metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridotri­phenyl­anti­mony(V)–bis­­(pyrrolidin-1-ylthio­carbon­yl) di­sulfide (1/1)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 23 November 2007; accepted 27 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, [Sb(C6H5)3Cl2]·C10H16N2S4, comprises a bis­(pyrrolidinylthio­carbamo­yl) mol­ecule and a dichloro­triphenyl­anti­mony(V) complex. In the Sb complex, the central atom is coordinated by three C atoms of the three phenyl ligands and two Cl atoms in a slightly distorted trigonal-bipyramidal geometry. The thio­carbamoyl units, connected via the disulfide bond, are approximately perpendicular to each other. The mol­ecules are connected by weak C—H⋯S and C—H⋯Cl hydrogen-bonding inter­actions into two one-dimensional supra­molecular chains.

Related literature

For related structures, see: Williams et al. (1983[Williams, G. A., Statham, J. R. & White, A. H. (1983). Aust. J. Chem. 36, 1371-1377.]); Feng Li et al. (2006[Li, F., Yin, H.-D., Hong, M., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1417-m1418.]). For discussion on C—H⋯S inter­actions, see: Srinivasan et al. (2007[Srinivasan, B. R., Naik, A. R., Näther, C. & Bensch, W. (2007). Z. Anorg. Allg. Chem. 633, 582-588.]). For related literature, see: Kumar et al. (1990[Kumar, V., Aravamudan, G. & Seshasayee, M. (1990). Acta Cryst. C46, 674-676.]).

[Scheme 1]

Experimental

Crystal data
  • [Sb(C6H5)3Cl2]·C10H16N2S4

  • Mr = 716.48

  • Monoclinic, P 21 /n

  • a = 14.8138 (18) Å

  • b = 13.6440 (13) Å

  • c = 16.316 (3) Å

  • β = 105.509 (2)°

  • V = 3177.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 298 (2) K

  • 0.50 × 0.42 × 0.39 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.558, Tmax = 0.627

  • 14597 measured reflections

  • 5560 independent reflections

  • 4333 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.092

  • S = 1.00

  • 5560 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯S4i 0.93 2.91 3.594 (5) 132
C13—H13⋯Cl2ii 0.93 2.83 3.509 (4) 131
C8—H8A⋯Cl1iii 0.97 2.84 3.719 (6) 151
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z+1; (iii) -x, -y+2, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title complex, the antimony atom is coordinated by three C atoms of three phenyl ligands and two Cl atoms in a slightly distorted trigonal-bipyramidal geometry. Atoms Cl1, Cl2 of the complex lie in axial positions (Fig. 1), with the axial angle Cl1—Sb1—Cl2 178.65 (4)°, deviating substantially from the linear value of 180°. The distances Sb—Cl also vary merely with the role they play in the structure: Sb1—Cl1 = 2.4720 (9) Å and Sb1—Cl2 = 2.4792 (10) Å. In the bis(pyrrolidinylthiocarbamoyl) molecule of the title compound, the thiocarbamoyl moieties, connected via the disulfide bond (S1—S3 = 2.0029 (17) Å), are approximately perpendicular to each other. A Newman projection, calculated with PLATON, with a view along the disulfide bond results in a dihedral angle of 87 ° for C1—S1—S3—C6 (Spek, 2003).

The Dipyrrolidylthiuram disulfide molecule, (which is another name of the organic part in our structure) shows a planar model with crystallographic inversion symmetry in the midpoint of the S—S bond (Williams et al., 1983).

In the similar structure bis(N,N-dicyclohexylthiocarbamoyl) disulfide, a crystallographic twofold axis passes through the midpoint of the S—S bond (Li et al., 2006). The disulfide S—S distance is close to the distances observed in free (uncoordinated) disulfides (Kumar et al., 1990).

The S atoms of bis(pyrrolidinylthiocarbamoyl) and the Cl atoms of dichlorotriphenylantimony play a significant role in the crystal packing, linking the complex molecules by weak C—H···S and C—H···Cl (Table 1) hydrogen bonds to form two one-dimensional supramolecular chains (Fig. 2).

Related literature top

For related structures, see: Williams et al. (1983); Feng Li et al. (2006). For discussion on C—H···S interactions, see: Srinivasan et al. (2007). For related literature, see: Kumar et al. (1990).

Experimental top

Chlorotriphenylantimony (0.2 mmol) was dissolved in benzene (15 ml) and bis(pyrrolidinylthiocarbamoyl) (0.2 mmol) dissolved in methanol was added with stirring at room temperature for eight hours and then filtered. Orange crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum/dichloromethane (1:2 v/v) solution over a period of twenty days (yield 85%. m.p. 432k). Anal. Calcd (%) for C28H31N2S4Cl2Sb(Mr = 716.48): C, 46.94; H, 4.36; N, 3.91. Found (%): C, 46.89; H, 4.31; N, 3.87.

Refinement top

The H atoms bound to C of pyrrolidine were located in a difference map and were refined as riding on their respective C atoms with distances C—H = 0.97 Å and with Uiso(H) = 1.2Ueq(C). The other H atoms were constraint at calculated positions (riding mode), with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

In the title complex, the antimony atom is coordinated by three C atoms of three phenyl ligands and two Cl atoms in a slightly distorted trigonal-bipyramidal geometry. Atoms Cl1, Cl2 of the complex lie in axial positions (Fig. 1), with the axial angle Cl1—Sb1—Cl2 178.65 (4)°, deviating substantially from the linear value of 180°. The distances Sb—Cl also vary merely with the role they play in the structure: Sb1—Cl1 = 2.4720 (9) Å and Sb1—Cl2 = 2.4792 (10) Å. In the bis(pyrrolidinylthiocarbamoyl) molecule of the title compound, the thiocarbamoyl moieties, connected via the disulfide bond (S1—S3 = 2.0029 (17) Å), are approximately perpendicular to each other. A Newman projection, calculated with PLATON, with a view along the disulfide bond results in a dihedral angle of 87 ° for C1—S1—S3—C6 (Spek, 2003).

The Dipyrrolidylthiuram disulfide molecule, (which is another name of the organic part in our structure) shows a planar model with crystallographic inversion symmetry in the midpoint of the S—S bond (Williams et al., 1983).

In the similar structure bis(N,N-dicyclohexylthiocarbamoyl) disulfide, a crystallographic twofold axis passes through the midpoint of the S—S bond (Li et al., 2006). The disulfide S—S distance is close to the distances observed in free (uncoordinated) disulfides (Kumar et al., 1990).

The S atoms of bis(pyrrolidinylthiocarbamoyl) and the Cl atoms of dichlorotriphenylantimony play a significant role in the crystal packing, linking the complex molecules by weak C—H···S and C—H···Cl (Table 1) hydrogen bonds to form two one-dimensional supramolecular chains (Fig. 2).

For related structures, see: Williams et al. (1983); Feng Li et al. (2006). For discussion on C—H···S interactions, see: Srinivasan et al. (2007). For related literature, see: Kumar et al. (1990).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing catemer chains, linked by weak C15—H15···S4, C13—H13···Cl2, C8—H8A···Cl1 hydrogen bonding contacts, indicated by dashed lines. Symmetry codes are given in Table 1.
Dichloridotriphenylantimony(V)–bis(pyrrolidin-1-ylthiocarbonyl) disulfide (1/1) top
Crystal data top
[Sb(C6H5)3Cl2]·C10H16N2S4F(000) = 1448
Mr = 716.48Dx = 1.498 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7025 reflections
a = 14.8138 (18) Åθ = 2.2–27.8°
b = 13.6440 (13) ŵ = 1.32 mm1
c = 16.316 (3) ÅT = 298 K
β = 105.509 (2)°Block, colorless
V = 3177.7 (8) Å30.50 × 0.42 × 0.39 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
5560 independent reflections
Radiation source: fine-focus sealed tube4333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1710
Tmin = 0.558, Tmax = 0.627k = 1616
14597 measured reflectionsl = 1919
Refinement top
Refinement on f2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.045P)2 + 1.9404P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5560 reflectionsΔρmax = 0.67 e Å3
335 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (3)
Crystal data top
[Sb(C6H5)3Cl2]·C10H16N2S4V = 3177.7 (8) Å3
Mr = 716.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.8138 (18) ŵ = 1.32 mm1
b = 13.6440 (13) ÅT = 298 K
c = 16.316 (3) Å0.50 × 0.42 × 0.39 mm
β = 105.509 (2)°
Data collection top
Siemens SMART CCD
diffractometer
5560 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4333 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.627Rint = 0.041
14597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.00Δρmax = 0.67 e Å3
5560 reflectionsΔρmin = 0.59 e Å3
335 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.018116 (16)0.991080 (17)0.234502 (14)0.03657 (11)
Cl10.07709 (7)1.08719 (7)0.11362 (6)0.0508 (3)
Cl20.11117 (8)0.89132 (8)0.35457 (6)0.0569 (3)
N10.6750 (2)0.8384 (2)0.3780 (2)0.0516 (8)
N20.4034 (2)1.0375 (2)0.0796 (2)0.0534 (9)
S10.59570 (9)0.82805 (9)0.21567 (7)0.0664 (3)
S20.50821 (9)0.92203 (9)0.34589 (8)0.0665 (3)
S30.46930 (9)0.86974 (9)0.14467 (7)0.0704 (4)
S40.58682 (9)1.05180 (10)0.13631 (8)0.0742 (4)
C10.5950 (3)0.8643 (3)0.3226 (2)0.0479 (10)
C20.7541 (3)0.7877 (3)0.3599 (3)0.0660 (12)
H2A0.77180.81810.31270.079*
H2B0.73960.71920.34670.079*
C30.8311 (4)0.7985 (4)0.4418 (3)0.0879 (17)
H3A0.87350.74290.45050.106*
H3B0.86670.85800.44150.106*
C40.7802 (4)0.8025 (5)0.5087 (3)0.0972 (19)
H4A0.81740.83560.55910.117*
H4B0.76540.73710.52430.117*
C50.6926 (3)0.8589 (4)0.4697 (3)0.0685 (13)
H5A0.64100.83620.49100.082*
H5B0.70170.92850.48120.082*
C60.4843 (3)0.9968 (3)0.1173 (2)0.0531 (11)
C70.3104 (3)0.9904 (3)0.0625 (3)0.0732 (14)
H7A0.30290.95670.11260.088*
H7B0.30150.94380.01610.088*
C80.2428 (4)1.0747 (4)0.0389 (4)0.100 (2)
H8A0.18501.05410.00120.120*
H8B0.22831.10180.08890.120*
C90.2927 (4)1.1471 (5)0.0001 (4)0.104 (2)
H9A0.27031.21280.00610.124*
H9B0.28281.13340.06020.124*
C100.3956 (4)1.1383 (3)0.0462 (3)0.0739 (14)
H10A0.43451.14760.00760.089*
H10B0.41331.18580.09200.089*
C110.0708 (2)1.0332 (3)0.3075 (2)0.0377 (8)
C120.0319 (3)1.0717 (3)0.3882 (2)0.0496 (10)
H120.03281.07570.40950.059*
C130.0893 (3)1.1037 (3)0.4366 (3)0.0589 (11)
H130.06321.13150.48970.071*
C140.1851 (3)1.0950 (3)0.4067 (3)0.0589 (11)
H140.22351.11510.44030.071*
C150.2239 (3)1.0566 (3)0.3274 (3)0.0610 (11)
H150.28861.05080.30750.073*
C160.1680 (3)1.0268 (3)0.2772 (2)0.0495 (10)
H160.19501.00240.22300.059*
C170.0118 (2)0.8611 (3)0.1610 (2)0.0384 (8)
C180.0404 (3)0.7789 (3)0.1959 (3)0.0503 (10)
H180.04780.78080.25070.060*
C190.0580 (3)0.6933 (3)0.1490 (3)0.0607 (12)
H190.07730.63740.17230.073*
C200.0469 (3)0.6908 (3)0.0685 (3)0.0650 (12)
H200.05810.63290.03730.078*
C210.0195 (3)0.7731 (3)0.0336 (3)0.0611 (11)
H210.01270.77090.02140.073*
C220.0018 (3)0.8593 (3)0.0794 (2)0.0491 (10)
H220.01660.91520.05560.059*
C230.1365 (3)1.0813 (3)0.2432 (2)0.0428 (9)
C240.2261 (3)1.0430 (4)0.2705 (3)0.0642 (12)
H240.23510.97650.28250.077*
C250.3018 (3)1.1049 (4)0.2797 (4)0.0844 (16)
H250.36221.07950.29670.101*
C260.2892 (4)1.2026 (4)0.2643 (4)0.0859 (16)
H260.34081.24370.27140.103*
C270.2006 (4)1.2404 (3)0.2382 (3)0.0757 (14)
H270.19231.30720.22780.091*
C280.1236 (3)1.1801 (3)0.2271 (2)0.0505 (10)
H280.06351.20600.20890.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.03922 (16)0.03827 (16)0.03499 (15)0.00222 (11)0.01473 (11)0.00279 (10)
Cl10.0587 (6)0.0493 (6)0.0422 (5)0.0073 (5)0.0095 (4)0.0092 (4)
Cl20.0678 (7)0.0605 (6)0.0419 (5)0.0145 (6)0.0138 (5)0.0138 (4)
N10.050 (2)0.0453 (19)0.0531 (19)0.0006 (17)0.0033 (16)0.0008 (15)
N20.059 (2)0.0451 (19)0.0507 (19)0.0064 (18)0.0047 (17)0.0006 (15)
S10.0762 (8)0.0609 (7)0.0545 (6)0.0119 (6)0.0046 (6)0.0034 (5)
S20.0606 (7)0.0570 (7)0.0807 (8)0.0096 (6)0.0170 (6)0.0004 (6)
S30.0749 (8)0.0524 (7)0.0655 (7)0.0139 (6)0.0136 (6)0.0068 (5)
S40.0652 (8)0.0727 (8)0.0780 (8)0.0193 (7)0.0074 (6)0.0031 (6)
C10.053 (2)0.034 (2)0.054 (2)0.0035 (18)0.0078 (19)0.0020 (16)
C20.057 (3)0.057 (3)0.080 (3)0.005 (2)0.012 (2)0.004 (2)
C30.059 (3)0.083 (4)0.104 (4)0.013 (3)0.010 (3)0.005 (3)
C40.085 (4)0.111 (5)0.076 (4)0.005 (4)0.014 (3)0.017 (3)
C50.072 (3)0.072 (3)0.055 (3)0.003 (3)0.005 (2)0.006 (2)
C60.066 (3)0.048 (2)0.040 (2)0.008 (2)0.005 (2)0.0023 (17)
C70.059 (3)0.066 (3)0.085 (3)0.008 (3)0.001 (3)0.005 (2)
C80.069 (4)0.085 (4)0.128 (5)0.006 (3)0.001 (3)0.011 (4)
C90.095 (5)0.091 (4)0.116 (5)0.031 (4)0.014 (4)0.029 (4)
C100.089 (4)0.053 (3)0.078 (3)0.002 (3)0.019 (3)0.001 (2)
C110.039 (2)0.047 (2)0.0280 (17)0.0044 (18)0.0112 (15)0.0047 (15)
C120.047 (2)0.059 (3)0.045 (2)0.001 (2)0.0155 (18)0.0031 (18)
C130.066 (3)0.068 (3)0.046 (2)0.002 (2)0.022 (2)0.011 (2)
C140.057 (3)0.067 (3)0.064 (3)0.006 (2)0.035 (2)0.008 (2)
C150.044 (2)0.075 (3)0.069 (3)0.001 (2)0.025 (2)0.010 (2)
C160.047 (2)0.060 (3)0.041 (2)0.002 (2)0.0133 (18)0.0061 (18)
C170.0344 (19)0.038 (2)0.0434 (19)0.0001 (16)0.0112 (16)0.0024 (15)
C180.049 (2)0.051 (2)0.057 (2)0.001 (2)0.0257 (19)0.0049 (19)
C190.051 (3)0.049 (3)0.087 (3)0.011 (2)0.026 (2)0.004 (2)
C200.066 (3)0.048 (3)0.079 (3)0.002 (2)0.017 (3)0.016 (2)
C210.078 (3)0.059 (3)0.050 (2)0.003 (3)0.024 (2)0.009 (2)
C220.065 (3)0.045 (2)0.043 (2)0.003 (2)0.0250 (19)0.0023 (17)
C230.039 (2)0.047 (2)0.047 (2)0.0026 (18)0.0181 (17)0.0019 (17)
C240.047 (3)0.057 (3)0.091 (3)0.005 (2)0.023 (2)0.010 (2)
C250.038 (3)0.081 (4)0.131 (5)0.000 (3)0.017 (3)0.013 (3)
C260.053 (3)0.076 (4)0.125 (5)0.022 (3)0.018 (3)0.004 (3)
C270.066 (3)0.044 (3)0.115 (4)0.010 (2)0.021 (3)0.004 (3)
C280.045 (2)0.042 (2)0.066 (3)0.0014 (19)0.017 (2)0.0033 (19)
Geometric parameters (Å, º) top
Sb1—C112.079 (4)C10—H10A0.9700
Sb1—C232.116 (4)C10—H10B0.9700
Sb1—C172.120 (3)C11—C121.392 (5)
Sb1—Cl12.4720 (9)C11—C161.394 (5)
Sb1—Cl22.4792 (10)C12—C131.377 (5)
N1—C11.332 (5)C12—H120.9300
N1—C21.457 (5)C13—C141.377 (6)
N1—C51.476 (5)C13—H130.9300
N2—C61.315 (5)C14—C151.371 (6)
N2—C101.473 (5)C14—H140.9300
N2—C71.477 (6)C15—C161.372 (5)
S1—C11.817 (4)C15—H150.9300
S1—S32.0029 (17)C16—H160.9300
S2—C11.636 (4)C17—C181.375 (5)
S3—C61.818 (4)C17—C221.379 (5)
S4—C61.648 (5)C18—C191.382 (6)
C2—C31.515 (6)C18—H180.9300
C2—H2A0.9700C19—C201.368 (6)
C2—H2B0.9700C19—H190.9300
C3—C41.484 (8)C20—C211.369 (6)
C3—H3A0.9700C20—H200.9300
C3—H3B0.9700C21—C221.381 (6)
C4—C51.496 (7)C21—H210.9300
C4—H4A0.9700C22—H220.9300
C4—H4B0.9700C23—C281.378 (5)
C5—H5A0.9700C23—C241.384 (6)
C5—H5B0.9700C24—C251.380 (6)
C7—C81.507 (7)C24—H240.9300
C7—H7A0.9700C25—C261.360 (7)
C7—H7B0.9700C25—H250.9300
C8—C91.476 (8)C26—C271.367 (7)
C8—H8A0.9700C26—H260.9300
C8—H8B0.9700C27—C281.378 (6)
C9—C101.514 (7)C27—H270.9300
C9—H9A0.9700C28—H280.9300
C9—H9B0.9700
C11—Sb1—C23116.22 (14)C8—C9—H9B110.4
C11—Sb1—C17119.09 (14)C10—C9—H9B110.4
C23—Sb1—C17124.66 (14)H9A—C9—H9B108.6
C11—Sb1—Cl189.80 (10)N2—C10—C9103.2 (4)
C23—Sb1—Cl191.75 (10)N2—C10—H10A111.1
C17—Sb1—Cl190.23 (9)C9—C10—H10A111.1
C11—Sb1—Cl290.17 (10)N2—C10—H10B111.1
C23—Sb1—Cl289.47 (10)C9—C10—H10B111.1
C17—Sb1—Cl288.61 (9)H10A—C10—H10B109.1
Cl1—Sb1—Cl2178.65 (4)C12—C11—C16119.1 (3)
C1—N1—C2127.4 (3)C12—C11—Sb1118.7 (3)
C1—N1—C5121.4 (4)C16—C11—Sb1122.2 (3)
C2—N1—C5111.2 (3)C13—C12—C11119.9 (4)
C6—N2—C10122.6 (4)C13—C12—H12120.0
C6—N2—C7126.3 (4)C11—C12—H12120.0
C10—N2—C7111.1 (4)C12—C13—C14120.4 (4)
C1—S1—S3103.49 (15)C12—C13—H13119.8
C6—S3—S1104.86 (16)C14—C13—H13119.8
N1—C1—S2125.6 (3)C15—C14—C13119.9 (4)
N1—C1—S1110.2 (3)C15—C14—H14120.1
S2—C1—S1124.1 (2)C13—C14—H14120.1
N1—C2—C3103.4 (4)C14—C15—C16120.6 (4)
N1—C2—H2A111.1C14—C15—H15119.7
C3—C2—H2A111.1C16—C15—H15119.7
N1—C2—H2B111.1C15—C16—C11120.0 (4)
C3—C2—H2B111.1C15—C16—H16120.0
H2A—C2—H2B109.0C11—C16—H16120.0
C4—C3—C2103.9 (4)C18—C17—C22120.6 (4)
C4—C3—H3A111.0C18—C17—Sb1119.3 (3)
C2—C3—H3A111.0C22—C17—Sb1120.1 (3)
C4—C3—H3B111.0C17—C18—C19119.6 (4)
C2—C3—H3B111.0C17—C18—H18120.2
H3A—C3—H3B109.0C19—C18—H18120.2
C3—C4—C5105.1 (4)C20—C19—C18120.0 (4)
C3—C4—H4A110.7C20—C19—H19120.0
C5—C4—H4A110.7C18—C19—H19120.0
C3—C4—H4B110.7C19—C20—C21120.3 (4)
C5—C4—H4B110.7C19—C20—H20119.9
H4A—C4—H4B108.8C21—C20—H20119.9
N1—C5—C4103.3 (4)C20—C21—C22120.5 (4)
N1—C5—H5A111.1C20—C21—H21119.7
C4—C5—H5A111.1C22—C21—H21119.7
N1—C5—H5B111.1C17—C22—C21119.0 (4)
C4—C5—H5B111.1C17—C22—H22120.5
H5A—C5—H5B109.1C21—C22—H22120.5
N2—C6—S4125.1 (3)C28—C23—C24120.2 (4)
N2—C6—S3111.2 (3)C28—C23—Sb1119.1 (3)
S4—C6—S3123.7 (3)C24—C23—Sb1120.5 (3)
N2—C7—C8103.8 (4)C25—C24—C23119.0 (4)
N2—C7—H7A111.0C25—C24—H24120.5
C8—C7—H7A111.0C23—C24—H24120.5
N2—C7—H7B111.0C26—C25—C24120.8 (5)
C8—C7—H7B111.0C26—C25—H25119.6
H7A—C7—H7B109.0C24—C25—H25119.6
C9—C8—C7104.2 (5)C25—C26—C27120.0 (5)
C9—C8—H8A110.9C25—C26—H26120.0
C7—C8—H8A110.9C27—C26—H26120.0
C9—C8—H8B110.9C26—C27—C28120.5 (4)
C7—C8—H8B110.9C26—C27—H27119.7
H8A—C8—H8B108.9C28—C27—H27119.7
C8—C9—C10106.6 (4)C27—C28—C23119.5 (4)
C8—C9—H9A110.4C27—C28—H28120.3
C10—C9—H9A110.4C23—C28—H28120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···S4i0.932.913.594 (5)132
C13—H13···Cl2ii0.932.833.509 (4)131
C8—H8A···Cl1iii0.972.843.719 (6)151
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Sb(C6H5)3Cl2]·C10H16N2S4
Mr716.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.8138 (18), 13.6440 (13), 16.316 (3)
β (°) 105.509 (2)
V3)3177.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.50 × 0.42 × 0.39
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.558, 0.627
No. of measured, independent and
observed [I > 2σ(I)] reflections
14597, 5560, 4333
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.092, 1.00
No. of reflections5560
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.59

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···S4i0.932.913.594 (5)131.8
C13—H13···Cl2ii0.932.833.509 (4)130.5
C8—H8A···Cl1iii0.972.843.719 (6)151.1
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x, y+2, z.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant No. 20771053) and the Natural Science Foundation of Shandong Province (2005ZX09) for financial support.

References

First citationKumar, V., Aravamudan, G. & Seshasayee, M. (1990). Acta Cryst. C46, 674–676.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, F., Yin, H.-D., Hong, M., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1417–m1418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSrinivasan, B. R., Naik, A. R., Näther, C. & Bensch, W. (2007). Z. Anorg. Allg. Chem. 633, 582–588.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilliams, G. A., Statham, J. R. & White, A. H. (1983). Aust. J. Chem. 36, 1371–1377.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds