organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di-2-furylethane-1,2-dione

aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 10 November 2007; accepted 26 November 2007; online 6 December 2007)

The title compound, C10H6O4, lies across a twofold rotation axis through the midpoint of the C—C bond between the two carbonyl groups. The furan ring plane and the plane through all atoms are inclined at 23.88 (1)°. In the crystal structure, weak C—H⋯O hydrogen bonds form sheets in the bc plane and columns down the c axis.

Related literature

For background to the chemistry of vicinal polycarbonyl compounds, see: Rubin & White (1982[Rubin, M. B. & White, A. H. (1982). Aust. J. Chem. 35, 543-556.]); Beddoes et al. (1975[Beddoes, R. L., Cannon, J. R., Heller, M., Mills, O. S., Patrick, V. A. & Rubin, M. B. (1975). Chem. Rev. 75, 177-202.]). For related structures and bond-length data, see: Brown & Sadanaga (1965[Brown, C. J. & Sadanaga, R. (1965). Acta Cryst. 18, 158-164.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6O4

  • Mr = 190.15

  • Orthorhombic, F d d 2

  • a = 14.903 (4) Å

  • b = 30.511 (6) Å

  • c = 3.7770 (8) Å

  • V = 1717.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2069 measured reflections

  • 537 independent reflections

  • 473 reflections with I > 2σ(I)

  • Rint = 0.098

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.14

  • 537 reflections

  • 65 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.93 2.61 3.435 (3) 149
C1—H1A⋯O2ii 0.93 2.82 3.322 (4) 115
C2—H2A⋯O1iii 0.93 2.64 3.439 (3) 145
C3—H3A⋯O1iv 0.93 2.70 3.074 (3) 105
Symmetry codes: (i) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{3\over 4}}]; (ii) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (iii) [x-{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structures of vicinal polycarbonyl compounds have been of interest for many years (Rubin & White, 1982). Bond lengths, bond angles, and torsion angles in such molecules can deviate from 'normal' values in order to minimize the repulsive interactions resulting from juxtaposition of dipolar carbonyl groups (Brown & Sadanaga,1965) and the steric interactions of the chain of carbonyl groups with the end groups present (Beddoes et al., 1975). We report here the crystal structure of the title vicinal dione compound (I), Fig 1.

The molecule lies about a twofold rotation axis at the mid-point of the C5—C5A bond (A = -x + 1/2, -y + 1/2, z). Bond lengths and angles are similar to those observed for benzil (Brown & Sadanaga,1965). The molecule is approximately planar with the maximum deviation from the plane through all atoms 0.954 (1)Å for the O1. The furan ring plane (O2, C2···C4) and the plane through all atoms are inclined at 23.88 (1)°. In the crystal structure, weak C—H···O hydrogen bonds, Table 1, form sheets in the bc plane and columns down the c axis.

Related literature top

For background to the chemistry of vicinal polycarbonyl compounds, see: Rubin & White (1982); Beddoes et al. (1975). For related structures, see: Brown & Sadanaga (1965). For bond-length data, see: Brown & Sadanaga (1965).

Experimental top

Furfural (1.92 g, 20.0 mmol) was added to water (20 ml) together with the N,N-dialkylbenzimidazolium salt (1.14 g, 4.0 mmol) and triethylamine (0.5 ml, 3.6 mmol) and the solution stirred vigorously for 2 h under reflux to afford the title compound (1.71 g, yield 70%). Single crystals suitable for X-ray measurements were obtained by recrystallization from THF at room temperature.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged. Hydrogen atoms were fixed geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å, and Uiso(H) = 1.2 Ueq(C).

Structure description top

The structures of vicinal polycarbonyl compounds have been of interest for many years (Rubin & White, 1982). Bond lengths, bond angles, and torsion angles in such molecules can deviate from 'normal' values in order to minimize the repulsive interactions resulting from juxtaposition of dipolar carbonyl groups (Brown & Sadanaga,1965) and the steric interactions of the chain of carbonyl groups with the end groups present (Beddoes et al., 1975). We report here the crystal structure of the title vicinal dione compound (I), Fig 1.

The molecule lies about a twofold rotation axis at the mid-point of the C5—C5A bond (A = -x + 1/2, -y + 1/2, z). Bond lengths and angles are similar to those observed for benzil (Brown & Sadanaga,1965). The molecule is approximately planar with the maximum deviation from the plane through all atoms 0.954 (1)Å for the O1. The furan ring plane (O2, C2···C4) and the plane through all atoms are inclined at 23.88 (1)°. In the crystal structure, weak C—H···O hydrogen bonds, Table 1, form sheets in the bc plane and columns down the c axis.

For background to the chemistry of vicinal polycarbonyl compounds, see: Rubin & White (1982); Beddoes et al. (1975). For related structures, see: Brown & Sadanaga (1965). For bond-length data, see: Brown & Sadanaga (1965).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level. Atoms labelled A are related to other atoms by the symmetry operation -x + 1/2, -y + 1/2, z.
[Figure 2] Fig. 2. The Crystal packing of (I), viewed down the c axis.
1,2-Di-2-furylethane-1,2-dione top
Crystal data top
C10H6O4F(000) = 784
Mr = 190.15Dx = 1.471 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 25 reflections
a = 14.903 (4) Åθ = 4–14°
b = 30.511 (6) ŵ = 0.12 mm1
c = 3.7770 (8) ÅT = 293 K
V = 1717.4 (7) Å3Block, colourless
Z = 80.25 × 0.22 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.098
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.7°
Graphite monochromatorh = 1818
ω scansk = 3637
2069 measured reflectionsl = 40
537 independent reflections3 standard reflections every 100 reflections
473 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.6456P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
537 reflectionsΔρmax = 0.33 e Å3
65 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.005 (2)
Crystal data top
C10H6O4V = 1717.4 (7) Å3
Mr = 190.15Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 14.903 (4) ŵ = 0.12 mm1
b = 30.511 (6) ÅT = 293 K
c = 3.7770 (8) Å0.25 × 0.22 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.098
2069 measured reflections3 standard reflections every 100 reflections
537 independent reflections intensity decay: none
473 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.113H-atom parameters constrained
S = 1.14Δρmax = 0.33 e Å3
537 reflectionsΔρmin = 0.14 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31781 (10)0.20624 (6)0.2936 (8)0.0645 (7)
O20.17183 (10)0.15778 (5)0.5125 (7)0.0586 (6)
C10.09123 (18)0.14450 (9)0.6479 (12)0.0668 (9)
H1A0.07350.11540.66730.080*
C20.04119 (18)0.17857 (9)0.7488 (9)0.0598 (8)
H2A0.01600.17750.84720.072*
C30.09224 (16)0.21647 (8)0.6764 (7)0.0488 (6)
H3A0.07510.24530.71780.059*
C40.17150 (13)0.20269 (6)0.5341 (7)0.0409 (6)
C50.25168 (15)0.22475 (6)0.4110 (8)0.0416 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0430 (8)0.0496 (9)0.1008 (17)0.0044 (7)0.0119 (12)0.0137 (11)
O20.0446 (8)0.0400 (8)0.0913 (15)0.0025 (7)0.0098 (10)0.0031 (11)
C10.0514 (13)0.0527 (13)0.096 (2)0.0165 (11)0.0162 (17)0.0175 (17)
C20.0439 (11)0.0709 (16)0.0646 (18)0.0134 (11)0.0013 (13)0.0095 (15)
C30.0435 (11)0.0518 (12)0.0513 (13)0.0025 (10)0.0012 (12)0.0029 (12)
C40.0393 (11)0.0366 (10)0.0468 (11)0.0013 (8)0.0081 (10)0.0021 (11)
C50.0361 (10)0.0406 (11)0.0481 (12)0.0017 (8)0.0032 (10)0.0034 (10)
Geometric parameters (Å, º) top
O1—C51.219 (3)C2—H2A0.9300
O2—C11.367 (4)C3—C41.364 (3)
O2—C41.373 (2)C3—H3A0.9300
C1—C21.335 (4)C4—C51.448 (3)
C1—H1A0.9300C5—C5i1.541 (4)
C2—C31.411 (4)
C1—O2—C4105.7 (2)C4—C3—H3A126.6
C2—C1—O2111.5 (2)C2—C3—H3A126.6
C2—C1—H1A124.2C3—C4—O2109.52 (19)
O2—C1—H1A124.2C3—C4—C5134.25 (19)
C1—C2—C3106.4 (2)O2—C4—C5116.23 (19)
C1—C2—H2A126.8O1—C5—C4124.63 (19)
C3—C2—H2A126.8O1—C5—C5i119.3 (2)
C4—C3—C2106.9 (2)C4—C5—C5i116.0 (2)
C4—O2—C1—C20.5 (4)C1—O2—C4—C5178.9 (3)
O2—C1—C2—C30.2 (4)C3—C4—C5—O1178.9 (3)
C1—C2—C3—C40.1 (3)O2—C4—C5—O10.3 (4)
C2—C3—C4—O20.4 (3)C3—C4—C5—C5i5.0 (4)
C2—C3—C4—C5178.9 (3)O2—C4—C5—C5i175.79 (18)
C1—O2—C4—C30.5 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1ii0.932.613.435 (3)149
C1—H1A···O2iii0.932.823.322 (4)115
C2—H2A···O1iv0.932.643.439 (3)145
C3—H3A···O1i0.932.703.074 (3)105
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/4, y+1/4, z+3/4; (iii) x1/4, y+1/4, z1/4; (iv) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H6O4
Mr190.15
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)14.903 (4), 30.511 (6), 3.7770 (8)
V3)1717.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2069, 537, 473
Rint0.098
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.14
No. of reflections537
No. of parameters65
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.14

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.613.435 (3)148.5
C1—H1A···O2ii0.932.823.322 (4)115.1
C2—H2A···O1iii0.932.643.439 (3)145.0
C3—H3A···O1iv0.932.703.074 (3)104.8
Symmetry codes: (i) x1/4, y+1/4, z+3/4; (ii) x1/4, y+1/4, z1/4; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2006B08).

References

First citationBeddoes, R. L., Cannon, J. R., Heller, M., Mills, O. S., Patrick, V. A. & Rubin, M. B. (1975). Chem. Rev. 75, 177–202.  Google Scholar
First citationBrown, C. J. & Sadanaga, R. (1965). Acta Cryst. 18, 158–164.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRubin, M. B. & White, A. H. (1982). Aust. J. Chem. 35, 543–556.  Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds