3D1—C3D—H3D3109.5C2H—N1H—C4H110.7 (2)
H3D2—C3D—H3D3109.5C3H—N1H—C4H108.5 (2)
N1D—C4D—H4D1109.5C2H—N1H—C1H109.7 (2)
N1D—C4D—H4D2109.5C3H—N1H—C1H109.81 (19)
H4D1—C4D—H4D2109.5C4H—N1H—C1H109.3 (2)
N1D—C4D—H4D3109.5N1H—C1H—H1H1109.5
H4D1—C4D—H4D3109.5N1H—C1H—H1H2109.5
H4D2—C4D—H4D3109.5H1H1—C1H—H1H2109.5
C2E—N1E—C4E109.5 (2)N1H—C1H—H1H3109.5
C2E—N1E—C1E110.2 (2)H1H1—C1H—H1H3109.5
C4E—N1E—C1E109.4 (2)H1H2—C1H—H1H3109.5
C2E—N1E—C3E109.9 (2)N1H—C2H—H2H1109.5
C4E—N1E—C3E109.25 (19)N1H—C2H—H2H2109.5
C1E—N1E—C3E108.6 (2)H2H1—C2H—H2H2109.5
N1E—C1E—H1E1109.5N1H—C2H—H2H3109.5
N1E—C1E—H1E2109.5H2H1—C2H—H2H3109.5
H1E1—C1E—H1E2109.5H2H2—C2H—H2H3109.5
N1E—C1E—H1E3109.5N1H—C3H—H3H1109.5
H1E1—C1E—H1E3109.5N1H—C3H—H3H2109.5
H1E2—C1E—H1E3109.5H3H1—C3H—H3H2109.5
N1E—C2E—H2E1109.5N1H—C3H—H3H3109.5
N1E—C2E—H2E2109.5H3H1—C3H—H3H3109.5
H2E1—C2E—H2E2109.5H3H2—C3H—H3H3109.5
N1E—C2E—H2E3109.5N1H—C4H—H4H1109.5
H2E1—C2E—H2E3109.5N1H—C4H—H4H2109.5
H2E2—C2E—H2E3109.5H4H1—C4H—H4H2109.5
N1E—C3E—H3E1109.5N1H—C4H—H4H3109.5
N1E—C3E—H3E2109.5H4H1—C4H—H4H3109.5
H3E1—C3E—H3E2109.5H4H2—C4H—H4H3109.5
N1E—C3E—H3E3109.5C1I—N1I—C3I109.2 (2)
H3E1—C3E—H3E3109.5C1I—N1I—C2I109.63 (19)
H3E2—C3E—H3E3109.5C3I—N1I—C2I110.0 (2)
N1E—C4E—H4E1109.5C1I—N1I—C4I109.6 (2)
N1E—C4E—H4E2109.5C3I—N1I—C4I109.4 (2)
H4E1—C4E—H4E2109.5C2I—N1I—C4I109.0 (2)
N1E—C4E—H4E3109.5N1I—C1I—H1I1109.5
H4E1—C4E—H4E3109.5N1I—C1I—H1I2109.5
H4E2—C4E—H4E3109.5H1I1—C1I—H1I2109.5
C2F—N1F—C3F109.9 (2)N1I—C1I—H1I3109.5
C2F—N1F—C1F109.4 (2)H1I1—C1I—H1I3109.5
C3F—N1F—C1F109.4 (2)H1I2—C1I—H1I3109.5
C2F—N1F—C4F109.3 (2)N1I—C2I—H2I1109.5
C3F—N1F—C4F108.9 (2)N1I—C2I—H2I2109.5
C1F—N1F—C4F110.0 (2)H2I1—C2I—H2I2109.5
N1F—C1F—H1F1109.5N1I—C2I—H2I3109.5
N1F—C1F—H1F2109.5H2I1—C2I—H2I3109.5
H1F1—C1F—H1F2109.5H2I2—C2I—H2I3109.5
N1F—C1F—H1F3109.5N1I—C3I—H3I1109.5
H1F1—C1F—H1F3109.5N1I—C3I—H3I2109.5
H1F2—C1F—H1F3109.5H3I1—C3I—H3I2109.5
N1F—C2F—H2F1109.5N1I—C3I—H3I3109.5
N1F—C2F—H2F2109.5H3I1—C3I—H3I3109.5
H2F1—C2F—H2F2109.5H3I2—C3I—H3I3109.5
N1F—C2F—H2F3109.5N1I—C4I—H4I1109.5
H2F1—C2F—H2F3109.5N1I—C4I—H4I2109.5
H2F2—C2F—H2F3109.5H4I1—C4I—H4I2109.5
N1F—C3F—H3F1109.5N1I—C4I—H4I3109.5
N1F—C3F—H3F2109.5H4I1—C4I—H4I3109.5
H3F1—C3F—H3F2109.5H4I2—C4I—H4I3109.5

Experimental details

Crystal data
Chemical formula(C4H12N)2[ZnCl4]
Mr355.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.9114 (18), 15.105 (3), 36.493 (7)
V3)4912.2 (17)
Z12
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.36 × 0.24 × 0.04
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.512, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
32538, 9616, 9039
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.055, 1.00
No. of reflections9616
No. of parameters407
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.29
Absolute structureFlack (1983)
Absolute structure parameter0.611 (6)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2000).

Selected geometric parameters (Å, º) top
Zn1A—Cl4A2.2645 (8)N1E—C1E1.494 (3)
Zn1A—Cl2A2.2743 (8)N1E—C3E1.498 (3)
Zn1A—Cl1A2.2807 (8)N1F—C2F1.491 (3)
Zn1A—Cl3A2.2836 (8)N1F—C3F1.492 (3)
Zn1B—Cl1B2.2677 (8)N1F—C1F1.493 (3)
Zn1B—Cl4B2.2709 (7)N1F—C4F1.494 (3)
Zn1B—Cl3B2.2797 (8)N1G—C1G1.488 (3)
Zn1B—Cl2B2.2857 (8)N1G—C2G1.496 (3)
Zn1C—Cl1C2.2620 (8)N1G—C3G1.497 (3)
Zn1C—Cl2C2.2726 (8)N1G—C4G1.497 (3)
Zn1C—Cl3C2.2770 (8)N1H—C2H1.487 (3)
Zn1C—Cl4C2.2814 (8)N1H—C3H1.489 (3)
N1D—C4D1.490 (3)N1H—C4H1.494 (3)
N1D—C3D1.491 (3)N1H—C1H1.496 (3)
N1D—C1D1.499 (3)N1I—C1I1.486 (3)
N1D—C2D1.500 (3)N1I—C3I1.489 (3)
N1E—C2E1.488 (3)N1I—C2I1.490 (3)
N1E—C4E1.491 (3)N1I—C4I1.493 (3)
Cl4A—Zn1A—Cl2A110.65 (3)C2E—N1E—C3E109.9 (2)
Cl4A—Zn1A—Cl1A110.51 (3)C4E—N1E—C3E109.25 (19)
Cl2A—Zn1A—Cl1A107.40 (3)C1E—N1E—C3E108.6 (2)
Cl4A—Zn1A—Cl3A108.27 (3)C2F—N1F—C3F109.9 (2)
Cl2A—Zn1A—Cl3A109.40 (3)C2F—N1F—C1F109.4 (2)
Cl1A—Zn1A—Cl3A110.60 (3)C3F—N1F—C1F109.4 (2)
Cl1B—Zn1B—Cl4B111.11 (3)C2F—N1F—C4F109.3 (2)
Cl1B—Zn1B—Cl3B109.08 (3)C3F—N1F—C4F108.9 (2)
Cl4B—Zn1B—Cl3B108.58 (3)C1F—N1F—C4F110.0 (2)
Cl1B—Zn1B—Cl2B110.23 (3)C1G—N1G—C2G109.9 (2)
Cl4B—Zn1B—Cl2B107.37 (3)C1G—N1G—C3G109.1 (2)
Cl3B—Zn1B—Cl2B110.46 (3)C2G—N1G—C3G109.3 (2)
Cl1C—Zn1C—Cl2C112.21 (3)C1G—N1G—C4G108.9 (2)
Cl1C—Zn1C—Cl3C109.88 (3)C2G—N1G—C4G109.50 (19)
Cl2C—Zn1C—Cl3C108.62 (3)C3G—N1G—C4G110.1 (2)
Cl1C—Zn1C—Cl4C109.08 (3)C2H—N1H—C3H108.9 (2)
Cl2C—Zn1C—Cl4C108.55 (3)C2H—N1H—C4H110.7 (2)
Cl3C—Zn1C—Cl4C108.42 (3)C3H—N1H—C4H108.5 (2)
C4D—N1D—C3D109.7 (2)C2H—N1H—C1H109.7 (2)
C4D—N1D—C1D109.4 (2)C3H—N1H—C1H109.81 (19)
C3D—N1D—C1D109.11 (19)C1I—N1I—C3I109.2 (2)
C4D—N1D—C2D109.8 (2)C1I—N1I—C2I109.63 (19)
C3D—N1D—C2D109.2 (2)C3I—N1I—C2I110.0 (2)
C1D—N1D—C2D109.54 (19)C1I—N1I—C4I109.6 (2)
C2E—N1E—C4E109.5 (2)C3I—N1I—C4I109.4 (2)
C2E—N1E—C1E110.2 (2)C2I—N1I—C4I109.0 (2)
C4E—N1E—C1E109.4 (2)
 

Acknowledgements

Financial support from the Welch Foundation in the form of grant No. AX-1540 is greatly appreciated. The authors thank the National Science Foundation (grant No. CHE-0130835) and the University of Oklahoma for funds to acquire the diffractometer and computers used in this work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationMadariaga, G., Zuñiga, F. J., Pérez-Mato, J. M. & Tello, M. J. (1987). Acta Cryst. B43, 356–368.  CSD CrossRef CAS Web of Science IUCr Journals
First citationRuiz-Larrea, I., Lopez-Echarri, A. & Tello, M. J. (1981). J. Phys. C Solid State Phys. 14, 3171–3176.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationSheldrick, G. M. (2007). SADABS. Version 2007/4. University of Göttingen, Germany.
First citationWiesner, J. R., Srivastava, R. C., Kennard, C. H. L., Di Vaira, M. & Lingafelter, E. C. (1967). Acta Cryst. 23, 565–574.  CSD CrossRef CAS IUCr Journals Web of Science
First citationZhang, X.-M. & Bordwell, F. C. (1994). J. Am. Chem. Soc. 116, 968–972.  CrossRef CAS Web of Science
First citationZuñiga, F. J., Madariaga, G. & Pérez-Mato, J. M. (1989). Acta Cryst. B45, 462–466.  CSD CrossRef Web of Science IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds