metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetato-κ2O,O′)bis­­(2-amino­pyridine-κN)nickel(II)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: wdq4899@163.com

(Received 13 November 2007; accepted 8 December 2007; online 18 December 2007)

The title complex, [Ni(C2H3O2)2(C5H6N2)2], has a distorted octa­hedral geometry around the Ni atom. Inter­molecular and intra­molecular N—H⋯O hydrogen bonds exist in the crystal structure.

Related literature

For general background, see: Roman et al. (1995[Roman, P., Luque, A., Guzman-Miralles, C. & Beitia, J. I. (1995). Polyhedron, 14, 2863-2869.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H3O2)2(C5H6N2)2]

  • Mr = 365.01

  • Orthorhombic, P b c a

  • a = 14.281 (4) Å

  • b = 14.989 (5) Å

  • c = 15.241 (5) Å

  • V = 3262.5 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 298 (2) K

  • 0.48 × 0.36 × 0.30 mm

Data collection
  • Siemens SMART CCD area–detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.593, Tmax = 0.712

  • 15953 measured reflections

  • 2875 independent reflections

  • 2173 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.093

  • S = 0.95

  • 2875 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2i 0.86 2.13 2.988 (3) 179
N2—H2A⋯O1 0.86 2.20 2.967 (3) 149
N4—H4A⋯O4 0.86 2.03 2.848 (4) 158
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A lot of work has been devoted to the study of mixed–ligand complexes because of their key role in biological progress and their properties in areas such as analytical chemistry, catalysis and magnetochemistry (Roman et al., 1995). In this paper, we report the synthesis and crystal structure of the new title nickel complex.

The molecular structure of the title complex, (I), is shown on Fig.1. The Ni atom is in a distorted octahedral geometry [Ni—N = 2.069 (2)–2.079 (2) Å, Ni—O = 2.092 (2)–2.164 (2) Å], coordinated by two N atoms from two 2–aminopyridine ligands and four O atoms from two acetate groups. The intermolecular and intramolecular N—H···O hydrogen bonds are exist in the crystal structure.

Related literature top

For general background, see: Roman et al. (1995).

Experimental top

Nickel acetate tetrahydrate (2 mmol, 497.7 mg) in absolute ethanol (20 ml) was added dropwise to a absolute ethanol solution (20 ml) of 2–aminopyridine (4 mmol, 376.5 mg). The mixture was heated under reflux with stirring for 4 h. The solution was kept at room temperature for 20 days, after which large green block–shaped crystals of the title complex suitable for X–ray diffraction analysis were obtained.

Refinement top

All H–atoms were positioned geometrically and refined using a riding model, with C—H (methyl) 0.96 Å, C—H (aromatic) 0.93 Å, NH(amino) 0.86 Å, with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(C) for CH3.

Structure description top

A lot of work has been devoted to the study of mixed–ligand complexes because of their key role in biological progress and their properties in areas such as analytical chemistry, catalysis and magnetochemistry (Roman et al., 1995). In this paper, we report the synthesis and crystal structure of the new title nickel complex.

The molecular structure of the title complex, (I), is shown on Fig.1. The Ni atom is in a distorted octahedral geometry [Ni—N = 2.069 (2)–2.079 (2) Å, Ni—O = 2.092 (2)–2.164 (2) Å], coordinated by two N atoms from two 2–aminopyridine ligands and four O atoms from two acetate groups. The intermolecular and intramolecular N—H···O hydrogen bonds are exist in the crystal structure.

For general background, see: Roman et al. (1995).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom numbering scheme. Displacement ellipsoids are shown at 30% probability level. H atoms are presented as a spheres of arbitrary radius.
Bis(acetato-κ2O,O')bis(2-aminopyridine-κN)nickel(II) top
Crystal data top
[Ni(C2H3O2)2(C5H6N2)2]F(000) = 1520
Mr = 365.01Dx = 1.486 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4718 reflections
a = 14.281 (4) Åθ = 2.4–27.7°
b = 14.989 (5) ŵ = 1.21 mm1
c = 15.241 (5) ÅT = 298 K
V = 3262.5 (18) Å3Block, green
Z = 80.48 × 0.36 × 0.30 mm
Data collection top
Siemens SMART CCD area–detector
diffractometer
2875 independent reflections
Radiation source: fine–focus sealed tube2173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ– and ω–scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.593, Tmax = 0.712k = 1717
15953 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.039P)2 + 4.6901P]
where P = (Fo2 + 2Fc2)/3
2875 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
[Ni(C2H3O2)2(C5H6N2)2]V = 3262.5 (18) Å3
Mr = 365.01Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.281 (4) ŵ = 1.21 mm1
b = 14.989 (5) ÅT = 298 K
c = 15.241 (5) Å0.48 × 0.36 × 0.30 mm
Data collection top
Siemens SMART CCD area–detector
diffractometer
2875 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2173 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.712Rint = 0.039
15953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 0.95Δρmax = 0.38 e Å3
2875 reflectionsΔρmin = 0.25 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.65501 (2)0.18431 (2)0.30692 (2)0.03492 (14)
N10.74523 (16)0.17626 (15)0.41287 (15)0.0353 (6)
N20.88178 (18)0.17679 (18)0.33118 (18)0.0475 (7)
H2A0.84850.17890.28420.057*
H2B0.94190.17590.32770.057*
N30.58868 (17)0.06682 (16)0.34427 (17)0.0405 (6)
N40.44625 (19)0.1315 (2)0.3738 (2)0.0654 (9)
H4A0.47030.18280.36260.079*
H4B0.38840.12740.38890.079*
O10.73266 (14)0.12566 (15)0.20530 (14)0.0469 (5)
O20.59071 (15)0.17241 (14)0.17892 (14)0.0470 (5)
O30.68659 (16)0.32137 (14)0.28166 (15)0.0484 (6)
O40.56826 (15)0.28132 (14)0.36282 (15)0.0472 (5)
C10.6643 (2)0.1341 (2)0.1533 (2)0.0470 (5)
C20.6716 (3)0.0967 (3)0.0625 (3)0.0723 (12)
H2C0.65470.03480.06320.108*
H2D0.73480.10290.04180.108*
H2E0.63010.12860.02410.108*
C30.6159 (2)0.3419 (2)0.3261 (2)0.0445 (8)
C40.5880 (3)0.4383 (2)0.3375 (3)0.0667 (11)
H4C0.60840.45910.39390.100*
H4D0.52120.44350.33340.100*
H4E0.61670.47360.29240.100*
C50.83976 (19)0.17483 (18)0.4102 (2)0.0364 (7)
C60.8921 (2)0.1720 (2)0.4878 (2)0.0500 (8)
H60.95720.17240.48540.060*
C70.8480 (3)0.1687 (2)0.5667 (2)0.0541 (9)
H70.88260.16630.61840.065*
C80.7511 (3)0.1690 (2)0.5695 (2)0.0526 (9)
H80.71930.16650.62270.063*
C90.7040 (2)0.1731 (2)0.4926 (2)0.0458 (8)
H90.63890.17380.49470.055*
C100.4988 (2)0.0580 (2)0.3679 (2)0.0416 (7)
C110.4604 (3)0.0261 (2)0.3863 (3)0.0609 (10)
H110.39810.03120.40330.073*
C120.5143 (3)0.0994 (3)0.3793 (3)0.0698 (11)
H120.48910.15530.39100.084*
C130.6068 (3)0.0916 (3)0.3546 (3)0.0719 (12)
H130.64510.14150.34970.086*
C140.6401 (2)0.0087 (2)0.3377 (3)0.0608 (10)
H140.70230.00340.32060.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0245 (2)0.0418 (2)0.0384 (2)0.00038 (16)0.00112 (16)0.00062 (17)
N10.0281 (12)0.0422 (14)0.0355 (13)0.0029 (10)0.0029 (10)0.0001 (11)
N20.0247 (13)0.0668 (19)0.0508 (17)0.0029 (12)0.0040 (12)0.0038 (14)
N30.0295 (13)0.0412 (14)0.0508 (15)0.0025 (11)0.0000 (12)0.0003 (12)
N40.0373 (16)0.0581 (18)0.101 (3)0.0006 (14)0.0157 (17)0.0063 (18)
O10.0317 (11)0.0616 (14)0.0475 (13)0.0035 (10)0.0040 (10)0.0073 (11)
O20.0348 (10)0.0558 (11)0.0503 (11)0.0000 (8)0.0056 (8)0.0050 (9)
O30.0461 (13)0.0532 (13)0.0457 (13)0.0089 (11)0.0034 (11)0.0038 (10)
O40.0402 (12)0.0437 (12)0.0577 (14)0.0018 (10)0.0092 (11)0.0022 (11)
C10.0348 (10)0.0558 (11)0.0503 (11)0.0000 (8)0.0056 (8)0.0050 (9)
C20.078 (3)0.086 (3)0.053 (2)0.013 (2)0.012 (2)0.023 (2)
C30.0465 (19)0.0452 (18)0.0419 (18)0.0012 (15)0.0081 (16)0.0012 (15)
C40.091 (3)0.0416 (19)0.067 (2)0.008 (2)0.005 (2)0.0021 (18)
C50.0308 (15)0.0315 (15)0.0468 (18)0.0041 (12)0.0014 (14)0.0025 (13)
C60.0346 (18)0.056 (2)0.059 (2)0.0048 (15)0.0110 (16)0.0002 (17)
C70.059 (2)0.056 (2)0.047 (2)0.0094 (17)0.0172 (18)0.0030 (16)
C80.061 (2)0.059 (2)0.0378 (18)0.0087 (17)0.0031 (17)0.0000 (16)
C90.0367 (17)0.059 (2)0.0412 (18)0.0040 (15)0.0053 (15)0.0003 (15)
C100.0330 (16)0.0505 (18)0.0414 (17)0.0034 (14)0.0036 (14)0.0015 (15)
C110.045 (2)0.063 (2)0.075 (3)0.0148 (18)0.0148 (19)0.003 (2)
C120.076 (3)0.048 (2)0.085 (3)0.014 (2)0.014 (2)0.005 (2)
C130.071 (3)0.044 (2)0.101 (3)0.0033 (19)0.013 (2)0.008 (2)
C140.043 (2)0.048 (2)0.092 (3)0.0030 (16)0.0131 (19)0.011 (2)
Geometric parameters (Å, º) top
Ni1—N12.069 (2)C2—H2D0.9600
Ni1—N32.079 (2)C2—H2E0.9600
Ni1—O42.092 (2)C3—C41.509 (5)
Ni1—O12.098 (2)C4—H4C0.9600
Ni1—O32.138 (2)C4—H4D0.9600
Ni1—O22.164 (2)C4—H4E0.9600
N1—C91.351 (4)C5—C61.400 (4)
N1—C51.351 (4)C6—C71.358 (5)
N2—C51.346 (4)C6—H60.9300
N2—H2A0.8600C7—C81.384 (5)
N2—H2B0.8600C7—H70.9300
N3—C101.339 (4)C8—C91.354 (5)
N3—C141.353 (4)C8—H80.9300
N4—C101.336 (4)C9—H90.9300
N4—H4A0.8600C10—C111.403 (5)
N4—H4B0.8600C11—C121.345 (5)
O1—C11.264 (4)C11—H110.9300
O2—C11.259 (4)C12—C131.379 (6)
O3—C31.254 (4)C12—H120.9300
O4—C31.264 (4)C13—C141.354 (5)
C1—C21.497 (5)C13—H130.9300
C2—H2C0.9600C14—H140.9300
N1—Ni1—N391.18 (10)O3—C3—O4119.7 (3)
N1—Ni1—O495.25 (9)O3—C3—C4120.6 (3)
N3—Ni1—O4101.98 (9)O4—C3—C4119.7 (3)
N1—Ni1—O1102.86 (9)C3—C4—H4C109.5
N3—Ni1—O195.05 (10)C3—C4—H4D109.5
O4—Ni1—O1154.83 (9)H4C—C4—H4D109.5
N1—Ni1—O393.74 (9)C3—C4—H4E109.5
N3—Ni1—O3163.58 (9)H4C—C4—H4E109.5
O4—Ni1—O361.99 (9)H4D—C4—H4E109.5
O1—Ni1—O399.10 (9)N2—C5—N1118.2 (3)
N1—Ni1—O2164.38 (9)N2—C5—C6121.3 (3)
N3—Ni1—O289.06 (9)N1—C5—C6120.6 (3)
O4—Ni1—O299.98 (9)C7—C6—C5120.1 (3)
O1—Ni1—O261.58 (8)C7—C6—H6119.9
O3—Ni1—O290.37 (8)C5—C6—H6119.9
C9—N1—C5117.5 (3)C6—C7—C8119.4 (3)
C9—N1—Ni1115.6 (2)C6—C7—H7120.3
C5—N1—Ni1126.8 (2)C8—C7—H7120.3
C5—N2—H2A120.0C9—C8—C7118.1 (3)
C5—N2—H2B120.0C9—C8—H8121.0
H2A—N2—H2B120.0C7—C8—H8121.0
C10—N3—C14117.2 (3)N1—C9—C8124.3 (3)
C10—N3—Ni1126.4 (2)N1—C9—H9117.8
C14—N3—Ni1116.2 (2)C8—C9—H9117.8
C10—N4—H4A120.0N4—C10—N3118.4 (3)
C10—N4—H4B120.0N4—C10—C11120.5 (3)
H4A—N4—H4B120.0N3—C10—C11121.1 (3)
C1—O1—Ni190.71 (19)C12—C11—C10119.6 (3)
C1—O2—Ni187.88 (19)C12—C11—H11120.2
C3—O3—Ni188.18 (19)C10—C11—H11120.2
C3—O4—Ni190.01 (19)C11—C12—C13120.0 (4)
O2—C1—O1119.7 (3)C11—C12—H12120.0
O2—C1—C2121.1 (3)C13—C12—H12120.0
O1—C1—C2119.2 (3)C14—C13—C12117.8 (4)
C1—C2—H2C109.5C14—C13—H13121.1
C1—C2—H2D109.5C12—C13—H13121.1
H2C—C2—H2D109.5C13—C14—N3124.3 (3)
C1—C2—H2E109.5C13—C14—H14117.9
H2C—C2—H2E109.5N3—C14—H14117.9
H2D—C2—H2E109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.862.132.988 (3)179
N2—H2A···O10.862.202.967 (3)149
N4—H4A···O40.862.032.848 (4)158
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H3O2)2(C5H6N2)2]
Mr365.01
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)14.281 (4), 14.989 (5), 15.241 (5)
V3)3262.5 (18)
Z8
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.48 × 0.36 × 0.30
Data collection
DiffractometerSiemens SMART CCD area–detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.593, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
15953, 2875, 2173
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.093, 0.95
No. of reflections2875
No. of parameters202
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.862.132.988 (3)179.0
N2—H2A···O10.862.202.967 (3)149.2
N4—H4A···O40.862.032.848 (4)157.5
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

References

First citationRoman, P., Luque, A., Guzman-Miralles, C. & Beitia, J. I. (1995). Polyhedron, 14, 2863–2869.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X–ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds