metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-phenyl-4,6-di-2-pyridyl-1,3,5-triazine-κ3N4,N5,N6)ruthenium(II) bis­(hexa­fluoridophosphate)

aChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand, and bDépartement de Chimie, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
*Correspondence e-mail: matthew.polson@canterbury.ac.nz

(Received 9 November 2007; accepted 14 December 2007; online 21 December 2007)

The asymmetric unit of the title compound, [Ru(C19H13N5)2](PF6)2, consists of an RuII complex cation and two hexa­fluoridophosphate anions. The RuII atom is coordinated by three N atoms from the two outer pyridine and the central triazine rings of each of two tridentate ligands in a distorted octa­hedral environment. The ligands are approximately orthogonal to one another, with a dihedral angle of 88.34 (2)° between planes through the three six-membered rings of the two ligands. The pendant phenyl substituents are almost coplanar with the triazine rings to which they are bound, with dihedral angles of 5.41 (9) and 14.90 (10)°. This is reflected in the previously reported photophysical results with an increased lifetime of the triplet metal to ligand charge transfer (3MLCT) excited state [Fang, Taylor, Hanan, Loiseau, Passalacqua, Campagna, Nierengarten & Van Dorsselaer (2002). J. Am. Chem. Soc. 124, 7912–7913].

Related literature

For related synthetic details, see: Polson et al. (2002[Polson, M. I. J., Taylor, N. J. & Hanan, G. S. (2002). Chem. Commun. pp. 1536-1537.], 2004[Polson, M. I. J., Medlycott, E. A., Hanan, G. S., Mikelsons, L., Taylor, N. J., Watanabe, M., Tanaka, Y., Loiseau, F., Passalacqua, R. & Campagna, S. (2004). Chem. Eur. J. 10, 3640-3648.]). For related structures, see: Polson et al. (2002[Polson, M. I. J., Taylor, N. J. & Hanan, G. S. (2002). Chem. Commun. pp. 1536-1537.]). For general background on the photophysics of ruthenium polypyridyl complexes, see: Kalyanasundaram (1991[Kalyanasundaram, K. (1991). Photochemistry of Polypyridine and Porphyrin Complexes. London: Academic Press.]); Barigelletti et al. (1995[Barigelletti, F., Flamigni, L., Balzani, V., Collin, J.-P., Sauvage, J.-P. & Sour, A. (1995). New J. Chem. 19, 793-798.]). For background on C—H⋯N inter­actions in α-diimines, see: Fitchett et al. (2005[Fitchett, C. M., Richardson, C. & Steel, P. J. (2005). Org. Biomol. Chem. 3, 498-502.]). For related literature, see: Beley et al. (1991[Beley, M., Collin, J.-P., Sauvage, J.-P., Sugihara, H., Heisel, F. & Miehe, A. (1991). J. Chem. Soc. Dalton Trans. pp. 3157-3159.]); Fang et al. (2002[Fang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R., Campagna, S., Nierengarten, H. & Van Dorsselaer, A. (2002). J. Am. Chem. Soc. 124, 7912-7913.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C19H13N5)2](PF6)2

  • Mr = 1013.70

  • Monoclinic, P 21 /n

  • a = 9.0995 (3) Å

  • b = 32.5979 (11) Å

  • c = 13.1451 (5) Å

  • β = 91.774 (2)°

  • V = 3897.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 93 (2) K

  • 0.30 × 0.13 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.822, Tmax = 0.950

  • 75901 measured reflections

  • 8114 independent reflections

  • 6511 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 0.99

  • 8114 reflections

  • 568 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ru1—N10 2.0982 (16)
Ru1—N20 1.9773 (15)
Ru1—N30 2.0990 (16)
Ru1—N50 2.0967 (16)
Ru1—N60 1.9723 (15)
Ru1—N70 2.0939 (17)
N10—Ru1—N30 154.76 (6)
N60—Ru1—N20 179.28 (7)
N70—Ru1—N50 155.22 (6)
N20—Ru1—N70 103.31 (6)
N20—Ru1—N50 101.42 (6)
N20—Ru1—N10 77.77 (6)
N20—Ru1—N30 77.00 (6)
N50—Ru1—N10 91.99 (6)
N50—Ru1—N30 92.35 (6)
N60—Ru1—N50 77.85 (6)
N60—Ru1—N70 77.42 (6)
N60—Ru1—N10 102.25 (6)
N60—Ru1—N30 102.98 (6)
N70—Ru1—N10 91.67 (6)
N70—Ru1—N30 94.71 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C41—H41⋯N21 0.95 2.47 2.793 (3) 100
C45—H45⋯N22 0.95 2.52 2.826 (3) 99
C81—H81⋯N61 0.95 2.47 2.797 (2) 100
C85—H85⋯N62 0.95 2.50 2.823 (3) 100

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The structure of the title compound reveals the ruthenium(II) atom to be in a distorted octahedral environment, Table 1. The Ru—N bond lengths to the central triazine ring are significantly shortened when compared to those of the outer pyridine rings. The angles between the coordinating pyridine N atoms also deviate significantly from 180 ° indicating considerable distortion.

Ruthenium complexes of this type have long been known to exhibit surprisingly short lived excited states. This is due to rapid deactivation of the excited state through a low lying metal centred state (Kalyanasundaram, 1991; Barigelletti et al., 1995). By lowering the energy of the triplet metal to ligand charge transfer 3MLCT state, this exchange can be slowed and the lifetime of the excited state is extended (Fang et al., 2002). In the title compound (1) replacement of a the central pyridine ring with a triazine ring in complex with a 4-phenyl substituent allows the pendant phenyl ring to adopt an arrangement in which it is approximately co-planar with the rest of the ligand. This results from the removal of stericically conflicting C—H···H—C interactions and the addition of attractive intramolecular C—H···N interactions. Although the C—H···N angles are acute (approximately 100 °) they are typical of interactions in molecules of this kind (Fitchett et al., 2005) with N···H lengths of 2.47 to 2.52 Å, Table 2. The greater overall planarity of the ligands extends the HOMO orbital (predominately π* in nature) over more of the ligand surface, decreasing the energy of the 3MLCT state (Beley et al., 1991; Polson et al., 2002).

Related literature top

For related synthetic details see: Polson et al. (2002, 2004). For related structures, see: Polson et al. (2002). For general background on the photophysics of ruthenium polypyridyl complexes, see: Kalyanasundaram (1991); Barigelletti et al. (1995). For background on C—H···N interactions in α-diimines, see: Fitchett et al. (2005).

For related literature, see: Beley et al. (1991); Fang et al. (2002).

Experimental top

The complex was prepared as described by Polson et al. (2004). Crystals suitable for X-ray crystallography were prepared by the diffusion of diisopropyl ether into an acetonitrile solution of the complex over a week.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C).

Structure description top

The structure of the title compound reveals the ruthenium(II) atom to be in a distorted octahedral environment, Table 1. The Ru—N bond lengths to the central triazine ring are significantly shortened when compared to those of the outer pyridine rings. The angles between the coordinating pyridine N atoms also deviate significantly from 180 ° indicating considerable distortion.

Ruthenium complexes of this type have long been known to exhibit surprisingly short lived excited states. This is due to rapid deactivation of the excited state through a low lying metal centred state (Kalyanasundaram, 1991; Barigelletti et al., 1995). By lowering the energy of the triplet metal to ligand charge transfer 3MLCT state, this exchange can be slowed and the lifetime of the excited state is extended (Fang et al., 2002). In the title compound (1) replacement of a the central pyridine ring with a triazine ring in complex with a 4-phenyl substituent allows the pendant phenyl ring to adopt an arrangement in which it is approximately co-planar with the rest of the ligand. This results from the removal of stericically conflicting C—H···H—C interactions and the addition of attractive intramolecular C—H···N interactions. Although the C—H···N angles are acute (approximately 100 °) they are typical of interactions in molecules of this kind (Fitchett et al., 2005) with N···H lengths of 2.47 to 2.52 Å, Table 2. The greater overall planarity of the ligands extends the HOMO orbital (predominately π* in nature) over more of the ligand surface, decreasing the energy of the 3MLCT state (Beley et al., 1991; Polson et al., 2002).

For related synthetic details see: Polson et al. (2002, 2004). For related structures, see: Polson et al. (2002). For general background on the photophysics of ruthenium polypyridyl complexes, see: Kalyanasundaram (1991); Barigelletti et al. (1995). For background on C—H···N interactions in α-diimines, see: Fitchett et al. (2005).

For related literature, see: Beley et al. (1991); Fang et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), showing displacement ellipsoids at the 50% probability level. All H atoms have been omitted for clarity.
Bis(2-phenyl-4,6-di-2-pyridyl-1,3,5-triazine- κ3N4,N5,N6)ruthenium(II) bis(hexafluoridophosphate) top
Crystal data top
[Ru(C19H13N5)2](PF6)2F(000) = 2024
Mr = 1013.70Dx = 1.728 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7650 reflections
a = 9.0995 (3) Åθ = 4.7–53.0°
b = 32.5979 (11) ŵ = 0.59 mm1
c = 13.1451 (5) ÅT = 93 K
β = 91.774 (2)°Needle, red
V = 3897.3 (2) Å30.30 × 0.13 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8114 independent reflections
Radiation source: sealed tube6511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 26.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.822, Tmax = 0.950k = 4040
75901 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.5007P]
where P = (Fo2 + 2Fc2)/3
8114 reflections(Δ/σ)max < 0.001
568 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Ru(C19H13N5)2](PF6)2V = 3897.3 (2) Å3
Mr = 1013.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0995 (3) ŵ = 0.59 mm1
b = 32.5979 (11) ÅT = 93 K
c = 13.1451 (5) Å0.30 × 0.13 × 0.08 mm
β = 91.774 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6511 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.950Rint = 0.060
75901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.99Δρmax = 0.55 e Å3
8114 reflectionsΔρmin = 0.57 e Å3
568 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.511004 (17)0.118305 (4)0.711838 (12)0.01108 (5)
N100.71581 (17)0.12419 (5)0.64422 (12)0.0136 (4)
C100.8068 (2)0.09472 (6)0.61281 (16)0.0179 (5)
H100.78050.06690.62310.021*
C110.9375 (2)0.10327 (6)0.56596 (17)0.0232 (5)
H110.99780.08150.54330.028*
C120.9798 (2)0.14335 (6)0.55231 (17)0.0240 (5)
H121.07000.14960.52120.029*
C130.8884 (2)0.17461 (6)0.58476 (16)0.0192 (5)
H130.91500.20260.57650.023*
C140.7588 (2)0.16422 (5)0.62909 (15)0.0141 (4)
N200.53678 (17)0.17849 (5)0.70707 (12)0.0123 (3)
N210.67356 (18)0.23500 (5)0.65306 (13)0.0158 (4)
N220.44719 (18)0.24472 (5)0.73807 (12)0.0148 (4)
C200.6545 (2)0.19520 (6)0.66416 (15)0.0137 (4)
C210.5662 (2)0.25871 (6)0.69099 (15)0.0147 (4)
C220.4357 (2)0.20427 (6)0.74240 (15)0.0132 (4)
N300.31752 (18)0.14032 (5)0.77547 (12)0.0130 (3)
C300.2009 (2)0.11839 (6)0.80597 (16)0.0177 (4)
H300.20420.08930.80160.021*
C310.0766 (2)0.13690 (6)0.84348 (17)0.0220 (5)
H310.00400.12050.86330.026*
C320.0698 (2)0.17918 (6)0.85204 (17)0.0221 (5)
H320.01410.19210.87900.027*
C330.1878 (2)0.20221 (6)0.82050 (15)0.0180 (4)
H330.18580.23130.82470.022*
C340.3083 (2)0.18235 (6)0.78291 (15)0.0133 (4)
C400.5820 (2)0.30342 (6)0.67733 (16)0.0172 (4)
C410.6825 (2)0.31883 (6)0.60975 (17)0.0223 (5)
H410.74510.30070.57470.027*
C420.6911 (3)0.36089 (6)0.59355 (18)0.0268 (5)
H420.75850.37150.54640.032*
C430.6018 (3)0.38746 (6)0.64602 (18)0.0263 (5)
H430.60810.41620.63490.032*
C440.5033 (2)0.37218 (6)0.71460 (18)0.0237 (5)
H440.44330.39050.75130.028*
C450.4920 (2)0.33042 (6)0.72995 (17)0.0207 (5)
H450.42320.32000.77630.025*
N500.40436 (17)0.10703 (5)0.57094 (12)0.0124 (3)
C500.3662 (2)0.13390 (6)0.49749 (15)0.0141 (4)
H500.39030.16200.50730.017*
C510.2932 (2)0.12242 (6)0.40811 (16)0.0162 (4)
H510.26810.14240.35790.019*
C520.2572 (2)0.08161 (6)0.39243 (16)0.0172 (4)
H520.20630.07320.33180.021*
C530.2965 (2)0.05329 (6)0.46646 (15)0.0161 (4)
H530.27320.02510.45720.019*
C540.3700 (2)0.06633 (5)0.55407 (15)0.0120 (4)
N600.48400 (17)0.05829 (5)0.71489 (12)0.0129 (3)
N610.40078 (18)0.00188 (5)0.63404 (12)0.0143 (4)
N620.51801 (18)0.00465 (5)0.79959 (13)0.0147 (4)
C600.4180 (2)0.03841 (6)0.63663 (15)0.0137 (4)
C610.4496 (2)0.02227 (6)0.71801 (15)0.0148 (4)
C620.5347 (2)0.03559 (6)0.79454 (15)0.0143 (4)
N700.61068 (17)0.10207 (5)0.85180 (12)0.0136 (4)
C700.6809 (2)0.12700 (6)0.91947 (15)0.0158 (4)
H700.67980.15570.90760.019*
C710.7543 (2)0.11210 (6)1.00527 (16)0.0187 (4)
H710.80370.13051.05080.022*
C720.7560 (2)0.07045 (6)1.02492 (16)0.0197 (5)
H720.80680.05991.08350.024*
C730.6820 (2)0.04436 (6)0.95750 (16)0.0173 (4)
H730.68030.01560.96950.021*
C740.6111 (2)0.06077 (6)0.87298 (15)0.0145 (4)
C800.4271 (2)0.06706 (6)0.71991 (15)0.0155 (4)
C810.3459 (2)0.08622 (6)0.64177 (16)0.0194 (5)
H810.30370.07030.58780.023*
C820.3265 (2)0.12824 (6)0.64252 (18)0.0236 (5)
H820.27220.14110.58860.028*
C830.3860 (2)0.15176 (6)0.72169 (18)0.0237 (5)
H830.37200.18060.72210.028*
C840.4651 (2)0.13302 (6)0.79949 (17)0.0227 (5)
H840.50490.14900.85410.027*
C850.4873 (2)0.09084 (6)0.79877 (16)0.0197 (5)
H850.54350.07820.85220.024*
P100.21119 (6)0.252045 (16)0.48554 (4)0.02011 (13)
F100.18421 (15)0.22740 (4)0.58837 (10)0.0386 (4)
F110.26219 (15)0.29172 (4)0.54874 (10)0.0327 (3)
F120.04573 (14)0.26820 (4)0.48256 (10)0.0362 (3)
F130.23965 (14)0.27617 (3)0.38108 (9)0.0250 (3)
F140.16179 (15)0.21244 (4)0.42100 (10)0.0339 (3)
F150.37791 (14)0.23611 (4)0.48793 (11)0.0353 (3)
P200.01052 (6)0.008488 (16)0.76644 (5)0.02301 (14)
F200.05493 (16)0.01201 (4)0.86490 (11)0.0395 (4)
F210.04478 (14)0.05249 (3)0.80299 (10)0.0278 (3)
F220.14343 (15)0.00207 (4)0.70590 (11)0.0369 (4)
F230.07743 (16)0.02936 (4)0.66771 (11)0.0399 (4)
F240.06484 (16)0.03543 (4)0.72907 (12)0.0396 (4)
F250.16550 (15)0.01533 (4)0.82574 (13)0.0452 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01126 (9)0.00884 (8)0.01317 (9)0.00001 (6)0.00056 (6)0.00003 (6)
N100.0122 (9)0.0126 (8)0.0159 (9)0.0005 (6)0.0007 (7)0.0005 (7)
C100.0173 (11)0.0149 (10)0.0214 (12)0.0028 (8)0.0001 (9)0.0018 (8)
C110.0189 (12)0.0222 (11)0.0288 (13)0.0087 (9)0.0053 (10)0.0020 (9)
C120.0129 (11)0.0274 (12)0.0320 (14)0.0020 (9)0.0074 (10)0.0044 (10)
C130.0155 (11)0.0182 (10)0.0240 (12)0.0028 (8)0.0010 (9)0.0028 (9)
C140.0149 (11)0.0135 (9)0.0135 (11)0.0004 (8)0.0032 (8)0.0011 (8)
N200.0124 (9)0.0125 (8)0.0120 (9)0.0001 (6)0.0015 (7)0.0014 (6)
N210.0170 (9)0.0124 (8)0.0178 (10)0.0018 (7)0.0025 (7)0.0012 (7)
N220.0182 (9)0.0106 (8)0.0153 (9)0.0016 (7)0.0031 (7)0.0012 (7)
C200.0127 (10)0.0152 (10)0.0130 (11)0.0019 (8)0.0031 (8)0.0006 (8)
C210.0166 (11)0.0133 (9)0.0140 (11)0.0020 (8)0.0047 (8)0.0014 (8)
C220.0112 (10)0.0144 (9)0.0136 (11)0.0006 (8)0.0033 (8)0.0012 (8)
N300.0139 (9)0.0137 (8)0.0114 (9)0.0001 (7)0.0002 (7)0.0005 (6)
C300.0181 (11)0.0163 (10)0.0189 (11)0.0040 (8)0.0010 (9)0.0006 (8)
C310.0174 (12)0.0256 (11)0.0234 (13)0.0048 (9)0.0069 (9)0.0032 (9)
C320.0176 (11)0.0258 (11)0.0233 (13)0.0045 (9)0.0055 (9)0.0038 (9)
C330.0198 (11)0.0168 (10)0.0174 (11)0.0017 (8)0.0010 (9)0.0008 (8)
C340.0149 (10)0.0131 (9)0.0116 (10)0.0011 (8)0.0022 (8)0.0004 (8)
C400.0189 (11)0.0118 (9)0.0203 (12)0.0021 (8)0.0091 (9)0.0007 (8)
C410.0276 (13)0.0157 (10)0.0233 (13)0.0021 (9)0.0030 (10)0.0006 (9)
C420.0321 (14)0.0194 (11)0.0283 (14)0.0084 (10)0.0078 (11)0.0061 (9)
C430.0321 (14)0.0129 (10)0.0329 (14)0.0011 (9)0.0184 (11)0.0019 (9)
C440.0225 (12)0.0155 (10)0.0326 (14)0.0019 (9)0.0093 (10)0.0031 (9)
C450.0195 (12)0.0162 (10)0.0260 (13)0.0004 (8)0.0067 (9)0.0020 (9)
N500.0096 (8)0.0120 (8)0.0156 (9)0.0008 (6)0.0028 (7)0.0017 (6)
C500.0124 (10)0.0136 (9)0.0164 (11)0.0022 (8)0.0038 (8)0.0010 (8)
C510.0140 (10)0.0165 (10)0.0182 (11)0.0045 (8)0.0019 (8)0.0029 (8)
C520.0164 (11)0.0210 (10)0.0143 (11)0.0026 (8)0.0006 (9)0.0026 (8)
C530.0138 (10)0.0142 (9)0.0202 (12)0.0006 (8)0.0016 (9)0.0032 (8)
C540.0087 (10)0.0133 (9)0.0142 (11)0.0018 (7)0.0041 (8)0.0002 (8)
N600.0119 (9)0.0139 (8)0.0128 (9)0.0010 (6)0.0019 (7)0.0000 (7)
N610.0152 (9)0.0123 (8)0.0154 (9)0.0002 (7)0.0028 (7)0.0004 (7)
N620.0139 (9)0.0123 (8)0.0180 (10)0.0002 (6)0.0026 (7)0.0007 (7)
C600.0100 (10)0.0145 (9)0.0168 (11)0.0007 (8)0.0033 (8)0.0020 (8)
C610.0127 (10)0.0142 (9)0.0177 (11)0.0010 (8)0.0047 (8)0.0004 (8)
C620.0114 (10)0.0148 (9)0.0171 (11)0.0019 (8)0.0032 (8)0.0028 (8)
N700.0125 (9)0.0119 (8)0.0166 (9)0.0002 (7)0.0021 (7)0.0002 (7)
C700.0156 (11)0.0142 (10)0.0177 (11)0.0022 (8)0.0016 (9)0.0021 (8)
C710.0185 (11)0.0209 (11)0.0165 (11)0.0018 (9)0.0016 (9)0.0021 (8)
C720.0212 (12)0.0219 (10)0.0160 (12)0.0020 (9)0.0003 (9)0.0026 (9)
C730.0180 (11)0.0146 (10)0.0194 (12)0.0006 (8)0.0024 (9)0.0024 (8)
C740.0140 (10)0.0142 (9)0.0154 (11)0.0001 (8)0.0040 (8)0.0005 (8)
C800.0138 (11)0.0124 (9)0.0208 (12)0.0015 (8)0.0069 (9)0.0002 (8)
C810.0175 (11)0.0166 (10)0.0242 (12)0.0018 (8)0.0020 (9)0.0008 (9)
C820.0228 (12)0.0163 (10)0.0318 (14)0.0018 (9)0.0008 (10)0.0053 (9)
C830.0224 (12)0.0108 (10)0.0382 (15)0.0009 (9)0.0062 (10)0.0008 (9)
C840.0247 (13)0.0158 (10)0.0280 (14)0.0038 (9)0.0044 (10)0.0068 (9)
C850.0194 (11)0.0171 (10)0.0228 (13)0.0001 (9)0.0034 (9)0.0005 (9)
P100.0221 (3)0.0165 (3)0.0213 (3)0.0062 (2)0.0066 (2)0.0052 (2)
F100.0444 (9)0.0439 (8)0.0267 (8)0.0221 (7)0.0129 (7)0.0191 (6)
F110.0482 (9)0.0203 (6)0.0289 (8)0.0060 (6)0.0121 (7)0.0017 (6)
F120.0238 (8)0.0526 (9)0.0321 (8)0.0031 (6)0.0023 (6)0.0042 (7)
F130.0325 (8)0.0205 (6)0.0221 (7)0.0048 (5)0.0007 (6)0.0061 (5)
F140.0488 (9)0.0168 (6)0.0350 (8)0.0108 (6)0.0161 (7)0.0028 (6)
F150.0278 (8)0.0266 (7)0.0510 (9)0.0031 (6)0.0085 (7)0.0075 (6)
P200.0197 (3)0.0132 (3)0.0362 (4)0.0013 (2)0.0028 (3)0.0045 (2)
F200.0471 (9)0.0261 (7)0.0462 (9)0.0023 (6)0.0159 (7)0.0127 (6)
F210.0287 (7)0.0152 (6)0.0396 (8)0.0012 (5)0.0023 (6)0.0028 (5)
F220.0330 (8)0.0214 (7)0.0556 (10)0.0009 (6)0.0114 (7)0.0082 (6)
F230.0446 (9)0.0280 (7)0.0483 (10)0.0128 (6)0.0215 (7)0.0156 (7)
F240.0415 (9)0.0165 (6)0.0616 (10)0.0101 (6)0.0152 (7)0.0042 (6)
F250.0277 (8)0.0321 (8)0.0746 (12)0.0004 (6)0.0156 (8)0.0129 (8)
Geometric parameters (Å, º) top
Ru1—N102.0982 (16)C50—H500.9500
Ru1—N201.9773 (15)C51—C521.384 (3)
Ru1—N302.0990 (16)C51—H510.9500
Ru1—N502.0967 (16)C52—C531.380 (3)
Ru1—N601.9723 (15)C52—H520.9500
Ru1—N702.0939 (17)C53—C541.381 (3)
N10—C101.342 (2)C53—H530.9500
N10—C141.378 (2)C54—C601.472 (3)
C10—C111.385 (3)N60—C601.342 (2)
C10—H100.9500N60—C621.351 (2)
C11—C121.375 (3)N61—C601.323 (2)
C11—H110.9500N61—C611.352 (2)
C12—C131.390 (3)N62—C621.323 (2)
C12—H120.9500N62—C611.351 (3)
C13—C141.374 (3)C61—C801.475 (3)
C13—H130.9500C62—C741.475 (3)
C14—C201.470 (3)N70—C701.351 (2)
N20—C221.340 (2)N70—C741.375 (2)
N20—C201.341 (2)C70—C711.381 (3)
N21—C201.318 (2)C70—H700.9500
N21—C211.353 (3)C71—C721.382 (3)
N22—C221.324 (2)C71—H710.9500
N22—C211.344 (3)C72—C731.388 (3)
C21—C401.476 (3)C72—H720.9500
C22—C341.475 (3)C73—C741.376 (3)
N30—C301.351 (2)C73—H730.9500
N30—C341.376 (2)C80—C851.393 (3)
C30—C311.386 (3)C80—C811.394 (3)
C30—H300.9500C81—C821.381 (3)
C31—C321.384 (3)C81—H810.9500
C31—H310.9500C82—C831.389 (3)
C32—C331.385 (3)C82—H820.9500
C32—H320.9500C83—C841.376 (3)
C33—C341.378 (3)C83—H830.9500
C33—H330.9500C84—C851.390 (3)
C40—C411.388 (3)C84—H840.9500
C40—C451.400 (3)C85—H850.9500
C41—C421.390 (3)P10—F121.5943 (14)
C41—H410.9500P10—F101.5980 (13)
C42—C431.386 (3)P10—F111.5981 (13)
C42—H420.9500P10—F141.6015 (13)
C43—C441.383 (3)P10—F151.6029 (14)
C43—H430.9500P10—F131.6104 (13)
C44—C451.380 (3)P20—F201.5887 (14)
C44—H440.9500P20—F241.5970 (13)
C45—H450.9500P20—F211.5988 (13)
N50—C501.341 (2)P20—F231.6022 (14)
N50—C541.380 (2)P20—F221.6033 (15)
C50—C511.383 (3)P20—F251.6056 (15)
N10—Ru1—N30154.76 (6)C52—C51—H51120.3
N60—Ru1—N20179.28 (7)C53—C52—C51118.88 (19)
N70—Ru1—N50155.22 (6)C53—C52—H52120.6
N20—Ru1—N70103.31 (6)C51—C52—H52120.6
N20—Ru1—N50101.42 (6)C52—C53—C54119.35 (18)
N20—Ru1—N1077.77 (6)C52—C53—H53120.3
N20—Ru1—N3077.00 (6)C54—C53—H53120.3
N50—Ru1—N1091.99 (6)N50—C54—C53122.12 (18)
N50—Ru1—N3092.35 (6)N50—C54—C60114.54 (17)
N60—Ru1—N5077.85 (6)C53—C54—C60123.34 (17)
N60—Ru1—N7077.42 (6)C60—N60—C62117.61 (16)
N60—Ru1—N10102.25 (6)C60—N60—Ru1121.10 (13)
N60—Ru1—N30102.98 (6)C62—N60—Ru1121.27 (13)
N70—Ru1—N1091.67 (6)C60—N61—C61115.55 (17)
N70—Ru1—N3094.71 (6)C62—N62—C61115.62 (17)
C10—N10—C14116.93 (17)N61—C60—N60123.30 (18)
C10—N10—Ru1129.03 (13)N61—C60—C54124.22 (18)
C14—N10—Ru1114.03 (12)N60—C60—C54112.47 (16)
N10—C10—C11122.65 (18)N62—C61—N61124.81 (17)
N10—C10—H10118.7N62—C61—C80117.91 (18)
C11—C10—H10118.7N61—C61—C80117.28 (18)
C12—C11—C10119.80 (19)N62—C62—N60123.03 (18)
C12—C11—H11120.1N62—C62—C74124.68 (18)
C10—C11—H11120.1N60—C62—C74112.28 (16)
C11—C12—C13118.93 (19)C70—N70—C74117.23 (17)
C11—C12—H12120.5C70—N70—Ru1127.56 (13)
C13—C12—H12120.5C74—N70—Ru1115.09 (13)
C14—C13—C12118.61 (19)N70—C70—C71122.21 (18)
C14—C13—H13120.7N70—C70—H70118.9
C12—C13—H13120.7C71—C70—H70118.9
C13—C14—N10123.06 (18)C70—C71—C72120.02 (19)
C13—C14—C20122.33 (17)C70—C71—H71120.0
N10—C14—C20114.62 (17)C72—C71—H71120.0
C22—N20—C20117.20 (16)C71—C72—C73118.71 (19)
C22—N20—Ru1121.87 (13)C71—C72—H72120.6
C20—N20—Ru1120.87 (12)C73—C72—H72120.6
C20—N21—C21114.99 (17)C74—C73—C72118.93 (18)
C22—N22—C21115.08 (16)C74—C73—H73120.5
N21—C20—N20123.77 (18)C72—C73—H73120.5
N21—C20—C14123.59 (18)C73—C74—N70122.87 (18)
N20—C20—C14112.63 (16)C73—C74—C62123.19 (17)
N22—C21—N21125.27 (17)N70—C74—C62113.88 (17)
N22—C21—C40118.31 (17)C85—C80—C81119.08 (18)
N21—C21—C40116.42 (18)C85—C80—C61120.80 (19)
N22—C22—N20123.61 (18)C81—C80—C61120.12 (18)
N22—C22—C34124.21 (17)C82—C81—C80120.3 (2)
N20—C22—C34112.13 (16)C82—C81—H81119.9
C30—N30—C34117.11 (16)C80—C81—H81119.9
C30—N30—Ru1127.86 (13)C81—C82—C83120.4 (2)
C34—N30—Ru1114.98 (12)C81—C82—H82119.8
N30—C30—C31122.18 (18)C83—C82—H82119.8
N30—C30—H30118.9C84—C83—C82119.66 (19)
C31—C30—H30118.9C84—C83—H83120.2
C32—C31—C30120.11 (19)C82—C83—H83120.2
C32—C31—H31119.9C83—C84—C85120.5 (2)
C30—C31—H31119.9C83—C84—H84119.8
C33—C32—C31118.56 (19)C85—C84—H84119.8
C33—C32—H32120.7C84—C85—C80120.1 (2)
C31—C32—H32120.7C84—C85—H85119.9
C34—C33—C32119.07 (18)C80—C85—H85119.9
C34—C33—H33120.5F12—P10—F1090.99 (8)
C32—C33—H33120.5F12—P10—F1190.25 (8)
N30—C34—C33122.95 (17)F10—P10—F1190.97 (7)
N30—C34—C22114.00 (16)F12—P10—F1490.22 (8)
C33—C34—C22122.99 (17)F10—P10—F1489.70 (7)
C41—C40—C45119.70 (18)F11—P10—F14179.17 (9)
C41—C40—C21120.25 (18)F12—P10—F15179.52 (9)
C45—C40—C21120.01 (19)F10—P10—F1589.46 (8)
C40—C41—C42119.8 (2)F11—P10—F1589.57 (7)
C40—C41—H41120.1F14—P10—F1589.95 (8)
C42—C41—H41120.1F12—P10—F1389.68 (7)
C43—C42—C41120.2 (2)F10—P10—F13178.99 (8)
C43—C42—H42119.9F11—P10—F1389.79 (7)
C41—C42—H42119.9F14—P10—F1389.53 (7)
C44—C43—C42120.07 (19)F15—P10—F1389.87 (7)
C44—C43—H43120.0F20—P20—F2490.05 (7)
C42—C43—H43120.0F20—P20—F2190.18 (7)
C45—C44—C43120.2 (2)F24—P20—F21179.50 (9)
C45—C44—H44119.9F20—P20—F23179.55 (10)
C43—C44—H44119.9F24—P20—F2390.15 (7)
C44—C45—C40120.0 (2)F21—P20—F2389.63 (7)
C44—C45—H45120.0F20—P20—F2290.33 (8)
C40—C45—H45120.0F24—P20—F2290.25 (8)
C50—N50—C54117.38 (17)F21—P20—F2289.31 (7)
C50—N50—Ru1128.60 (13)F23—P20—F2290.08 (8)
C54—N50—Ru1114.01 (13)F20—P20—F2590.50 (9)
N50—C50—C51122.80 (18)F24—P20—F2589.90 (8)
N50—C50—H50118.6F21—P20—F2590.54 (7)
C51—C50—H50118.6F23—P20—F2589.10 (9)
C50—C51—C52119.45 (19)F22—P20—F25179.16 (9)
C50—C51—H51120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41···N210.952.472.793 (3)100
C45—H45···N220.952.522.826 (3)99
C81—H81···N610.952.472.797 (2)100
C85—H85···N620.952.502.823 (3)100

Experimental details

Crystal data
Chemical formula[Ru(C19H13N5)2](PF6)2
Mr1013.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)9.0995 (3), 32.5979 (11), 13.1451 (5)
β (°) 91.774 (2)
V3)3897.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.13 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.822, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
75901, 8114, 6511
Rint0.060
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 0.99
No. of reflections8114
No. of parameters568
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.57

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Ru1—N102.0982 (16)Ru1—N502.0967 (16)
Ru1—N201.9773 (15)Ru1—N601.9723 (15)
Ru1—N302.0990 (16)Ru1—N702.0939 (17)
N10—Ru1—N30154.76 (6)N50—Ru1—N3092.35 (6)
N60—Ru1—N20179.28 (7)N60—Ru1—N5077.85 (6)
N70—Ru1—N50155.22 (6)N60—Ru1—N7077.42 (6)
N20—Ru1—N70103.31 (6)N60—Ru1—N10102.25 (6)
N20—Ru1—N50101.42 (6)N60—Ru1—N30102.98 (6)
N20—Ru1—N1077.77 (6)N70—Ru1—N1091.67 (6)
N20—Ru1—N3077.00 (6)N70—Ru1—N3094.71 (6)
N50—Ru1—N1091.99 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41···N210.952.472.793 (3)99.6
C45—H45···N220.952.522.826 (3)99.1
C81—H81···N610.952.472.797 (2)100.2
C85—H85···N620.952.502.823 (3)99.7
 

Acknowledgements

MIJP thanks the New Zealand Foundation of Research Science and Technology for funding.

References

First citationBarigelletti, F., Flamigni, L., Balzani, V., Collin, J.-P., Sauvage, J.-P. & Sour, A. (1995). New J. Chem. 19, 793–798.  CAS Google Scholar
First citationBeley, M., Collin, J.-P., Sauvage, J.-P., Sugihara, H., Heisel, F. & Miehe, A. (1991). J. Chem. Soc. Dalton Trans. pp. 3157–3159.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R., Campagna, S., Nierengarten, H. & Van Dorsselaer, A. (2002). J. Am. Chem. Soc. 124, 7912–7913.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFitchett, C. M., Richardson, C. & Steel, P. J. (2005). Org. Biomol. Chem. 3, 498–502.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKalyanasundaram, K. (1991). Photochemistry of Polypyridine and Porphyrin Complexes. London: Academic Press.  Google Scholar
First citationPolson, M. I. J., Medlycott, E. A., Hanan, G. S., Mikelsons, L., Taylor, N. J., Watanabe, M., Tanaka, Y., Loiseau, F., Passalacqua, R. & Campagna, S. (2004). Chem. Eur. J. 10, 3640–3648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPolson, M. I. J., Taylor, N. J. & Hanan, G. S. (2002). Chem. Commun. pp. 1536–1537.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds