metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-thio­cyanato-bis­­({2,4-di­chloro-6-[2-(di­ethyl­amino)ethyl­imino­meth­yl]phenolato}copper(II))

aDepartment of Chemistry and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China, and bDepartment of Chemistry and Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
*Correspondence e-mail: xianwenfz@163.com

(Received 17 November 2007; accepted 26 November 2007; online 18 December 2007)

The title compound, [Cu2(NCS)2(C13H17Cl2N2O)2], was obtained by the reaction of 3,5-dichloro­salicylaldehyde, N,N-diethyl­ethane-1,2-diamine, sodium thio­cyanate, and copper(II) acetate in an ethanol solution. It crystallizes as a centrosymmetric dimer with a very long Cu⋯S axial bond [2.972 (3) Å]. The Cu atom is five-coordinated by the three donor atoms of the Schiff base ligand, 2,4-dichloro-6-[(2-diethyl­amino­ethyl­imino)meth­yl]phenol, one N atom of a thio­cyanate group, and one S atom of a symmetry-related thio­cyanate group, forming a slightly distorted square-pyramidal geometry.

Related literature

For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005[Panneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Krishnan, S. (2005). Eur. J. Med. Chem. 40, 225-229.]); Shi et al. (2007[Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558-564.]); Singh et al. (2006[Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147-153.], 2007[Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402.]); Zhong et al. (2006[Zhong, X., Yi, J., Sun, J., Wei, H.-L., Liu, W.-S. & Yu, K.-B. (2006). Eur. J. Med. Chem. 41, 1090-1092.]). For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(NCS)2(C13H17Cl2N2O)2]

  • Mr = 409.81

  • Monoclinic, P 21 /c

  • a = 8.632 (2) Å

  • b = 14.115 (3) Å

  • c = 14.002 (3) Å

  • β = 90.491 (4)°

  • V = 1706.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 293 (2) K

  • 0.20 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.725, Tmax = 0.771

  • 13451 measured reflections

  • 3516 independent reflections

  • 3046 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.06

  • 3516 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been reported to have excellent biological activity (Shi et al., 2007; Panneerselvam et al., 2005). Metal complexes derived from the Schiff bases have also been shown to have excellent biological activity (Singh et al., 2006, 2007; Zhong et al., 2006). As part of our investigations of the structures of metal complexes derived from Schiff bases, we report herein the crystal structure of the title copper complex, (I).

Compound (I) is a centrosymmetric dinuclear copper(II) complex (Fig. 1). The Cu atom is five-coordinated by the three donor atoms (O1, N1 and N2) of the Schiff base ligand 2,4-dichloro-6-[(2-diethylaminoethylimino)methyl]phenol, one N atom of a thiocyanate group, and one S atom of the centrosymmetrically related thiocyanate group, so forming a slightly distorted square-pyramidal geometry. The Cu atom is displaced out of the best least-squares plane defined by the four basal donor atoms by 0.123 (2) Å. Apart from the long Cu···S axial bond [2.972 (3) Å], the other coordination bond distances and angles are within normal ranges (Allen et al., 1987).

Related literature top

For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005); Shi et al. (2007); Singh et al. (2006, 2007); Zhong et al. (2006). For related literature, see: Allen et al. (1987).

Experimental top

The title compound was obtained by the reaction of equimolar amounts of 3,5-dichlorosalicylaldehyde, N,N-diethylethane-1,2-diamine, sodium thiocyanate, and copper acetate in an ethanol solution. Blue block-like single crystals were obtained by slow evaporation of the filtrate in air.

Refinement top

H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93–0.97Å and Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

Schiff base compounds have been reported to have excellent biological activity (Shi et al., 2007; Panneerselvam et al., 2005). Metal complexes derived from the Schiff bases have also been shown to have excellent biological activity (Singh et al., 2006, 2007; Zhong et al., 2006). As part of our investigations of the structures of metal complexes derived from Schiff bases, we report herein the crystal structure of the title copper complex, (I).

Compound (I) is a centrosymmetric dinuclear copper(II) complex (Fig. 1). The Cu atom is five-coordinated by the three donor atoms (O1, N1 and N2) of the Schiff base ligand 2,4-dichloro-6-[(2-diethylaminoethylimino)methyl]phenol, one N atom of a thiocyanate group, and one S atom of the centrosymmetrically related thiocyanate group, so forming a slightly distorted square-pyramidal geometry. The Cu atom is displaced out of the best least-squares plane defined by the four basal donor atoms by 0.123 (2) Å. Apart from the long Cu···S axial bond [2.972 (3) Å], the other coordination bond distances and angles are within normal ranges (Allen et al., 1987).

For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005); Shi et al. (2007); Singh et al. (2006, 2007); Zhong et al. (2006). For related literature, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Di-µ-thiocyanato-bis({2,4-dichloro-6-[2- (diethylamino)ethyliminomethyl]phenolato}copper(II)) top
Crystal data top
[Cu2(NCS)2(C13H17Cl2N2O)2]F(000) = 836
Mr = 409.81Dx = 1.596 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.632 (2) ÅCell parameters from 6502 reflections
b = 14.115 (3) Åθ = 2.4–27.7°
c = 14.002 (3) ŵ = 1.72 mm1
β = 90.491 (4)°T = 293 K
V = 1706.0 (6) Å3Block, blue
Z = 40.20 × 0.17 × 0.16 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3516 independent reflections
Radiation source: fine-focus sealed tube3046 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.725, Tmax = 0.771k = 1717
13451 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.058P)2 + 2.2599P]
where P = (Fo2 + 2Fc2)/3
3516 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu2(NCS)2(C13H17Cl2N2O)2]V = 1706.0 (6) Å3
Mr = 409.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.632 (2) ŵ = 1.72 mm1
b = 14.115 (3) ÅT = 293 K
c = 14.002 (3) Å0.20 × 0.17 × 0.16 mm
β = 90.491 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3516 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3046 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.771Rint = 0.024
13451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.06Δρmax = 1.34 e Å3
3516 reflectionsΔρmin = 0.67 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.13607 (4)0.16622 (3)0.06969 (3)0.03794 (14)
O10.0063 (3)0.22330 (17)0.01736 (16)0.0489 (6)
N10.1165 (3)0.2683 (2)0.16144 (18)0.0410 (6)
N20.3213 (3)0.1254 (2)0.1558 (2)0.0444 (6)
N30.1658 (4)0.0673 (2)0.0253 (2)0.0477 (7)
Cl10.21684 (12)0.25400 (7)0.17482 (6)0.0585 (3)
Cl20.33491 (14)0.58481 (8)0.00046 (9)0.0716 (3)
S10.10771 (10)0.05935 (7)0.17261 (6)0.0476 (2)
C10.0792 (4)0.3018 (2)0.0076 (2)0.0396 (7)
C20.0634 (4)0.3643 (2)0.0713 (2)0.0419 (7)
C30.1427 (4)0.4516 (3)0.0723 (3)0.0498 (8)
H30.12930.49270.12360.060*
C40.2389 (4)0.4760 (3)0.0013 (3)0.0510 (9)
C50.2616 (4)0.4157 (3)0.0785 (3)0.0490 (8)
H50.32790.43270.12830.059*
C60.1850 (4)0.3311 (2)0.0802 (2)0.0435 (7)
C70.0343 (4)0.3430 (2)0.1518 (2)0.0450 (8)
H70.03820.38720.20100.054*
C80.2109 (5)0.2585 (3)0.2480 (3)0.0621 (11)
H8A0.29390.30480.24770.075*
H8B0.14770.26980.30380.075*
C90.2742 (7)0.1654 (3)0.2521 (3)0.0741 (14)
H9A0.19830.12340.28030.089*
H9B0.36440.16620.29390.089*
C100.4629 (6)0.1738 (4)0.1273 (4)0.0883 (17)
H10A0.44970.24090.13950.106*
H10B0.54660.15180.16830.106*
C110.5099 (6)0.1626 (5)0.0307 (4)0.114 (3)
H11A0.52190.09640.01680.171*
H11B0.60690.19450.02140.171*
H11C0.43280.18930.01110.171*
C120.3232 (5)0.0217 (3)0.1662 (3)0.0581 (10)
H12A0.33700.00570.10340.070*
H12B0.22210.00200.18860.070*
C130.4448 (5)0.0206 (3)0.2326 (3)0.0661 (11)
H13A0.54560.00090.21400.099*
H13B0.44060.08840.22880.099*
H13C0.42490.00100.29700.099*
C140.1388 (3)0.0159 (2)0.0861 (2)0.0361 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0441 (2)0.0384 (2)0.0312 (2)0.00149 (16)0.00774 (16)0.00402 (15)
O10.0670 (16)0.0426 (13)0.0368 (12)0.0082 (11)0.0161 (11)0.0057 (10)
N10.0423 (15)0.0514 (16)0.0293 (13)0.0062 (12)0.0044 (11)0.0049 (11)
N20.0438 (15)0.0452 (16)0.0441 (15)0.0062 (12)0.0110 (12)0.0016 (12)
N30.0522 (17)0.0497 (17)0.0410 (15)0.0019 (13)0.0060 (13)0.0096 (13)
Cl10.0706 (6)0.0653 (6)0.0392 (5)0.0004 (5)0.0145 (4)0.0011 (4)
Cl20.0714 (7)0.0571 (6)0.0867 (8)0.0217 (5)0.0217 (6)0.0136 (5)
S10.0468 (5)0.0543 (5)0.0417 (5)0.0034 (4)0.0008 (4)0.0165 (4)
C10.0425 (17)0.0404 (17)0.0358 (16)0.0053 (14)0.0011 (13)0.0028 (13)
C20.0423 (17)0.0428 (17)0.0406 (17)0.0016 (14)0.0037 (13)0.0003 (14)
C30.052 (2)0.048 (2)0.050 (2)0.0001 (16)0.0146 (16)0.0041 (16)
C40.0471 (19)0.047 (2)0.059 (2)0.0088 (15)0.0167 (17)0.0094 (17)
C50.0420 (18)0.056 (2)0.049 (2)0.0045 (15)0.0060 (15)0.0153 (16)
C60.0444 (17)0.050 (2)0.0359 (16)0.0046 (14)0.0023 (13)0.0064 (14)
C70.0479 (19)0.049 (2)0.0379 (17)0.0054 (15)0.0026 (14)0.0117 (14)
C80.056 (2)0.094 (3)0.0361 (18)0.006 (2)0.0135 (16)0.0129 (19)
C90.111 (4)0.066 (3)0.045 (2)0.014 (2)0.031 (2)0.0106 (19)
C100.057 (3)0.117 (5)0.091 (4)0.022 (3)0.014 (3)0.028 (3)
C110.057 (3)0.187 (7)0.100 (5)0.016 (4)0.020 (3)0.061 (5)
C120.052 (2)0.045 (2)0.077 (3)0.0055 (16)0.0224 (19)0.0060 (19)
C130.058 (2)0.061 (2)0.079 (3)0.015 (2)0.020 (2)0.000 (2)
C140.0315 (15)0.0419 (17)0.0350 (15)0.0029 (12)0.0002 (12)0.0001 (13)
Geometric parameters (Å, º) top
Cu1—O11.903 (2)C4—C51.389 (6)
Cu1—N11.939 (3)C5—C61.365 (5)
Cu1—N31.947 (3)C5—H50.9300
Cu1—N22.076 (3)C7—H70.9300
Cu1—S1i2.972 (3)C8—C91.423 (6)
O1—C11.282 (4)C8—H8A0.9700
N1—C71.278 (4)C8—H8B0.9700
N1—C81.461 (4)C9—H9A0.9700
N2—C101.459 (5)C9—H9B0.9700
N2—C121.470 (5)C10—C111.424 (8)
N2—C91.520 (5)C10—H10A0.9700
N3—C141.141 (4)C10—H10B0.9700
Cl1—C61.734 (4)C11—H11A0.9600
Cl2—C41.745 (4)C11—H11B0.9600
S1—C141.632 (3)C11—H11C0.9600
C1—C21.420 (5)C12—C131.518 (5)
C1—C61.422 (5)C12—H12A0.9700
C2—C31.410 (5)C12—H12B0.9700
C2—C71.434 (5)C13—H13A0.9600
C3—C41.362 (5)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
O1—Cu1—N192.89 (11)N1—C7—H7117.3
O1—Cu1—N387.38 (11)C2—C7—H7117.3
N1—Cu1—N3176.78 (12)C9—C8—N1109.4 (3)
O1—Cu1—N2168.48 (11)C9—C8—H8A109.8
N1—Cu1—N283.82 (12)N1—C8—H8A109.8
N3—Cu1—N295.29 (12)C9—C8—H8B109.8
O1—Cu1—S1i93.98 (12)N1—C8—H8B109.8
N1—Cu1—S1i89.43 (12)H8A—C8—H8B108.2
N2—Cu1—S1i97.02 (12)C8—C9—N2114.4 (4)
N3—Cu1—S1i93.75 (12)C8—C9—H9A108.7
C1—O1—Cu1127.8 (2)N2—C9—H9A108.7
C7—N1—C8118.1 (3)C8—C9—H9B108.7
C7—N1—Cu1126.5 (2)N2—C9—H9B108.7
C8—N1—Cu1115.4 (2)H9A—C9—H9B107.6
C10—N2—C12119.0 (4)C11—C10—N2117.0 (5)
C10—N2—C9107.4 (4)C11—C10—H10A108.0
C12—N2—C9106.6 (3)N2—C10—H10A108.0
C10—N2—Cu1110.7 (3)C11—C10—H10B108.0
C12—N2—Cu1110.0 (2)N2—C10—H10B108.0
C9—N2—Cu1101.6 (2)H10A—C10—H10B107.3
C14—N3—Cu1159.8 (3)C10—C11—H11A109.5
O1—C1—C2125.2 (3)C10—C11—H11B109.5
O1—C1—C6119.2 (3)H11A—C11—H11B109.5
C2—C1—C6115.6 (3)C10—C11—H11C109.5
C3—C2—C1120.5 (3)H11A—C11—H11C109.5
C3—C2—C7117.2 (3)H11B—C11—H11C109.5
C1—C2—C7122.3 (3)N2—C12—C13117.3 (3)
C4—C3—C2120.4 (3)N2—C12—H12A108.0
C4—C3—H3119.8C13—C12—H12A108.0
C2—C3—H3119.8N2—C12—H12B108.0
C3—C4—C5121.0 (3)C13—C12—H12B108.0
C3—C4—Cl2120.3 (3)H12A—C12—H12B107.2
C5—C4—Cl2118.7 (3)C12—C13—H13A109.5
C6—C5—C4119.0 (3)C12—C13—H13B109.5
C6—C5—H5120.5H13A—C13—H13B109.5
C4—C5—H5120.5C12—C13—H13C109.5
C5—C6—C1123.4 (3)H13A—C13—H13C109.5
C5—C6—Cl1119.2 (3)H13B—C13—H13C109.5
C1—C6—Cl1117.4 (3)N3—C14—S1177.6 (3)
N1—C7—C2125.3 (3)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(NCS)2(C13H17Cl2N2O)2]
Mr409.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.632 (2), 14.115 (3), 14.002 (3)
β (°) 90.491 (4)
V3)1706.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.20 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.725, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
13451, 3516, 3046
Rint0.024
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.06
No. of reflections3516
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.34, 0.67

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2001), SHELXTL (Bruker, 2001).

 

Acknowledgements

The authors thank Minjiang University for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPanneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Krishnan, S. (2005). Eur. J. Med. Chem. 40, 225–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationShi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153.  Web of Science CrossRef PubMed Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhong, X., Yi, J., Sun, J., Wei, H.-L., Liu, W.-S. & Yu, K.-B. (2006). Eur. J. Med. Chem. 41, 1090–1092.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds