organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-ylcarbon­yl)-N′-(2,6-di­methyl­phen­yl)thio­urea

aDepartment of Biology and Environmental Technology, Guiyang College, Guiyang 550005, People's Republic of China, bSchool of Chemistry and Environmental Sciece, Guizhou University for Nationalities, Guiyang 550025, People's Republic of China, cSchoole of Computer Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and dDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: haitangdu@gz139.com.cn

(Received 15 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title compound, C20H19ClN4OS, the pyrazole ring makes dihedral angles of 89.2 (4) and 46.4 (4)° with the phenyl and substituted benzene rings, respectively; these two six-membered rings are twisted by 52.1 (4)° with respect to each other. There are intra­molecular hydrogen bonds of types N—H⋯O and N—H⋯Cl.

Related literature

For related literature, see: Du et al. (2007[Du, H.-T., Lu, M., Zhou, W.-Y. & Sun, L.-L. (2007). Acta Cryst. E63, o4287.]); Saeed & Flörke (2007[Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o3695.]); Wang et al. (2007[Wang, J., Tian, L. & Liu, S.-Y. (2007). Acta Cryst. E63, o3667.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19ClN4OS

  • Mr = 398.90

  • Monoclinic, P 21 /n

  • a = 12.0749 (12) Å

  • b = 7.6932 (8) Å

  • c = 21.090 (2) Å

  • β = 103.071 (4)°

  • V = 1908.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 113 (2) K

  • 0.32 × 0.18 × 0.16 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.902, Tmax = 0.950

  • 23102 measured reflections

  • 4554 independent reflections

  • 4164 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.07

  • 4554 reflections

  • 256 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.87 (2) 1.97 (2) 2.6744 (15) 137 (2)
N2—H2⋯Cl1 0.82 (2) 2.41 (2) 3.1175 (12) 145 (2)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the structure of the title compound, (I), the pyrazole ring makes dihedral angles of 89.2 (4) and 46.4 (4)°, with the phenyl rings, C2—C7 and C15—C20, respectively, which are twisted by 52.1 (4)° with respect to each other (Fig. 1). However in a similar structure, N-(5-chloro-3-methyl-1-phenyl pyrazole-4-ylcarbonyl)-N' -(4-methphenyl)thiourea (Du et al., 2007), the corresponding phenyl rings from dihedral angles of 74.3 (3) and 2.9 (3)°, respectively, with the central pyrazole system and the dihedral angle between the phenyl rings is 71.6 (3)°. All the bond lengths and angles are in the normal range, corresponding to the related references (Du et al., 2007; Saeed & Flörke, 2007; Wang et al., 2007). The structure is stabilized by N—H···O and N—H···Cl intramolcular hydrogen bonds; details of hydrogen-bonding geometry have been given in the Table.

Related literature top

For related literature, see: Du et al. (2007); Saeed & Flörke (2007); Wang et al. (2007).

Experimental top

Powdered ammonium thiocyanate (1.14 g, 15 mmol), 5-chloro-3-methyl-1-phenyl-pyrazole-4-carbonyl chloride (2.54 g, 10 mmol), polyethylene glycol-400 (0.5 ml) and acetone (25 ml) were placed in a dried round-bottomed flask containing a magnetic stirrer bar and stirred at room temperature for 1 hr, then 2,6-dimethylbenzenamine (1.15 g, 9.5 mmol) was added, and the mixture was stirred for 5 hr. The mixture was poured into water (20 ml). The resulting solid was filtered, dried and recrystallized from N,N-dimethylformamide-ethanol (1:1, v/v) to yield single crystals of (I) by slow evaporation at room temperature.

Refinement top

The H-atoms bonded to N-atoms were located from difference map and were allowed to refine freely. All other H atoms were positioned geometrically and included in the refinements using a riding model, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.2 and 1.5 times Ueq(C), respectively, for the aromatic and methyl type H-atoms.

Structure description top

In the structure of the title compound, (I), the pyrazole ring makes dihedral angles of 89.2 (4) and 46.4 (4)°, with the phenyl rings, C2—C7 and C15—C20, respectively, which are twisted by 52.1 (4)° with respect to each other (Fig. 1). However in a similar structure, N-(5-chloro-3-methyl-1-phenyl pyrazole-4-ylcarbonyl)-N' -(4-methphenyl)thiourea (Du et al., 2007), the corresponding phenyl rings from dihedral angles of 74.3 (3) and 2.9 (3)°, respectively, with the central pyrazole system and the dihedral angle between the phenyl rings is 71.6 (3)°. All the bond lengths and angles are in the normal range, corresponding to the related references (Du et al., 2007; Saeed & Flörke, 2007; Wang et al., 2007). The structure is stabilized by N—H···O and N—H···Cl intramolcular hydrogen bonds; details of hydrogen-bonding geometry have been given in the Table.

For related literature, see: Du et al. (2007); Saeed & Flörke (2007); Wang et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku/MSC, 2005); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atomic numbering scheme, showing displacement ellipsoids at 50% probability level. Intramolcular hydrogen bonds have been represented by dashed lines.
N-(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-ylcarbonyl)-N'- (2,6-dimethylphenyl)thiourea top
Crystal data top
C20H19ClN4OSF(000) = 832
Mr = 398.90Dx = 1.388 Mg m3
Monoclinic, P21/nMelting point: 459 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71070 Å
a = 12.0749 (12) ÅCell parameters from 5929 reflections
b = 7.6932 (8) Åθ = 1.8–27.9°
c = 21.090 (2) ŵ = 0.33 mm1
β = 103.071 (4)°T = 113 K
V = 1908.4 (3) Å3Prism, colorless
Z = 40.32 × 0.18 × 0.16 mm
Data collection top
Rigaku Saturn
diffractometer
4554 independent reflections
Radiation source: rotating anode4164 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.041
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.8°
ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1010
Tmin = 0.902, Tmax = 0.950l = 2627
23102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: geom/difmap
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.794P]
where P = (Fo2 + 2Fc2)/3
4554 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C20H19ClN4OSV = 1908.4 (3) Å3
Mr = 398.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0749 (12) ŵ = 0.33 mm1
b = 7.6932 (8) ÅT = 113 K
c = 21.090 (2) Å0.32 × 0.18 × 0.16 mm
β = 103.071 (4)°
Data collection top
Rigaku Saturn
diffractometer
4554 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
4164 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.950Rint = 0.041
23102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
4554 reflectionsΔρmin = 0.27 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43026 (3)0.10904 (5)0.202263 (15)0.02133 (10)
S10.79209 (3)0.08648 (5)0.266243 (16)0.02236 (10)
O10.63163 (9)0.16452 (16)0.41897 (5)0.0287 (3)
N10.81514 (9)0.02276 (15)0.38858 (5)0.0172 (2)
N20.64393 (10)0.08216 (15)0.31685 (6)0.0169 (2)
N30.28650 (10)0.27287 (16)0.33684 (5)0.0194 (2)
N40.29269 (9)0.22644 (15)0.27493 (5)0.0165 (2)
C10.75248 (11)0.00996 (17)0.32786 (6)0.0160 (3)
C20.92637 (11)0.05169 (18)0.40858 (6)0.0162 (3)
C31.02093 (11)0.05457 (18)0.41050 (6)0.0180 (3)
C41.12834 (11)0.0181 (2)0.43418 (7)0.0210 (3)
H41.19420.05150.43670.025*
C51.14034 (12)0.1897 (2)0.45402 (6)0.0211 (3)
H51.21400.23680.47040.025*
C61.04501 (12)0.29323 (19)0.45006 (6)0.0198 (3)
H61.05410.41170.46300.024*
C70.93592 (11)0.22569 (18)0.42738 (6)0.0173 (3)
C81.00655 (13)0.23944 (19)0.38786 (7)0.0247 (3)
H8A0.95860.24340.34370.037*
H8B1.08120.28960.38790.037*
H8C0.97040.30630.41720.037*
C90.83187 (12)0.3363 (2)0.42329 (8)0.0259 (3)
H9A0.78480.28630.45090.039*
H9B0.85490.45430.43820.039*
H9C0.78820.34050.37810.039*
C100.58681 (11)0.14840 (18)0.36088 (6)0.0176 (3)
C110.46730 (11)0.19453 (18)0.33493 (6)0.0164 (3)
C120.39116 (11)0.25472 (19)0.37263 (6)0.0187 (3)
C130.39920 (11)0.17882 (17)0.27273 (6)0.0161 (3)
C140.41480 (13)0.2956 (2)0.44358 (7)0.0267 (3)
H14A0.34770.35030.45390.040*
H14B0.47960.37530.45470.040*
H14C0.43260.18800.46870.040*
C150.19141 (11)0.22612 (18)0.22397 (6)0.0164 (3)
C160.09328 (11)0.15251 (19)0.23588 (7)0.0196 (3)
H160.09330.10270.27710.024*
C170.00513 (12)0.1527 (2)0.18663 (7)0.0236 (3)
H170.07350.10530.19440.028*
C180.00365 (12)0.2219 (2)0.12628 (7)0.0247 (3)
H180.07060.21920.09240.030*
C190.09488 (12)0.2950 (2)0.11495 (7)0.0233 (3)
H190.09540.34210.07340.028*
C200.19313 (11)0.29973 (18)0.16438 (7)0.0191 (3)
H200.26040.35270.15730.023*
H10.7828 (15)0.073 (2)0.4168 (9)0.024 (4)*
H20.6098 (16)0.072 (2)0.2787 (10)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01647 (16)0.0336 (2)0.01365 (15)0.00392 (13)0.00286 (12)0.00437 (12)
S10.02202 (18)0.0291 (2)0.01609 (17)0.00740 (14)0.00459 (13)0.00227 (13)
O10.0192 (5)0.0482 (7)0.0168 (5)0.0090 (5)0.0000 (4)0.0079 (5)
N10.0155 (5)0.0217 (6)0.0142 (5)0.0046 (5)0.0029 (4)0.0010 (4)
N20.0141 (5)0.0235 (6)0.0124 (5)0.0036 (4)0.0012 (4)0.0006 (4)
N30.0177 (6)0.0266 (6)0.0141 (5)0.0026 (5)0.0043 (4)0.0020 (5)
N40.0146 (5)0.0226 (6)0.0121 (5)0.0013 (4)0.0024 (4)0.0007 (4)
C10.0161 (6)0.0156 (6)0.0165 (6)0.0012 (5)0.0043 (5)0.0025 (5)
C20.0136 (6)0.0222 (7)0.0127 (6)0.0033 (5)0.0029 (5)0.0007 (5)
C30.0191 (6)0.0215 (7)0.0143 (6)0.0007 (5)0.0056 (5)0.0028 (5)
C40.0154 (6)0.0297 (8)0.0183 (6)0.0023 (6)0.0048 (5)0.0065 (6)
C50.0148 (6)0.0325 (8)0.0152 (6)0.0063 (6)0.0014 (5)0.0037 (5)
C60.0211 (7)0.0235 (7)0.0144 (6)0.0060 (5)0.0033 (5)0.0016 (5)
C70.0163 (6)0.0218 (7)0.0138 (6)0.0026 (5)0.0032 (5)0.0001 (5)
C80.0290 (8)0.0213 (7)0.0265 (7)0.0014 (6)0.0116 (6)0.0007 (6)
C90.0215 (7)0.0243 (8)0.0306 (8)0.0002 (6)0.0033 (6)0.0075 (6)
C100.0153 (6)0.0199 (6)0.0170 (6)0.0003 (5)0.0025 (5)0.0007 (5)
C110.0151 (6)0.0191 (7)0.0145 (6)0.0011 (5)0.0024 (5)0.0004 (5)
C120.0174 (6)0.0227 (7)0.0160 (6)0.0022 (5)0.0037 (5)0.0013 (5)
C130.0158 (6)0.0185 (6)0.0145 (6)0.0011 (5)0.0046 (5)0.0001 (5)
C140.0216 (7)0.0412 (9)0.0168 (7)0.0047 (6)0.0035 (5)0.0062 (6)
C150.0140 (6)0.0189 (6)0.0155 (6)0.0021 (5)0.0014 (5)0.0026 (5)
C160.0177 (6)0.0236 (7)0.0183 (6)0.0008 (5)0.0056 (5)0.0005 (5)
C170.0143 (6)0.0296 (8)0.0270 (7)0.0014 (6)0.0047 (6)0.0025 (6)
C180.0169 (7)0.0328 (8)0.0218 (7)0.0023 (6)0.0013 (5)0.0021 (6)
C190.0209 (7)0.0295 (8)0.0178 (6)0.0033 (6)0.0012 (5)0.0032 (6)
C200.0155 (6)0.0224 (7)0.0191 (6)0.0004 (5)0.0031 (5)0.0014 (5)
Geometric parameters (Å, º) top
Cl1—C131.6998 (13)C8—H8A0.9800
S1—C11.6581 (13)C8—H8B0.9800
O1—C101.2284 (16)C8—H8C0.9800
N1—C11.3355 (17)C9—H9A0.9800
N1—C21.4331 (16)C9—H9B0.9800
N1—H10.87 (2)C9—H9C0.9800
N2—C101.3738 (17)C10—C111.4665 (18)
N2—C11.3939 (17)C11—C131.3869 (18)
N2—H20.82 (2)C11—C121.4222 (18)
N3—C121.3247 (17)C12—C141.4920 (18)
N3—N41.3719 (15)C14—H14A0.9800
N4—C131.3482 (17)C14—H14B0.9800
N4—C151.4339 (16)C14—H14C0.9800
C2—C71.3935 (19)C15—C201.3828 (19)
C2—C31.3974 (19)C15—C161.3865 (19)
C3—C41.3968 (19)C16—C171.3902 (19)
C3—C81.498 (2)C16—H160.9500
C4—C51.383 (2)C17—C181.383 (2)
C4—H40.9500C17—H170.9500
C5—C61.387 (2)C18—C191.385 (2)
C5—H50.9500C18—H180.9500
C6—C71.3960 (18)C19—C201.3915 (19)
C6—H60.9500C19—H190.9500
C7—C91.5038 (19)C20—H200.9500
C1—N1—C2122.87 (11)C7—C9—H9C109.5
C1—N1—H1116.2 (11)H9A—C9—H9C109.5
C2—N1—H1120.8 (11)H9B—C9—H9C109.5
C10—N2—C1129.21 (11)O1—C10—N2122.43 (12)
C10—N2—H2118.6 (14)O1—C10—C11121.48 (12)
C1—N2—H2111.8 (13)N2—C10—C11116.07 (11)
C12—N3—N4105.34 (11)C13—C11—C12103.72 (11)
C13—N4—N3111.18 (10)C13—C11—C10130.91 (12)
C13—N4—C15129.22 (11)C12—C11—C10125.17 (12)
N3—N4—C15119.54 (10)N3—C12—C11111.70 (12)
N1—C1—N2115.97 (12)N3—C12—C14119.38 (12)
N1—C1—S1125.67 (10)C11—C12—C14128.91 (12)
N2—C1—S1118.35 (10)N4—C13—C11108.05 (11)
C7—C2—C3122.63 (12)N4—C13—Cl1121.12 (10)
C7—C2—N1118.65 (12)C11—C13—Cl1130.81 (11)
C3—C2—N1118.69 (12)C12—C14—H14A109.5
C4—C3—C2117.57 (13)C12—C14—H14B109.5
C4—C3—C8121.68 (13)H14A—C14—H14B109.5
C2—C3—C8120.75 (12)C12—C14—H14C109.5
C5—C4—C3121.03 (13)H14A—C14—H14C109.5
C5—C4—H4119.5H14B—C14—H14C109.5
C3—C4—H4119.5C20—C15—C16121.40 (12)
C4—C5—C6120.10 (13)C20—C15—N4119.66 (12)
C4—C5—H5119.9C16—C15—N4118.94 (12)
C6—C5—H5119.9C15—C16—C17119.03 (13)
C5—C6—C7120.86 (13)C15—C16—H16120.5
C5—C6—H6119.6C17—C16—H16120.5
C7—C6—H6119.6C18—C17—C16120.08 (13)
C2—C7—C6117.78 (13)C18—C17—H17120.0
C2—C7—C9120.86 (12)C16—C17—H17120.0
C6—C7—C9121.36 (13)C17—C18—C19120.36 (13)
C3—C8—H8A109.5C17—C18—H18119.8
C3—C8—H8B109.5C19—C18—H18119.8
H8A—C8—H8B109.5C18—C19—C20120.09 (13)
C3—C8—H8C109.5C18—C19—H19120.0
H8A—C8—H8C109.5C20—C19—H19120.0
H8B—C8—H8C109.5C15—C20—C19119.00 (13)
C7—C9—H9A109.5C15—C20—H20120.5
C7—C9—H9B109.5C19—C20—H20120.5
H9A—C9—H9B109.5
C12—N3—N4—C130.60 (15)N2—C10—C11—C12175.91 (13)
C12—N3—N4—C15177.88 (12)N4—N3—C12—C110.58 (16)
C2—N1—C1—N2177.06 (12)N4—N3—C12—C14179.86 (13)
C2—N1—C1—S11.7 (2)C13—C11—C12—N30.36 (16)
C10—N2—C1—N17.9 (2)C10—C11—C12—N3174.98 (13)
C10—N2—C1—S1170.98 (12)C13—C11—C12—C14179.87 (15)
C1—N1—C2—C784.89 (16)C10—C11—C12—C144.5 (2)
C1—N1—C2—C397.20 (16)N3—N4—C13—C110.38 (16)
C7—C2—C3—C41.91 (19)C15—N4—C13—C11177.33 (13)
N1—C2—C3—C4175.92 (11)N3—N4—C13—Cl1178.12 (9)
C7—C2—C3—C8178.10 (12)C15—N4—C13—Cl11.2 (2)
N1—C2—C3—C84.07 (19)C12—C11—C13—N40.02 (15)
C2—C3—C4—C50.97 (19)C10—C11—C13—N4174.98 (14)
C8—C3—C4—C5179.04 (12)C12—C11—C13—Cl1178.29 (11)
C3—C4—C5—C60.6 (2)C10—C11—C13—Cl13.3 (2)
C4—C5—C6—C71.3 (2)C13—N4—C15—C2048.8 (2)
C3—C2—C7—C61.24 (19)N3—N4—C15—C20134.47 (14)
N1—C2—C7—C6176.58 (11)C13—N4—C15—C16131.62 (15)
C3—C2—C7—C9178.78 (13)N3—N4—C15—C1645.11 (18)
N1—C2—C7—C93.40 (19)C20—C15—C16—C170.2 (2)
C5—C6—C7—C20.39 (19)N4—C15—C16—C17179.73 (12)
C5—C6—C7—C9179.59 (13)C15—C16—C17—C181.5 (2)
C1—N2—C10—O16.0 (2)C16—C17—C18—C191.6 (2)
C1—N2—C10—C11172.25 (13)C17—C18—C19—C200.1 (2)
O1—C10—C11—C13176.38 (15)C16—C15—C20—C191.8 (2)
N2—C10—C11—C131.9 (2)N4—C15—C20—C19178.60 (12)
O1—C10—C11—C122.4 (2)C18—C19—C20—C151.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.87 (2)1.97 (2)2.6744 (15)137 (2)
N2—H2···Cl10.82 (2)2.41 (2)3.1175 (12)145 (2)

Experimental details

Crystal data
Chemical formulaC20H19ClN4OS
Mr398.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)12.0749 (12), 7.6932 (8), 21.090 (2)
β (°) 103.071 (4)
V3)1908.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.32 × 0.18 × 0.16
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.902, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
23102, 4554, 4164
Rint0.041
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.07
No. of reflections4554
No. of parameters256
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.87 (2)1.97 (2)2.6744 (15)137 (2)
N2—H2···Cl10.82 (2)2.41 (2)3.1175 (12)145 (2)
 

Acknowledgements

The authors thank Guiyang College (No. 2007012) for financial support.

References

First citationDu, H.-T., Lu, M., Zhou, W.-Y. & Sun, L.-L. (2007). Acta Cryst. E63, o4287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSaeed, A. & Flörke, U. (2007). Acta Cryst. E63, o3695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, J., Tian, L. & Liu, S.-Y. (2007). Acta Cryst. E63, o3667.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds