metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ3-aqua-μ2-2,4-di­nitro­phenolato-rubidium(I)]

aSchool of Chemistry and Materials Science, ShaanXi Normal University, Xi'an 710062, People's Republic of China
*Correspondence e-mail: hmch@snnu.edu.cn

(Received 16 November 2007; accepted 13 December 2007; online 21 December 2007)

The asymmetric unit of the title compound, [Rb(C6H3N2O5)(H2O)]n, comprises a rubidium cation, a 2,4-dinitro­phenoxide anion and a water mol­ecule. The Rb+ cation is 11-coordinated by O atoms from 2,4-dinitro­phenolate anions and water mol­ecules. The metal centre is firstly coordinated by two μ3-H2O to form a one-dimensional ladder-shaped unit, [Rb2(μ3-H2O)2], which is further linked by 2,4-dinitro­phenolate to give the three-dimensional framework of the title compound. The crystal structure involves O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Abrahams et al. (1998[Abrahams, I., Lazell, M., Motevalli, M., Shah, S. A. A. & Sullivan, A. C. (1998). J. Organomet. Chem. 553, 23-29.]); Brill et al. (2000[Brill, T. B., Zhang, T. L. & Tappan, B. C. (2000). Combust. Flame, 121, 662-670.]); Cametti et al. (2005[Cametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831-3837.]); Cole & Holt (1986[Cole, L. B. & Holt, E. M. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1997-2002.]); Devi & Vidyasagar (2000[Devi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391-2396.]); Harrowfield et al. (1995[Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1333-1347.]); Hu et al. (2005[Hu, M. C., Geng, C. Y., Li, S. N., Du, Y. P., Jiang, Y. C. & Liu, Z. H. (2005). J. Organomet. Chem. 690, 3118-3124.]); Klaui et al. (1987[Klaui, W., Müller, A., Eberspach, W., Boese, R. & Goldberg, I. (1987). J. Am. Chem. Soc. 109, 164-169.]); Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]); von Prondzinski et al. (2007[Prondzinski, N. von, Winter, M. & Merz, K. (2007). Acta Cryst. E63, m1687.]); Weinert et al. (2003[Weinert, C. S., Fanwick, P. E. & Rothwell, I. P. (2003). Inorg. Chem. 42, 6089-6094.]).

[Scheme 1]

Experimental

Crystal data
  • [Rb(C6H3N2O5)(H2O)]

  • Mr = 286.59

  • Monoclinic, P 21 /c

  • a = 5.8519 (18) Å

  • b = 20.846 (7) Å

  • c = 7.412 (2) Å

  • β = 93.148 (5)°

  • V = 902.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.50 mm−1

  • T = 293 (2) K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.125, Tmax = 0.202

  • 4449 measured reflections

  • 1599 independent reflections

  • 1214 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.00

  • 1599 reflections

  • 143 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O1i 0.820 (10) 2.03 (2) 2.822 (5) 161 (6)
O6—H6A⋯O4ii 0.818 (10) 2.27 (4) 2.919 (5) 137 (5)
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Version 2.1-0. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). SAINT. Version 7.34A. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) and DIAMOND (Brandenburg & Brendt, 2001[Brandenburg, K. & Brendt, M. (2001). DIAMOND. Version 2.1. Crystal Impact GmbH, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Research on nitrogen-rich compounds is the focus of attention for their usage as energetic materials. Much work has concentrated on their alkaline or alkali-earth metal salts (Harrowfield et al., 1995; Cole and Holt, 1986; von Prondzinski et al., 2007), among which some polynitro-substituted phenoxide was found to be environment-friendly (Brill et al., 2000). Our group has already demonstrated the structure of caesium 2,4-dinitrophenolate (Mancheng Hu et al., 2005). Herein, we report its rubidium analogue [Rb(OC6H3N2O4).H2O].

The asymmetric unit of the title compound comprises a rubidium cation, a 2,4-dinitrophenoxide anion and a water molecule. The central cation is coordinated to eleven O atoms (Fig. 1) with the Rb—O distances ranging from 2.914 (3) Å to 3.474 (4) Å, which are well within the range reported in the literature (Cametti et al., 2005; Shannon, 1976; Devi and Vidyasagar, 2000).

The metal center is firstly coordinated by two µ3-H2O to form a one-dimensional ladder-shape unit, [Rb23-H2O)2], which is further linked by 2,4-dinitrophenoxide to give the three-dimensional framework of the title compound. In the structure of [Rb23-H2O)2] fragment (Fig.2), each rubidium ion is connected to three oxygen atoms of the water, and each water molecule is connected to three rubidium ions. The Rb—O—Rb angle along the sides of the ladder is 134.09 (13) °. It should be noted that the triply bridging water has been found in several lighter group I metal complexes (Klaui et al., 1987; Abrahams et al., 1998). A similar extended ladder-like structure motif was also found in the structure of [Rb(OC6H3Ph2-2,6)]x (1) (Weinert et al., 2003), however, each Rb atom in 1 is not connected to three water molecules but three O atoms from phenoxide. The corresponding Rb—O—Rb angle in 1 is about 155.5 (1) °, which is markedly larger than in the title compound.

The [Rb23-H2O)2] fragments are connected to each other to form a two-dimensional netlike layer structure by the oxygen atoms from the nitro group and phenolate. Further, the two-dimensional layers are assembled via the 2,4-dinitrophenoxide into a three-dimensional framework in an ABAB fashion.

Related literature top

For related literature, see: Abrahams et al. (1998); Brill et al. (2000); Cametti et al. (2005); Cole & Holt (1986); Devi & Vidyasagar (2000); Harrowfield et al. (1995); Hu et al. (2005); Klaui et al. (1987); Shannon (1976); von Prondzinski et al. (2007); Weinert et al. (2003).

Experimental top

To a solution of 10 mmol 2,4-dinitrophenol in 60 ml bidistilled water, a solution of an equimolar amount of rubidium hydroxide in 40 ml bidistilled water was added dropwise at room temperature. After vigorous stirring for 4 h, the resulting solution was then evaporated to a volume of about 20 ml in vacuum and filtered hot. The filtrate was then set aside for crystallization at room temperature. Three weeks later, yellow crystals of the title compound suitable for X-ray determination were isolated.

Refinement top

The aromatic H atoms were placed at calculated positions (d(C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C)). Water H atoms were located and refined with distance restraints of d(O—H) = 0.82 (1) Å, their displacement parameters were set to 1.5 times Ueq(O).

Structure description top

Research on nitrogen-rich compounds is the focus of attention for their usage as energetic materials. Much work has concentrated on their alkaline or alkali-earth metal salts (Harrowfield et al., 1995; Cole and Holt, 1986; von Prondzinski et al., 2007), among which some polynitro-substituted phenoxide was found to be environment-friendly (Brill et al., 2000). Our group has already demonstrated the structure of caesium 2,4-dinitrophenolate (Mancheng Hu et al., 2005). Herein, we report its rubidium analogue [Rb(OC6H3N2O4).H2O].

The asymmetric unit of the title compound comprises a rubidium cation, a 2,4-dinitrophenoxide anion and a water molecule. The central cation is coordinated to eleven O atoms (Fig. 1) with the Rb—O distances ranging from 2.914 (3) Å to 3.474 (4) Å, which are well within the range reported in the literature (Cametti et al., 2005; Shannon, 1976; Devi and Vidyasagar, 2000).

The metal center is firstly coordinated by two µ3-H2O to form a one-dimensional ladder-shape unit, [Rb23-H2O)2], which is further linked by 2,4-dinitrophenoxide to give the three-dimensional framework of the title compound. In the structure of [Rb23-H2O)2] fragment (Fig.2), each rubidium ion is connected to three oxygen atoms of the water, and each water molecule is connected to three rubidium ions. The Rb—O—Rb angle along the sides of the ladder is 134.09 (13) °. It should be noted that the triply bridging water has been found in several lighter group I metal complexes (Klaui et al., 1987; Abrahams et al., 1998). A similar extended ladder-like structure motif was also found in the structure of [Rb(OC6H3Ph2-2,6)]x (1) (Weinert et al., 2003), however, each Rb atom in 1 is not connected to three water molecules but three O atoms from phenoxide. The corresponding Rb—O—Rb angle in 1 is about 155.5 (1) °, which is markedly larger than in the title compound.

The [Rb23-H2O)2] fragments are connected to each other to form a two-dimensional netlike layer structure by the oxygen atoms from the nitro group and phenolate. Further, the two-dimensional layers are assembled via the 2,4-dinitrophenoxide into a three-dimensional framework in an ABAB fashion.

For related literature, see: Abrahams et al. (1998); Brill et al. (2000); Cametti et al. (2005); Cole & Holt (1986); Devi & Vidyasagar (2000); Harrowfield et al. (1995); Hu et al. (2005); Klaui et al. (1987); Shannon (1976); von Prondzinski et al. (2007); Weinert et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b) and DIAMOND (Brandenburg & Brendt, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. Coordination sphere of Rb in [Rb(OC6H3N2O4).H2O]. Atoms marked with an A, B, C, D, E and F are at the symmetry positions (-x, 2 - y, 1 - z), (1 - x, 2 - y, 1 - z), (x, 3/2 - y, -1/2 + z), (-x, 1/2 + y, 1/2 - z), (-x,2 - y,-z), (1 - x, 2 - y, -z), respectively.
[Figure 2] Fig. 2. The two-dimensional layer structure containing ladder-shape unit, [Rb23-H2O)2]. All C atoms and N atoms were omitted for clarity.
Poly[µ3-aqua-µ2-2,4-dinitrophenolato-rubidium(I)] top
Crystal data top
[Rb(C6H3N2O5)(H2O)]F(000) = 560
Mr = 286.59Dx = 2.109 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1599 reflections
a = 5.8519 (18) Åθ = 2.0–25.1°
b = 20.846 (7) ŵ = 5.50 mm1
c = 7.412 (2) ÅT = 293 K
β = 93.148 (5)°Block, yellow
V = 902.8 (5) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1599 independent reflections
Radiation source: fine-focus sealed tube1214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.125, Tmax = 0.202k = 2024
4449 measured reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.12P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
1599 reflectionsΔρmax = 0.50 e Å3
143 parametersΔρmin = 0.71 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0120 (18)
Crystal data top
[Rb(C6H3N2O5)(H2O)]V = 902.8 (5) Å3
Mr = 286.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8519 (18) ŵ = 5.50 mm1
b = 20.846 (7) ÅT = 293 K
c = 7.412 (2) Å0.40 × 0.35 × 0.30 mm
β = 93.148 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1599 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1214 reflections with I > 2σ(I)
Tmin = 0.125, Tmax = 0.202Rint = 0.063
4449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.50 e Å3
1599 reflectionsΔρmin = 0.71 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.18947 (8)1.00955 (2)0.24241 (6)0.0381 (2)
O10.0671 (5)0.91314 (15)0.4428 (4)0.0404 (8)
O20.3775 (6)0.93503 (16)0.5483 (5)0.0580 (11)
O30.5150 (5)0.86504 (16)0.7365 (4)0.0456 (9)
O40.3512 (6)0.64498 (16)0.6287 (5)0.0537 (10)
O50.0559 (6)0.61696 (16)0.4603 (5)0.0562 (10)
O60.3268 (7)1.03788 (18)0.1415 (5)0.0526 (9)
H6A0.382 (10)1.0686 (17)0.086 (6)0.079*
H6B0.281 (10)1.053 (2)0.239 (4)0.079*
N10.3753 (6)0.88137 (18)0.6150 (5)0.0331 (9)
N20.1790 (7)0.65827 (18)0.5345 (5)0.0373 (9)
C10.0063 (7)0.8557 (2)0.4619 (5)0.0290 (10)
C20.2080 (7)0.8349 (2)0.5482 (5)0.0261 (10)
C30.2641 (7)0.7709 (2)0.5735 (5)0.0269 (10)
H30.40190.75940.63330.032*
C40.1145 (7)0.7246 (2)0.5096 (5)0.0289 (10)
C50.0968 (7)0.7407 (2)0.4243 (6)0.0346 (11)
H50.19730.70880.38300.042*
C60.1537 (7)0.8033 (2)0.4023 (6)0.0357 (11)
H60.29520.81310.34580.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0429 (3)0.0320 (4)0.0387 (3)0.0036 (2)0.0061 (2)0.00384 (19)
O10.0411 (18)0.029 (2)0.050 (2)0.0061 (15)0.0026 (16)0.0050 (15)
O20.069 (2)0.030 (2)0.071 (3)0.0178 (18)0.032 (2)0.0149 (18)
O30.0428 (19)0.038 (2)0.054 (2)0.0031 (15)0.0188 (17)0.0056 (16)
O40.067 (2)0.031 (2)0.061 (3)0.0131 (17)0.016 (2)0.0011 (17)
O50.067 (2)0.028 (2)0.073 (3)0.0102 (18)0.003 (2)0.0112 (18)
O60.054 (2)0.050 (2)0.053 (2)0.005 (2)0.0014 (19)0.0058 (19)
N10.032 (2)0.031 (2)0.036 (2)0.0009 (17)0.0042 (17)0.0016 (17)
N20.049 (2)0.026 (2)0.038 (2)0.0007 (18)0.0042 (19)0.0026 (17)
C10.029 (2)0.030 (3)0.028 (3)0.0015 (19)0.0013 (19)0.0044 (19)
C20.026 (2)0.023 (2)0.029 (2)0.0053 (17)0.0047 (18)0.0001 (17)
C30.027 (2)0.031 (3)0.022 (2)0.0001 (19)0.0010 (18)0.0022 (18)
C40.036 (2)0.023 (2)0.027 (2)0.000 (2)0.0044 (18)0.0015 (18)
C50.035 (2)0.035 (3)0.034 (3)0.006 (2)0.001 (2)0.003 (2)
C60.027 (2)0.045 (3)0.035 (3)0.001 (2)0.0053 (19)0.005 (2)
Geometric parameters (Å, º) top
Rb1—O22.914 (3)O4—Rb1vii3.474 (4)
Rb1—O1i2.956 (3)O5—N21.232 (5)
Rb1—O12.957 (3)O5—Rb1viii3.016 (3)
Rb1—O5ii3.016 (3)O5—Rb1vii3.429 (4)
Rb1—O63.057 (4)O6—Rb1iv3.127 (4)
Rb1—O2iii3.119 (3)O6—Rb1v3.228 (4)
Rb1—O6iv3.127 (4)O6—H6A0.818 (10)
Rb1—O3iii3.134 (3)O6—H6B0.820 (10)
Rb1—O6v3.228 (4)N1—C21.446 (5)
Rb1—O5vi3.429 (4)N1—Rb1iii3.533 (4)
Rb1—O4vi3.474 (4)N2—C41.443 (5)
Rb1—N1iii3.533 (4)C1—C21.443 (5)
Rb1—H6A3.00 (5)C1—C61.446 (6)
O1—C11.255 (5)C2—C31.384 (6)
O1—Rb1i2.956 (3)C3—C41.369 (6)
O2—N11.223 (5)C3—H30.9300
O2—Rb1iii3.119 (3)C4—C51.398 (6)
O3—N11.231 (4)C5—C61.353 (6)
O3—Rb1iii3.134 (3)C5—H50.9300
O4—N21.226 (5)C6—H60.9300
O2—Rb1—O1i76.94 (10)O6v—Rb1—N1iii156.48 (9)
O2—Rb1—O155.06 (9)O5vi—Rb1—N1iii144.49 (9)
O1i—Rb1—O179.77 (10)O4vi—Rb1—N1iii117.89 (9)
O2—Rb1—O5ii158.84 (11)O2—Rb1—H6A135.0 (11)
O1i—Rb1—O5ii81.90 (10)O1i—Rb1—H6A122.3 (6)
O1—Rb1—O5ii120.93 (10)O1—Rb1—H6A155.4 (2)
O2—Rb1—O6136.06 (12)O5ii—Rb1—H6A58.7 (11)
O1i—Rb1—O6135.80 (9)O6—Rb1—H6A15.5 (2)
O1—Rb1—O6139.96 (10)O2iii—Rb1—H6A85.5 (6)
O5ii—Rb1—O662.29 (11)O6iv—Rb1—H6A63.4 (11)
O2—Rb1—O2iii63.18 (11)O3iii—Rb1—H6A57.8 (2)
O1i—Rb1—O2iii68.35 (10)O6v—Rb1—H6A109.0 (8)
O1—Rb1—O2iii115.03 (9)O5vi—Rb1—H6A84.5 (3)
O5ii—Rb1—O2iii108.92 (10)O4vi—Rb1—H6A93.7 (8)
O6—Rb1—O2iii98.24 (10)N1iii—Rb1—H6A71.5 (4)
O2—Rb1—O6iv73.11 (11)C1—O1—Rb1i120.7 (3)
O1i—Rb1—O6iv128.52 (9)C1—O1—Rb1123.8 (3)
O1—Rb1—O6iv113.35 (9)Rb1i—O1—Rb1100.23 (10)
O5ii—Rb1—O6iv121.87 (11)N1—O2—Rb1142.2 (3)
O6—Rb1—O6iv63.31 (11)N1—O2—Rb1iii99.5 (2)
O2iii—Rb1—O6iv60.97 (10)Rb1—O2—Rb1iii116.82 (11)
O2—Rb1—O3iii102.84 (9)N1—O3—Rb1iii98.5 (2)
O1i—Rb1—O3iii70.30 (9)N2—O4—Rb1vii97.0 (3)
O1—Rb1—O3iii146.73 (9)N2—O5—Rb1viii172.5 (3)
O5ii—Rb1—O3iii69.62 (9)N2—O5—Rb1vii99.1 (3)
O6—Rb1—O3iii73.29 (9)Rb1viii—O5—Rb1vii79.58 (8)
O2iii—Rb1—O3iii40.11 (8)Rb1—O6—Rb1iv116.69 (11)
O6iv—Rb1—O3iii76.78 (9)Rb1—O6—Rb1v82.29 (9)
O2—Rb1—O6v109.00 (9)Rb1iv—O6—Rb1v134.09 (13)
O1i—Rb1—O6v94.91 (10)Rb1—O6—H6A78 (4)
O1—Rb1—O6v54.09 (9)Rb1iv—O6—H6A92 (4)
O5ii—Rb1—O6v72.43 (10)Rb1v—O6—H6A134 (4)
O6—Rb1—O6v97.71 (9)Rb1—O6—H6B144 (4)
O2iii—Rb1—O6v162.41 (11)Rb1iv—O6—H6B100 (4)
O6iv—Rb1—O6v134.09 (13)Rb1v—O6—H6B70 (4)
O3iii—Rb1—O6v140.73 (9)H6A—O6—H6B104.1 (17)
O2—Rb1—O5vi97.36 (9)O2—N1—O3121.8 (4)
O1i—Rb1—O5vi147.52 (9)O2—N1—C2119.8 (3)
O1—Rb1—O5vi71.24 (9)O3—N1—C2118.4 (4)
O5ii—Rb1—O5vi100.42 (8)O2—N1—Rb1iii60.6 (2)
O6—Rb1—O5vi69.13 (9)O3—N1—Rb1iii61.3 (2)
O2iii—Rb1—O5vi137.72 (10)C2—N1—Rb1iii176.1 (3)
O6iv—Rb1—O5vi77.88 (10)O4—N2—O5122.6 (4)
O3iii—Rb1—O5vi141.14 (9)O4—N2—C4119.4 (4)
O6v—Rb1—O5vi56.22 (10)O5—N2—C4118.1 (4)
O2—Rb1—O4vi66.31 (9)O1—C1—C2124.8 (4)
O1i—Rb1—O4vi141.08 (9)O1—C1—C6121.7 (4)
O1—Rb1—O4vi69.16 (9)C2—C1—C6113.4 (4)
O5ii—Rb1—O4vi134.11 (9)C3—C2—C1123.0 (4)
O6—Rb1—O4vi82.20 (10)C3—C2—N1116.7 (3)
O2iii—Rb1—O4vi103.85 (9)C1—C2—N1120.4 (4)
O6iv—Rb1—O4vi52.17 (9)C4—C3—C2119.3 (4)
O3iii—Rb1—O4vi128.95 (9)C4—C3—H3120.3
O6v—Rb1—O4vi85.63 (9)C2—C3—H3120.3
O5vi—Rb1—O4vi36.39 (8)C3—C4—C5121.3 (4)
O2—Rb1—N1iii82.82 (9)C3—C4—N2118.2 (4)
O1i—Rb1—N1iii67.35 (9)C5—C4—N2120.5 (4)
O1—Rb1—N1iii131.67 (9)C6—C5—C4119.5 (4)
O5ii—Rb1—N1iii89.25 (10)C6—C5—H5120.3
O6—Rb1—N1iii86.10 (9)C4—C5—H5120.3
O2iii—Rb1—N1iii19.97 (8)C5—C6—C1123.5 (4)
O6iv—Rb1—N1iii68.15 (9)C5—C6—H6118.2
O3iii—Rb1—N1iii20.16 (8)C1—C6—H6118.2
O2—Rb1—O1—C157.1 (3)O6v—Rb1—O6—Rb1iv135.87 (16)
O1i—Rb1—O1—C1138.2 (4)O5vi—Rb1—O6—Rb1iv86.57 (13)
O5ii—Rb1—O1—C1147.8 (3)O4vi—Rb1—O6—Rb1iv51.39 (12)
O6—Rb1—O1—C165.2 (4)N1iii—Rb1—O6—Rb1iv67.47 (12)
O2iii—Rb1—O1—C178.1 (3)O2—Rb1—O6—Rb1v127.89 (11)
O6iv—Rb1—O1—C110.5 (3)O1i—Rb1—O6—Rb1v105.25 (12)
O3iii—Rb1—O1—C1112.3 (3)O1—Rb1—O6—Rb1v40.64 (17)
O6v—Rb1—O1—C1118.0 (4)O5ii—Rb1—O6—Rb1v65.46 (10)
O5vi—Rb1—O1—C156.7 (3)O2iii—Rb1—O6—Rb1v172.56 (9)
O4vi—Rb1—O1—C118.0 (3)O6iv—Rb1—O6—Rb1v135.87 (16)
N1iii—Rb1—O1—C191.4 (3)O3iii—Rb1—O6—Rb1v140.81 (10)
O2—Rb1—O1—Rb1i81.14 (12)O6v—Rb1—O6—Rb1v0.0
O1i—Rb1—O1—Rb1i0.0O5vi—Rb1—O6—Rb1v49.30 (8)
O5ii—Rb1—O1—Rb1i74.03 (13)O4vi—Rb1—O6—Rb1v84.48 (8)
O6—Rb1—O1—Rb1i156.60 (12)N1iii—Rb1—O6—Rb1v156.66 (9)
O2iii—Rb1—O1—Rb1i60.13 (12)Rb1—O2—N1—O3167.0 (4)
O6iv—Rb1—O1—Rb1i127.69 (9)Rb1iii—O2—N1—O33.2 (5)
O3iii—Rb1—O1—Rb1i25.93 (19)Rb1—O2—N1—C211.7 (7)
O6v—Rb1—O1—Rb1i103.77 (13)Rb1iii—O2—N1—C2175.5 (3)
O5vi—Rb1—O1—Rb1i165.14 (11)Rb1—O2—N1—Rb1iii163.8 (6)
O4vi—Rb1—O1—Rb1i156.16 (11)Rb1iii—O3—N1—O23.2 (5)
N1iii—Rb1—O1—Rb1i46.81 (14)Rb1iii—O3—N1—C2175.5 (3)
O1i—Rb1—O2—N1125.8 (5)Rb1vii—O4—N2—O523.8 (5)
O1—Rb1—O2—N139.3 (5)Rb1vii—O4—N2—C4155.5 (3)
O5ii—Rb1—O2—N1125.4 (5)Rb1vii—O5—N2—O424.3 (5)
O6—Rb1—O2—N189.1 (5)Rb1vii—O5—N2—C4155.1 (3)
O2iii—Rb1—O2—N1162.0 (6)Rb1i—O1—C1—C270.6 (5)
O6iv—Rb1—O2—N196.5 (5)Rb1—O1—C1—C259.7 (5)
O3iii—Rb1—O2—N1168.2 (5)Rb1i—O1—C1—C6107.4 (4)
O6v—Rb1—O2—N135.1 (5)Rb1—O1—C1—C6122.3 (4)
O5vi—Rb1—O2—N121.6 (5)O1—C1—C2—C3177.1 (4)
O4vi—Rb1—O2—N141.1 (5)C6—C1—C2—C31.0 (6)
N1iii—Rb1—O2—N1165.8 (5)O1—C1—C2—N12.2 (7)
O1i—Rb1—O2—Rb1iii72.12 (14)C6—C1—C2—N1179.7 (4)
O1—Rb1—O2—Rb1iii158.66 (19)O2—N1—C2—C3155.4 (4)
O5ii—Rb1—O2—Rb1iii72.6 (3)O3—N1—C2—C323.3 (6)
O6—Rb1—O2—Rb1iii72.95 (19)O2—N1—C2—C125.2 (6)
O2iii—Rb1—O2—Rb1iii0.0O3—N1—C2—C1156.0 (4)
O6iv—Rb1—O2—Rb1iii65.50 (14)C1—C2—C3—C42.1 (7)
O3iii—Rb1—O2—Rb1iii6.18 (17)N1—C2—C3—C4178.6 (4)
O6v—Rb1—O2—Rb1iii162.86 (13)C2—C3—C4—C52.0 (6)
O5vi—Rb1—O2—Rb1iii140.40 (14)C2—C3—C4—N2178.8 (4)
O4vi—Rb1—O2—Rb1iii120.98 (17)O4—N2—C4—C38.2 (6)
N1iii—Rb1—O2—Rb1iii3.78 (13)O5—N2—C4—C3172.4 (4)
O2—Rb1—O6—Rb1iv8.0 (2)O4—N2—C4—C5171.0 (4)
O1i—Rb1—O6—Rb1iv118.88 (14)O5—N2—C4—C58.3 (7)
O1—Rb1—O6—Rb1iv95.23 (16)C3—C4—C5—C60.8 (7)
O5ii—Rb1—O6—Rb1iv158.67 (17)N2—C4—C5—C6180.0 (4)
O2iii—Rb1—O6—Rb1iv51.57 (14)C4—C5—C6—C10.3 (7)
O6iv—Rb1—O6—Rb1iv0.0O1—C1—C6—C5178.4 (4)
O3iii—Rb1—O6—Rb1iv83.33 (12)C2—C1—C6—C50.2 (6)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z; (v) x, y+2, z; (vi) x, y+3/2, z1/2; (vii) x, y+3/2, z+1/2; (viii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O1v0.82 (1)2.03 (2)2.822 (5)161 (6)
O6—H6A···O4ix0.82 (1)2.27 (4)2.919 (5)137 (5)
Symmetry codes: (v) x, y+2, z; (ix) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Rb(C6H3N2O5)(H2O)]
Mr286.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.8519 (18), 20.846 (7), 7.412 (2)
β (°) 93.148 (5)
V3)902.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)5.50
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.125, 0.202
No. of measured, independent and
observed [I > 2σ(I)] reflections
4449, 1599, 1214
Rint0.063
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.00
No. of reflections1599
No. of parameters143
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.71

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b) and DIAMOND (Brandenburg & Brendt, 2001), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O1i0.820 (10)2.03 (2)2.822 (5)161 (6)
O6—H6A···O4ii0.818 (10)2.27 (4)2.919 (5)137 (5)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20471035) is gratefully acknowledged.

References

First citationAbrahams, I., Lazell, M., Motevalli, M., Shah, S. A. A. & Sullivan, A. C. (1998). J. Organomet. Chem. 553, 23–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Brendt, M. (2001). DIAMOND. Version 2.1. Crystal Impact GmbH, Bonn, Germany.  Google Scholar
First citationBrill, T. B., Zhang, T. L. & Tappan, B. C. (2000). Combust. Flame, 121, 662–670.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). SAINT. Version 7.34A. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Version 2.1-0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831–3837.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCole, L. B. & Holt, E. M. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1997–2002.  CrossRef Google Scholar
First citationDevi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391–2396.  CrossRef PubMed CAS Google Scholar
First citationHarrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1333–1347.  CSD CrossRef CAS Web of Science Google Scholar
First citationHu, M. C., Geng, C. Y., Li, S. N., Du, Y. P., Jiang, Y. C. & Liu, Z. H. (2005). J. Organomet. Chem. 690, 3118–3124.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlaui, W., Müller, A., Eberspach, W., Boese, R. & Goldberg, I. (1987). J. Am. Chem. Soc. 109, 164–169.  Google Scholar
First citationProndzinski, N. von, Winter, M. & Merz, K. (2007). Acta Cryst. E63, m1687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWeinert, C. S., Fanwick, P. E. & Rothwell, I. P. (2003). Inorg. Chem. 42, 6089–6094.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds