

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-*N*′-(4-Pyridylmethylene)-2-(quinolin-8-yloxy)acetohydrazide sesquihydrate

Ze-Bao Zheng,^a* Ji-Kun Li,^b Yi-Feng Sun^a and Ren-Tao Wu^a

^aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^bDepartment of Materials and Chemistry Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China Correspondence e-mail: zhengzebao@163.com

Received 15 November 2007; accepted 12 December 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.113; data-to-parameter ratio = 13.3.

In the title compound, $C_{17}H_{14}N_4O_2 \cdot 1.5H_2O$, the mean planes of the pyridine ring and quinoline group make a dihedral angle of 21.0 (2)°. One water molecule lies on a twofold rotation axis. The organic molecules and the three water molecules are linked into infinite chains by N-H···O, O-H···O and O-H···N hydrogen bonds.

Related literature

For related literature, see: Chen & Shi (1998); Moawad & Hanna (2002).

8726 measured reflections

 $R_{\rm int} = 0.034$

2962 independent reflections

1974 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

 $C_{17}H_{14}N_4O_2 \cdot 1.5H_2O$ $V = 3342.2 (7) Å^3$
 $M_r = 333.35$ Z = 8

 Monoclinic, C2/c Mo K α radiation

 a = 16.3206 (19) Å $\mu = 0.10 \text{ mm}^{-1}$

 b = 15.6706 (19) Å T = 295 K

 c = 13.5692 (16) Å $0.26 \times 0.22 \times 0.18 \text{ mm}$
 $\beta = 105.623 (3)^\circ$ $0.26 \times 0.22 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.976, T_{\rm max} = 0.983$

Refinement

222 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ \AA}^{-3}$

Table 1

Hydrogen-bond geometry (A, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H19\cdots N4^{i}$	0.85	2.14	2.914 (2)	151
$N2 - H2 \cdots O3$	0.86	2.10	2.890 (2)	153
O3−H18· · ·N1	0.85	1.91	2.7582 (19)	175
$O4-H20\cdots O3^{ii}$	0.85	2.48	2.825 (2)	105

Symmetry codes: (i) $-x - \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Postgraduate Foundation of Taishan University (No. Y05–2–02).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2067).

References

Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161-174.

Moawad, M. M. & Hanna, W. G. (2002). J. Coord. Chem. 55, 439-457.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, o297 [https://doi.org/10.1107/S1600536807066664]

(E)-N'-(4-Pyridylmethylene)-2-(quinolin-8-yloxy)acetohydrazide sesquihydrate

Ze-Bao Zheng, Ji-Kun Li, Yi-Feng Sun and Ren-Tao Wu

S1. Comment

8–Hydroxyquinoline and its derivatives are of the most extensively investigated ligands in the coordination chemistry (Chen & Shi, 1998; Moawad & Hanna, 2002). In course of our studies on searching for good extractants of metal ions or a biologically active material, the title compound, (I), was synthesized and its crystal structure determined. The conformation along the O1–C10–C11–N2–N3–C12–C13 bond sequence is (-)*gauche–trans–trans* (Fig.1). The mean planes of the pyridine ring and quinoline group make a dihedral angle of the molecules are 21.0 (2)°. The two molecules and the three water molecules are linked into infinite chains by N—H…O, O—H…O and O—H…N hydrogen bonds (Fig. 2).

S2. Experimental

2–(Quinolin–8–yl-oxy)acetohydrazide (0.01 mol), 4–pyridylaldehyde (0.01 mol), ethanol (40 ml) and three drops of acetic acid were added to a 100 ml flask, and refluxed for 6 h. After cooling to room temperature, the mixture was filtered. Colourless single crystals suitable for *X*–ray diffraction study were obtained by slow evaporation of a tetrahydro-furan solution over a period of 1 d. (m.p. 361 K). Elemental analysis calc.: C 61.25, H 5.14, N 16.80%; found: C 61.19, H 5.21, N 16.77%.

S3. Refinement

All H atoms were placed in idealized calculated positions with C—H = 0.93–0.97 Å, O—H = 0.85 Å, N—H = 0.86Å and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The dashed lines indicate hydrogen bonds.

Figure 2

The infinite chains structure *via* hydrogen bonds in the title compound. The dashed lines indicate hydrogen bonds. H atoms not involved in H bonds have been omitted for clarity.

(E)-N'-(4-Pyridylmethylene)-2-(quinolin-8-yloxy)acetohydrazide sesquihydrate

Crystal data	
$C_{17}H_{14}N_4O_2 \cdot 1.5H_2O$	F(000) = 1400
$M_r = 333.35$	$D_{\rm x} = 1.325 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Melting point: 361 K
Hall symbol: -c 2yc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 16.3206 (19) Å	Cell parameters from 1750 reflections
b = 15.6706 (19) Å	$\theta = 2.6 - 22.1^{\circ}$
c = 13.5692 (16) Å	$\mu=0.10~\mathrm{mm^{-1}}$
$\beta = 105.623 (3)^{\circ}$	T = 295 K
V = 3342.2 (7) Å ³	Block, colorless
Z = 8	$0.26 \times 0.22 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	8726 measured reflections
diffractometer	2962 independent reflections
Radiation source: fine–focus sealed tube	1974 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.034$
φ and ω scans	$\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 19$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -15 \rightarrow 18$
$T_{\min} = 0.976, T_{\max} = 0.983$	$l = -16 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.00	H-atom parameters constrained
2962 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 1.6836P]$
222 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.23$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.24$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.15472 (7)	0.61002 (8)	0.13430 (10)	0.0522 (4)	
O2	-0.00480 (9)	0.45270 (10)	0.11135 (14)	0.0848 (6)	
03	0.03989 (8)	0.77138 (9)	0.10648 (12)	0.0679 (5)	
H18	0.0924	0.7680	0.1089	0.102*	
H19	0.0139	0.7832	0.0448	0.102*	
04	0.5000	0.38335 (19)	0.2500	0.198 (2)	
H20	0.4541	0.3547	0.2364	0.297*	
N1	0.21216 (9)	0.76870 (10)	0.12366 (12)	0.0480 (4)	
N2	-0.01021 (9)	0.59689 (11)	0.12749 (13)	0.0563 (5)	
H2	0.0178	0.6440	0.1386	0.068*	
N3	-0.09687 (10)	0.59595 (12)	0.11520 (13)	0.0586 (5)	
N4	-0.39872 (12)	0.69428 (16)	0.07266 (16)	0.0784 (6)	
C1	0.24172 (13)	0.84681 (13)	0.12079 (16)	0.0570 (6)	
H1	0.2036	0.8919	0.1147	0.068*	
C2	0.32621 (13)	0.86644 (15)	0.12628 (16)	0.0621 (6)	
H2A	0.3437	0.9228	0.1248	0.074*	
H2A	0.3437	0.9228	0.1248	0.074*	

C3	0.38204 (13)	0.80125 (15)	0.13380 (16)	0.0596 (6)
Н3	0.4386	0.8127	0.1370	0.071*
C4	0.35495 (11)	0.71610 (13)	0.13688 (15)	0.0504 (5)
C5	0.40959 (12)	0.64574 (16)	0.14487 (17)	0.0642 (6)
Н5	0.4662	0.6543	0.1460	0.077*
C6	0.38064 (13)	0.56572 (16)	0.15098 (18)	0.0671 (6)
H6A	0.4179	0.5198	0.1576	0.081*
C7	0.29443 (12)	0.55081 (14)	0.14739 (16)	0.0591 (6)
H7	0.2753	0.4954	0.1514	0.071*
C8	0.23931 (11)	0.61774 (13)	0.13810 (14)	0.0463 (5)
С9	0.26813 (11)	0.70304 (12)	0.13252 (13)	0.0429 (5)
C10	0.12326 (11)	0.52542 (12)	0.13095 (17)	0.0561 (6)
H10A	0.1537	0.4956	0.1926	0.067*
H10B	0.1344	0.4959	0.0730	0.067*
C11	0.02969 (13)	0.52209 (15)	0.12202 (16)	0.0577 (6)
C12	-0.12998 (13)	0.66627 (15)	0.13033 (16)	0.0575 (6)
H12	-0.0953	0.7134	0.1524	0.069*
C13	-0.22215 (12)	0.67417 (14)	0.11357 (15)	0.0549 (5)
C14	-0.27696 (13)	0.60665 (16)	0.07901 (19)	0.0730 (7)
H14	-0.2559	0.5532	0.0688	0.088*
C15	-0.36330 (15)	0.62007 (19)	0.0599 (2)	0.0873 (8)
H15	-0.3993	0.5741	0.0365	0.105*
C16	-0.34569 (15)	0.75802 (17)	0.10755 (17)	0.0701 (7)
H16	-0.3684	0.8105	0.1185	0.084*
C17	-0.25845 (14)	0.75065 (15)	0.12848 (15)	0.0617 (6)
H17	-0.2240	0.7976	0.1528	0.074*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0346 (7)	0.0500 (8)	0.0732 (10)	-0.0113 (6)	0.0166 (6)	0.0027 (7)
O2	0.0579 (10)	0.0641 (11)	0.1351 (16)	-0.0255 (8)	0.0306 (10)	0.0071 (10)
O3	0.0428 (8)	0.0768 (10)	0.0849 (11)	-0.0025 (7)	0.0187 (7)	0.0064 (8)
O4	0.389 (7)	0.066 (2)	0.178 (4)	0.000	0.143 (4)	0.000
N1	0.0389 (9)	0.0527 (10)	0.0519 (10)	-0.0096 (8)	0.0112 (7)	0.0016 (8)
N2	0.0345 (9)	0.0646 (12)	0.0699 (12)	-0.0164 (8)	0.0143 (8)	0.0004 (9)
N3	0.0357 (9)	0.0750 (13)	0.0656 (12)	-0.0128 (9)	0.0143 (8)	0.0074 (10)
N4	0.0464 (12)	0.1033 (17)	0.0859 (15)	0.0024 (12)	0.0187 (10)	0.0101 (13)
C1	0.0543 (13)	0.0545 (13)	0.0609 (14)	-0.0101 (10)	0.0135 (10)	0.0021 (10)
C2	0.0570 (14)	0.0624 (14)	0.0675 (15)	-0.0236 (11)	0.0179 (11)	-0.0018 (11)
C3	0.0423 (12)	0.0770 (16)	0.0602 (14)	-0.0246 (12)	0.0151 (10)	-0.0027 (12)
C4	0.0366 (11)	0.0681 (14)	0.0476 (12)	-0.0130 (10)	0.0130 (9)	-0.0041 (10)
C5	0.0331 (11)	0.0861 (17)	0.0747 (16)	-0.0066 (11)	0.0166 (10)	-0.0016 (13)
C6	0.0426 (12)	0.0750 (16)	0.0851 (17)	0.0079 (11)	0.0192 (11)	0.0010 (13)
C7	0.0464 (12)	0.0551 (13)	0.0758 (16)	-0.0032 (10)	0.0164 (11)	0.0019 (11)
C8	0.0311 (10)	0.0576 (12)	0.0498 (12)	-0.0081 (9)	0.0103 (9)	0.0003 (9)
C9	0.0338 (10)	0.0547 (12)	0.0400 (11)	-0.0094 (9)	0.0099 (8)	-0.0001 (9)
C10	0.0401 (11)	0.0504 (12)	0.0775 (15)	-0.0104 (9)	0.0150 (10)	0.0061 (11)

supporting information

C11	0.0464 (12)	0.0593 (14)	0.0683 (15)	-0.0143 (11)	0.0171 (11)	0.0073 (11)
C12	0.0435 (12)	0.0731 (16)	0.0559 (14)	-0.0153 (11)	0.0137 (10)	0.0025 (11)
C13	0.0406 (11)	0.0760 (15)	0.0486 (12)	-0.0087 (11)	0.0130 (9)	0.0102 (11)
C14	0.0436 (13)	0.0765 (16)	0.0971 (19)	-0.0079 (12)	0.0161 (12)	0.0066 (14)
C15	0.0456 (15)	0.092 (2)	0.120 (2)	-0.0133 (13)	0.0158 (14)	0.0047 (17)
C16	0.0623 (15)	0.0892 (18)	0.0631 (15)	0.0073 (14)	0.0243 (12)	0.0065 (13)
C17	0.0587 (14)	0.0788 (16)	0.0503 (13)	-0.0065 (12)	0.0192 (11)	0.0026 (11)

Geometric parameters (Å, °)

O1—C8	1.373 (2)	C4—C9	1.417 (2)
O1—C10	1.418 (2)	C5—C6	1.351 (3)
O2—C11	1.215 (2)	С5—Н5	0.9300
O3—H18	0.8499	C6—C7	1.414 (3)
O3—H19	0.8500	С6—Н6А	0.9300
O4—H20	0.8501	С7—С8	1.365 (3)
N1—C1	1.320 (2)	С7—Н7	0.9300
N1—C9	1.360 (2)	C8—C9	1.426 (3)
N2—C11	1.353 (3)	C10—C11	1.500 (3)
N2—N3	1.379 (2)	C10—H10A	0.9700
N2—H2	0.8598	C10—H10B	0.9700
N3—C12	1.268 (3)	C12—C13	1.465 (3)
N4—C16	1.323 (3)	C12—H12	0.9300
N4—C15	1.331 (3)	C13—C17	1.376 (3)
C1—C2	1.395 (3)	C13—C14	1.383 (3)
C1—H1	0.9300	C14—C15	1.378 (3)
C2—C3	1.354 (3)	C14—H14	0.9300
C2—H2A	0.9300	C15—H15	0.9300
C3—C4	1.410 (3)	C16—C17	1.380 (3)
С3—Н3	0.9300	C16—H16	0.9300
C4—C5	1.404 (3)	C17—H17	0.9300
C8—O1—C10	115.81 (15)	O1—C8—C9	115.05 (16)
H18—O3—H19	106.4	N1—C9—C4	122.34 (17)
C1—N1—C9	117.52 (16)	N1—C9—C8	119.39 (15)
C11—N2—N3	118.52 (17)	C4—C9—C8	118.27 (17)
C11—N2—H2	120.8	O1—C10—C11	112.77 (17)
N3—N2—H2	120.6	O1—C10—H10A	109.0
C12—N3—N2	116.05 (17)	C11—C10—H10A	109.0
C16—N4—C15	116.2 (2)	O1—C10—H10B	109.0
N1—C1—C2	124.5 (2)	C11—C10—H10B	109.0
N1—C1—H1	117.7	H10A—C10—H10B	107.8
C2—C1—H1	117.7	O2—C11—N2	124.59 (19)
C3—C2—C1	118.2 (2)	O2—C11—C10	118.0 (2)
C3—C2—H2A	120.9	N2—C11—C10	117.40 (18)
C1—C2—H2A	120.9	N3—C12—C13	120.9 (2)
C2—C3—C4	120.42 (18)	N3—C12—H12	119.6
С2—С3—Н3	119.8	C13—C12—H12	119.6

~ ~ ~ ~ ~			
C4—C3—H3	119.8	C17—C13—C14	116.83 (19)
C5—C4—C3	123.23 (18)	C17—C13—C12	121.0 (2)
C5—C4—C9	119.81 (18)	C14—C13—C12	122.1 (2)
C3—C4—C9	116.96 (19)	C15—C14—C13	118.8 (2)
C6—C5—C4	120.57 (19)	C15—C14—H14	120.6
С6—С5—Н5	119.7	C13—C14—H14	120.6
С4—С5—Н5	119.7	N4-C15-C14	124.5 (2)
C5—C6—C7	120.8 (2)	N4—C15—H15	117.7
С5—С6—Н6А	119.6	C14—C15—H15	117.7
С7—С6—Н6А	119.6	N4—C16—C17	123.4 (2)
C8—C7—C6	120.1 (2)	N4—C16—H16	118.3
С8—С7—Н7	120.0	С17—С16—Н16	118.3
С6—С7—Н7	120.0	C13—C17—C16	120.3 (2)
C7—C8—O1	124.51 (17)	С13—С17—Н17	119.9
C7—C8—C9	120.43 (17)	С16—С17—Н17	119.9
C11—N2—N3—C12	173.72 (19)	C7—C8—C9—N1	-179.76 (18)
C9—N1—C1—C2	0.0 (3)	O1-C8-C9-N1	-0.3 (3)
N1—C1—C2—C3	0.9 (3)	C7—C8—C9—C4	0.0 (3)
C1—C2—C3—C4	-0.6 (3)	O1—C8—C9—C4	179.47 (16)
C2—C3—C4—C5	-179.8 (2)	C8-01-C10-C11	-177.36 (17)
C2—C3—C4—C9	-0.4 (3)	N3—N2—C11—O2	-3.4 (3)
C3—C4—C5—C6	177.7 (2)	N3—N2—C11—C10	177.31 (17)
C9—C4—C5—C6	-1.6 (3)	O1—C10—C11—O2	174.94 (19)
C4—C5—C6—C7	1.3 (4)	O1—C10—C11—N2	-5.7 (3)
C5—C6—C7—C8	-0.3 (4)	N2—N3—C12—C13	176.33 (17)
C6—C7—C8—O1	-179.76 (19)	N3—C12—C13—C17	-179.1 (2)
C6—C7—C8—C9	-0.3 (3)	N3-C12-C13-C14	-1.2 (3)
C10—O1—C8—C7	-5.7 (3)	C17—C13—C14—C15	1.3 (3)
C10-01-C8-C9	174.83 (16)	C12—C13—C14—C15	-176.6 (2)
C1—N1—C9—C4	-1.1 (3)	C16—N4—C15—C14	-1.0 (4)
C1—N1—C9—C8	178.67 (17)	C13—C14—C15—N4	-0.2 (4)
C5—C4—C9—N1	-179.27 (18)	C15—N4—C16—C17	1.2 (4)
C3—C4—C9—N1	1.3 (3)	C14—C13—C17—C16	-1.1 (3)
C5—C4—C9—C8	1.0 (3)	C12—C13—C17—C16	176.83 (19)
C3—C4—C9—C8	-178.43 (18)	N4—C16—C17—C13	-0.1 (3)
	~ /		~ /

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H19…N4 ⁱ	0.85	2.14	2.914 (2)	151
N2—H2…O3	0.86	2.10	2.890 (2)	153
O3—H18…N1	0.85	1.91	2.7582 (19)	175
O4—H20…O3 ⁱⁱ	0.85	2.48	2.825 (2)	105

Symmetry codes: (i) -x-1/2, -y+3/2, -z; (ii) -x+1/2, y-1/2, -z+1/2.