metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,2-bis­­(di­methyl­phosphino)­ethane]­di­chlorido­nitro­syltungsten(0) chloride

aAnorganisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: oblacque@aci.uzh.ch

(Received 4 December 2007; accepted 15 December 2007; online 22 December 2007)

In the crystal structure of the title compound, [WCl2(NO)(C6H16P2)2]Cl, the seven-coordinated tungsten(II) center displays a distorted penta­gonal–bipyramidal geometry with trans nitrosyl and chloride ligands. The NO and Cl ligands are disordered over two positions; the site occupancy factors are 0.6 and 0.4.

Related literature

For related trans-chloridonitrosyl-tungsten complexes, see: Chen et al. (2007[Chen, Z., Schmalle, H. W., Fox, T., Blacque, O. & Berke, H. (2007). J. Organomet. Chem. 692, 4875-4885.]). For related trans-chloridonitrosyl-bis­(1,2-bis­(dimethyl­phosphino)ethane)molybdenum complexes, see: Liang et al. (2003[Liang, F., Schmalle, H. W., Fox, T. & Berke, H. (2003). Organometallics, 22, 3382-3393.], 2006[Liang, F., Schmalle, H. W. & Berke, H. (2006). Eur. J. Inorg. Chem. 24, 5081-5088.]). For related literature, see: Bencze & Kohàn (1982[Bencze, L. & Kohàn, J. (1982). Inorg. Chim. Acta, 65, L17-L19.]); Carmona et al. (1989[Carmona, E., Gutiérrez-Puebla, E., Monge, A., Pérez, P. J. & Sanchez, L. J. (1989). Inorg. Chem. 28, 2120-2127.]); Hunter & Legzdins (1984[Hunter, A. D. & Legzdins, P. (1984). Inorg. Chem. 23, 4198-4204.]).

[Scheme 1]

Experimental

Crystal data
  • [WCl2(NO)(C6H16P2)2]Cl

  • Mr = 620.46

  • Monoclinic, P 21 /n

  • a = 8.0929 (7) Å

  • b = 26.118 (2) Å

  • c = 10.5703 (10) Å

  • β = 94.190 (10)°

  • V = 2228.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.83 mm−1

  • T = 183 (2) K

  • 0.20 × 0.15 × 0.07 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.409, Tmax = 0.723

  • 7761 measured reflections

  • 3937 independent reflections

  • 3353 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 0.97

  • 3937 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

W1—P1 2.5665 (11)
W1—P2 2.5745 (11)
W1—P3 2.5583 (11)
W1—P4 2.5788 (11)
W1—Cl1 2.4935 (11)
W1—Cl21 2.445 (3)
W1—Cl22 2.431 (5)
W1—N11 1.840 (11)
W1—N12 1.845 (13)
P1—W1—P2 73.07 (4)
P1—W1—P3 76.49 (3)
Cl1—W1—P2 68.84 (4)
Cl1—W1—P4 68.56 (4)
P3—W1—P4 73.37 (4)

Data collection: IPDS Software (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Software. Version 2.92. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS Software; data reduction: X-RED in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound [W(Cl)2(NO)(dmpe)2](Cl) (I) was obtained by the reaction of [W(Cl)3(NO)(NCCH3)2] with 2.5 equivalents of dmpe at room temperature in tetrahydrofurane. The tungsten center has transformed into a seven coordination environment and exhibits a distorted pentagonal bipyramidal geometry, where the four phosphorus atoms and one chloride form the pentagon, and the trans nitrosyl and chloride ligands are at the apexes (Figure 1). This geometry is clearly different to that observed for the related compound Mo(Cl)3(NO)(PMe3)3, for which the coordination polyhedron is described as a capped-octahedron (Carmona et al., 1989). The five equatorial atoms, P1, P2, P3, P4, and Cl1 are in an approximately planar array and the corresponding equatorial angles are in the range 68.5 - 76.5°. The two Cl—W—P bond angles of 68.84 (4) and 68.56 (4)° are smaller than the theoretical average angle of 72°, while all three P—W—P angles are larger (73.07 (4) - 76.49 (3)°). The nitrosyl group is located trans to one chloride ligand and they are positionally disordered in a ratio 0.6:0.4 (Chen et al., 2007). One chloride ion acts as a counterion and is not coordinated, resulting in a tungsten center in the oxidation state +2.

Related literature top

For related trans-chloridonitrosyl-tungsten complexes, see: Chen et al. (2007). For related trans-chloridonitrosyl-bis(1,2-bis(dimethylphosphino)ethane)molybdenum complexes, see: Liang et al. (2003, 2006). For related literature, see: Bencze & Kohàn (1982); Carmona et al. (1989); Hunter & Legzdins (1984).

Experimental top

[W(Cl)2(NO)(dmpe)2]Cl was prepared from complex [W(Cl)3(NO)(CH3CN)2], which is easily synthesized by the reaction of W(Cl)6 with NO gas in dichloromethane in the presence of acetonitrile at room temperature (Bencze & Kohàn, 1982; Hunter & Legzdins, 1984). 5.00 g (12.6 mmol) of WCl6 and 1.32 ml (25.2 mmol) of acetonitrile were dissolved in 180 ml of dichloromethane in a 500 ml three-necked flask. Nitric oxide was passed through the solution, which was stirred at room temperature until the dark purple colour of the solution turned to the light green precipitate after ca 1 h. The volume of the final mixture was reduced to 50 ml in vacuo and the mixture was then cooled to 0°C for 15 min. The precipitate was isolated by filtration and the collected solid was washed with cold dichloromethane (2 x 10 ml at 0°C) and then with hexane (4 x 20 ml) at room temperature. Final drying of the solid under vacuum for 18 h afforded the yellow-green [W(Cl)3(NO)(CH3CN)2] compound. 0.356 g (0.88 mmol) of [W(Cl)3(NO)(NCCH3)2] was dissolved in 20 ml of tetrahydrofurane in a Young tap Schlenk and the dmpe ligand (0.38 ml, 2.20 mmol) was syringed into the solution. After 24 h of stirring at room temperature, the solution was filtered off and the solvent was removed under vacuum. The resulting precipitate was extracted with dichloromethane and crystallized in dichloromethane at room temperature to give yellow crystals of compound (I).

Yield: 0.491 g (90%).

IR (cm-1, CH2Cl2): 1608 (NO).

1H NMR (200.0 MHz, CD2Cl2, 25°C): d 2.09 (m, 8H, P(CH2)2P), 2.01 (m, 12H, PCH3) and 1.86 (m, 12H, PCH3).

31P{1H} NMR (80.9 MHz, CD2Cl2, 25°C): d 43.8 (m, P(CH2)2P) and 21.9 (m, P(CH2)2P), 2JPN = 27.6 Hz; 1JPW = 200 Hz.

13C{1H} NMR (50.3 MHz, CD2Cl2, 25°C): d 33.4 (m, P(CH2)2P), 24.3 (m, P(CH2)2P), 13.2 (m, PCH3) and 11.5 (m, PCH3).

Anal. Calcd for C12H32Cl3P4NOW: C, 23.22; H, 5.16; N, 2.26. Found: C, 23.26; H, 5.28; N, 2.37.

Refinement top

The H atom were included in calculated positions and treated as riding atoms with C—H distances = 0.98 - 0.99Å and Uiso(H) = 1.2Ueq(C) for CH2 and 1.5Ueq(C) for the CH3 groups. A positional disorder was refined for the trans NO and Cl ligands with occupancy factors of 0.6:0.4.

Structure description top

The title compound [W(Cl)2(NO)(dmpe)2](Cl) (I) was obtained by the reaction of [W(Cl)3(NO)(NCCH3)2] with 2.5 equivalents of dmpe at room temperature in tetrahydrofurane. The tungsten center has transformed into a seven coordination environment and exhibits a distorted pentagonal bipyramidal geometry, where the four phosphorus atoms and one chloride form the pentagon, and the trans nitrosyl and chloride ligands are at the apexes (Figure 1). This geometry is clearly different to that observed for the related compound Mo(Cl)3(NO)(PMe3)3, for which the coordination polyhedron is described as a capped-octahedron (Carmona et al., 1989). The five equatorial atoms, P1, P2, P3, P4, and Cl1 are in an approximately planar array and the corresponding equatorial angles are in the range 68.5 - 76.5°. The two Cl—W—P bond angles of 68.84 (4) and 68.56 (4)° are smaller than the theoretical average angle of 72°, while all three P—W—P angles are larger (73.07 (4) - 76.49 (3)°). The nitrosyl group is located trans to one chloride ligand and they are positionally disordered in a ratio 0.6:0.4 (Chen et al., 2007). One chloride ion acts as a counterion and is not coordinated, resulting in a tungsten center in the oxidation state +2.

For related trans-chloridonitrosyl-tungsten complexes, see: Chen et al. (2007). For related trans-chloridonitrosyl-bis(1,2-bis(dimethylphosphino)ethane)molybdenum complexes, see: Liang et al. (2003, 2006). For related literature, see: Bencze & Kohàn (1982); Carmona et al. (1989); Hunter & Legzdins (1984).

Computing details top

Data collection: IPDS Software (Stoe & Cie, 1999); cell refinement: IPDS Software (Stoe & Cie, 1999); data reduction: X-RED in IPDS Software (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with the atom-labeling scheme (displacement ellipsoids are drawn at the 30% probability level). The disordered atoms N12, O12 and Cl22, and all hydrogen atoms have been omitted for clarity.
Bis[1,2-bis(dimethylphosphino)ethane]dichloridonitrosyltungsten(0) chloride top
Crystal data top
[WCl2(NO)(C6H16P2)2]ClF(000) = 1216
Mr = 620.46Dx = 1.850 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8000 reflections
a = 8.0929 (7) Åθ = 2.4–28.0°
b = 26.118 (2) ŵ = 5.83 mm1
c = 10.5703 (10) ÅT = 183 K
β = 94.19 (1)°Plate, yellow
V = 2228.3 (3) Å30.20 × 0.15 × 0.07 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
3937 independent reflections
Radiation source: fine-focus sealed tube3353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ oscillation scanθmax = 25.0°, θmin = 2.5°
Absorption correction: numerical
(Coppens et al., 1965)
h = 99
Tmin = 0.410, Tmax = 0.723k = 3030
7761 measured reflectionsl = 012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
3937 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
[WCl2(NO)(C6H16P2)2]ClV = 2228.3 (3) Å3
Mr = 620.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0929 (7) ŵ = 5.83 mm1
b = 26.118 (2) ÅT = 183 K
c = 10.5703 (10) Å0.20 × 0.15 × 0.07 mm
β = 94.19 (1)°
Data collection top
Stoe IPDS
diffractometer
3937 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
3353 reflections with I > 2σ(I)
Tmin = 0.410, Tmax = 0.723Rint = 0.035
7761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 0.98Δρmax = 0.83 e Å3
3937 reflectionsΔρmin = 1.28 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.14034 (2)0.138353 (6)0.190758 (14)0.01228 (7)
P10.28028 (14)0.05181 (4)0.24110 (10)0.0148 (2)
P20.08089 (15)0.11528 (4)0.41984 (10)0.0187 (2)
P30.28985 (14)0.11874 (4)0.00872 (10)0.0153 (2)
P40.05122 (15)0.20805 (4)0.02694 (10)0.0201 (2)
Cl10.03756 (17)0.20441 (5)0.28354 (11)0.0320 (3)
C10.1747 (6)0.01929 (18)0.3647 (4)0.0263 (11)
H1A0.06010.01040.33310.032*
H1B0.23370.01270.38980.032*
C20.1720 (6)0.05517 (19)0.4784 (4)0.0258 (11)
H2A0.28590.06100.51640.031*
H2B0.10500.04020.54380.031*
C30.4913 (6)0.0544 (2)0.3091 (4)0.0266 (11)
H3A0.53570.01960.31820.040*
H3B0.49410.07080.39260.040*
H3C0.55880.07420.25340.040*
C40.2717 (7)0.00030 (18)0.1264 (5)0.0311 (12)
H4A0.34300.00860.05810.047*
H4B0.15740.00410.09080.047*
H4C0.31020.03150.16810.047*
C50.1471 (7)0.1608 (2)0.5415 (5)0.0357 (13)
H5A0.09500.19400.52210.054*
H5B0.26790.16440.54470.054*
H5C0.11440.14860.62370.054*
C60.1376 (6)0.1041 (2)0.4354 (5)0.0323 (12)
H6A0.15800.10160.52540.048*
H6B0.17090.07200.39240.048*
H6C0.20210.13250.39670.048*
C70.3072 (6)0.17713 (19)0.1023 (4)0.0273 (11)
H7A0.38150.20190.05540.033*
H7B0.35460.16900.18370.033*
C80.1377 (6)0.19998 (19)0.1269 (4)0.0273 (11)
H8A0.06640.17700.18180.033*
H8B0.14500.23350.17000.033*
C90.1887 (6)0.07605 (19)0.1249 (4)0.0286 (11)
H9A0.25090.07550.20110.043*
H9B0.07570.08810.14730.043*
H9C0.18480.04150.08940.043*
C100.5051 (6)0.1013 (2)0.0067 (5)0.0287 (11)
H10A0.51690.06700.04350.043*
H10B0.56640.12590.06210.043*
H10C0.54950.10160.07710.043*
C110.1231 (7)0.27186 (18)0.0718 (5)0.0337 (12)
H11A0.09170.29590.00300.051*
H11B0.24400.27150.08760.051*
H11C0.07250.28260.14900.051*
C120.1699 (6)0.2108 (2)0.0142 (5)0.0316 (12)
H12A0.22820.21610.06270.047*
H12B0.20660.17850.05450.047*
H12C0.19440.23920.07320.047*
Cl30.54253 (16)0.09564 (5)0.66427 (11)0.0299 (3)
Cl210.0944 (3)0.08497 (11)0.1146 (2)0.0243 (8)0.597 (5)
N110.3280 (12)0.1748 (4)0.2417 (8)0.020 (2)0.597 (5)
O110.4639 (12)0.1916 (4)0.2679 (8)0.051 (3)0.597 (5)
Cl220.3926 (7)0.18470 (18)0.2565 (4)0.0243 (8)0.403 (5)
N120.0356 (16)0.0967 (5)0.1383 (12)0.020 (2)0.403 (5)
O120.1463 (16)0.0674 (6)0.1024 (13)0.051 (3)0.403 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01609 (10)0.01170 (10)0.00949 (9)0.00126 (7)0.00396 (6)0.00089 (6)
P10.0185 (6)0.0143 (5)0.0119 (5)0.0007 (4)0.0024 (4)0.0001 (4)
P20.0244 (6)0.0205 (6)0.0122 (5)0.0016 (5)0.0078 (4)0.0001 (4)
P30.0178 (6)0.0186 (6)0.0099 (5)0.0015 (4)0.0046 (4)0.0001 (4)
P40.0278 (7)0.0147 (6)0.0184 (6)0.0052 (5)0.0066 (5)0.0039 (4)
Cl10.0477 (8)0.0254 (6)0.0252 (6)0.0177 (6)0.0176 (5)0.0007 (5)
C10.033 (3)0.019 (2)0.027 (3)0.002 (2)0.008 (2)0.005 (2)
C20.029 (3)0.032 (3)0.017 (2)0.003 (2)0.0082 (19)0.0006 (19)
C30.021 (2)0.037 (3)0.022 (2)0.007 (2)0.0004 (19)0.004 (2)
C40.051 (3)0.017 (2)0.025 (3)0.006 (2)0.001 (2)0.0013 (19)
C50.054 (4)0.032 (3)0.021 (2)0.004 (3)0.003 (2)0.006 (2)
C60.027 (3)0.037 (3)0.035 (3)0.001 (2)0.016 (2)0.006 (2)
C70.035 (3)0.027 (3)0.022 (2)0.002 (2)0.011 (2)0.000 (2)
C80.041 (3)0.024 (3)0.017 (2)0.006 (2)0.004 (2)0.0076 (19)
C90.038 (3)0.030 (3)0.017 (2)0.001 (2)0.001 (2)0.001 (2)
C100.023 (2)0.040 (3)0.025 (2)0.005 (2)0.0107 (19)0.002 (2)
C110.053 (3)0.014 (2)0.035 (3)0.001 (2)0.009 (2)0.003 (2)
C120.031 (3)0.031 (3)0.033 (3)0.011 (2)0.004 (2)0.012 (2)
Cl30.0378 (7)0.0303 (7)0.0229 (6)0.0086 (5)0.0107 (5)0.0059 (5)
Cl210.016 (2)0.0332 (14)0.0231 (12)0.0016 (14)0.0007 (12)0.0017 (10)
N110.010 (5)0.034 (4)0.017 (4)0.002 (4)0.004 (3)0.002 (3)
O110.027 (5)0.073 (5)0.052 (4)0.004 (4)0.006 (4)0.018 (4)
Cl220.016 (2)0.0332 (14)0.0231 (12)0.0016 (14)0.0007 (12)0.0017 (10)
N120.010 (5)0.034 (4)0.017 (4)0.002 (4)0.004 (3)0.002 (3)
O120.027 (5)0.073 (5)0.052 (4)0.004 (4)0.006 (4)0.018 (4)
Geometric parameters (Å, º) top
W1—P12.5665 (11)C3—H3B0.9800
W1—P22.5745 (11)C3—H3C0.9800
W1—P32.5583 (11)C4—H4A0.9800
W1—P42.5788 (11)C4—H4B0.9800
W1—Cl12.4935 (11)C4—H4C0.9800
W1—Cl212.445 (3)C5—H5A0.9800
W1—Cl222.431 (5)C5—H5B0.9800
W1—N111.840 (11)C5—H5C0.9800
W1—N121.845 (13)C6—H6A0.9800
N11—O111.198 (15)C6—H6B0.9800
N12—O121.218 (17)C6—H6C0.9800
P1—C31.805 (5)C7—C81.502 (7)
P1—C41.809 (5)C7—H7A0.9900
P1—C11.823 (5)C7—H7B0.9900
P2—C51.803 (5)C8—H8A0.9900
P2—C61.812 (5)C8—H8B0.9900
P2—C21.823 (5)C9—H9A0.9800
P3—C101.796 (5)C9—H9B0.9800
P3—C91.810 (5)C9—H9C0.9800
P3—C71.829 (5)C10—H10A0.9800
P4—C121.812 (5)C10—H10B0.9800
P4—C111.817 (5)C10—H10C0.9800
P4—C81.829 (5)C11—H11A0.9800
C1—C21.525 (7)C11—H11B0.9800
C1—H1A0.9900C11—H11C0.9800
C1—H1B0.9900C12—H12A0.9800
C2—H2A0.9900C12—H12B0.9800
C2—H2B0.9900C12—H12C0.9800
C3—H3A0.9800
N11—W1—N12174.8 (4)P2—C2—H2A110.3
N11—W1—Cl21175.3 (3)C1—C2—H2B110.3
N12—W1—Cl22173.3 (5)P2—C2—H2B110.3
Cl22—W1—Cl21173.87 (10)H2A—C2—H2B108.6
N11—W1—Cl190.8 (3)P1—C3—H3A109.5
N12—W1—Cl194.1 (4)P1—C3—H3B109.5
Cl21—W1—Cl193.84 (7)H3A—C3—H3B109.5
Cl22—W1—Cl192.29 (11)P1—C3—H3C109.5
N11—W1—P385.1 (2)H3A—C3—H3C109.5
N12—W1—P392.0 (4)H3B—C3—H3C109.5
Cl22—W1—P384.12 (11)P1—C4—H4A109.5
Cl21—W1—P391.00 (6)P1—C4—H4B109.5
Cl1—W1—P3141.64 (4)H4A—C4—H4B109.5
N11—W1—P193.0 (3)P1—C4—H4C109.5
N12—W1—P182.1 (4)H4A—C4—H4C109.5
Cl22—W1—P191.76 (11)H4B—C4—H4C109.5
Cl21—W1—P183.48 (6)P2—C5—H5A109.5
Cl1—W1—P1141.86 (4)P2—C5—H5B109.5
P1—W1—P273.07 (4)H5A—C5—H5B109.5
P1—W1—P376.49 (3)P2—C5—H5C109.5
N11—W1—P293.0 (3)H5A—C5—H5C109.5
N12—W1—P287.2 (4)H5B—C5—H5C109.5
Cl22—W1—P293.34 (11)P2—C6—H6A109.5
Cl21—W1—P288.97 (6)P2—C6—H6B109.5
Cl1—W1—P268.84 (4)H6A—C6—H6B109.5
P3—W1—P2149.37 (4)P2—C6—H6C109.5
N11—W1—P490.9 (3)H6A—C6—H6C109.5
N12—W1—P492.5 (4)H6B—C6—H6C109.5
Cl22—W1—P491.62 (11)C8—C7—P3108.6 (3)
Cl21—W1—P490.52 (7)C8—C7—H7A110.0
Cl1—W1—P468.56 (4)P3—C7—H7A110.0
P3—W1—P473.37 (4)C8—C7—H7B110.0
P1—W1—P4149.15 (3)P3—C7—H7B110.0
P2—W1—P4137.26 (4)H7A—C7—H7B108.3
C3—P1—C4106.5 (2)C7—C8—P4107.2 (3)
C3—P1—C1102.2 (2)C7—C8—H8A110.3
C4—P1—C197.9 (2)P4—C8—H8A110.3
C3—P1—W1116.09 (17)C7—C8—H8B110.3
C4—P1—W1121.42 (16)P4—C8—H8B110.3
C1—P1—W1109.64 (16)H8A—C8—H8B108.5
C5—P2—C6106.4 (3)P3—C9—H9A109.5
C5—P2—C2103.5 (2)P3—C9—H9B109.5
C6—P2—C2101.7 (2)H9A—C9—H9B109.5
C5—P2—W1116.77 (18)P3—C9—H9C109.5
C6—P2—W1111.95 (17)H9A—C9—H9C109.5
C2—P2—W1114.95 (15)H9B—C9—H9C109.5
C10—P3—C9107.0 (2)P3—C10—H10A109.5
C10—P3—C798.5 (2)P3—C10—H10B109.5
C9—P3—C7101.3 (2)H10A—C10—H10B109.5
C10—P3—W1119.33 (16)P3—C10—H10C109.5
C9—P3—W1117.72 (17)H10A—C10—H10C109.5
C7—P3—W1109.79 (16)H10B—C10—H10C109.5
C12—P4—C11108.6 (3)P4—C11—H11A109.5
C12—P4—C8103.1 (2)P4—C11—H11B109.5
C11—P4—C8101.6 (2)H11A—C11—H11B109.5
C12—P4—W1114.33 (17)P4—C11—H11C109.5
C11—P4—W1113.81 (17)H11A—C11—H11C109.5
C8—P4—W1114.16 (15)H11B—C11—H11C109.5
C2—C1—P1108.2 (3)P4—C12—H12A109.5
C2—C1—H1A110.1P4—C12—H12B109.5
P1—C1—H1A110.1H12A—C12—H12B109.5
C2—C1—H1B110.1P4—C12—H12C109.5
P1—C1—H1B110.1H12A—C12—H12C109.5
H1A—C1—H1B108.4H12B—C12—H12C109.5
C1—C2—P2106.9 (3)O11—N11—W1169.1 (8)
C1—C2—H2A110.3O12—N12—W1176.9 (15)
N11—W1—P1—C32.3 (3)Cl22—W1—P3—C9175.1 (2)
N12—W1—P1—C3179.4 (4)Cl21—W1—P3—C91.2 (2)
Cl22—W1—P1—C33.0 (2)Cl1—W1—P3—C998.7 (2)
Cl21—W1—P1—C3179.16 (18)P1—W1—P3—C981.82 (19)
Cl1—W1—P1—C392.92 (18)P2—W1—P3—C988.4 (2)
P3—W1—P1—C386.56 (18)P4—W1—P3—C991.47 (19)
P2—W1—P1—C389.93 (18)N11—W1—P3—C768.8 (3)
P4—W1—P1—C399.15 (18)N12—W1—P3—C7115.6 (5)
N11—W1—P1—C4129.7 (3)Cl22—W1—P3—C769.9 (2)
N12—W1—P1—C448.6 (5)Cl21—W1—P3—C7113.84 (19)
Cl22—W1—P1—C4128.9 (3)Cl1—W1—P3—C716.37 (19)
Cl21—W1—P1—C447.2 (2)P1—W1—P3—C7163.11 (18)
Cl1—W1—P1—C4135.1 (2)P2—W1—P3—C7156.49 (18)
P3—W1—P1—C445.4 (2)P4—W1—P3—C723.60 (18)
P2—W1—P1—C4138.1 (2)N11—W1—P4—C12154.6 (3)
P4—W1—P1—C432.8 (2)N12—W1—P4—C1229.4 (5)
N11—W1—P1—C1117.5 (3)Cl22—W1—P4—C12155.9 (2)
N12—W1—P1—C164.3 (4)Cl21—W1—P4—C1229.8 (2)
Cl22—W1—P1—C1118.2 (2)Cl1—W1—P4—C1264.1 (2)
Cl21—W1—P1—C165.69 (18)P3—W1—P4—C12120.7 (2)
Cl1—W1—P1—C122.23 (19)P1—W1—P4—C12107.9 (2)
P3—W1—P1—C1158.29 (17)P2—W1—P4—C1259.2 (2)
P2—W1—P1—C125.23 (17)N11—W1—P4—C1129.1 (3)
P4—W1—P1—C1145.69 (18)N12—W1—P4—C11154.9 (5)
N11—W1—P2—C530.3 (3)Cl22—W1—P4—C1130.3 (2)
N12—W1—P2—C5154.9 (5)Cl21—W1—P4—C11155.4 (2)
Cl22—W1—P2—C531.7 (2)Cl1—W1—P4—C1161.5 (2)
Cl21—W1—P2—C5153.9 (2)P3—W1—P4—C11113.7 (2)
Cl1—W1—P2—C559.4 (2)P1—W1—P4—C11126.5 (2)
P3—W1—P2—C5115.8 (2)P2—W1—P4—C1166.4 (2)
P1—W1—P2—C5122.6 (2)N11—W1—P4—C887.0 (3)
P4—W1—P2—C564.3 (2)N12—W1—P4—C889.0 (4)
N11—W1—P2—C6153.4 (3)Cl22—W1—P4—C885.7 (2)
N12—W1—P2—C631.9 (5)Cl21—W1—P4—C888.5 (2)
Cl22—W1—P2—C6154.8 (2)Cl1—W1—P4—C8177.56 (19)
Cl21—W1—P2—C630.9 (2)P3—W1—P4—C82.37 (19)
Cl1—W1—P2—C663.6 (2)P1—W1—P4—C810.4 (2)
P3—W1—P2—C6121.1 (2)P2—W1—P4—C8177.56 (19)
P1—W1—P2—C6114.4 (2)C3—P1—C1—C268.8 (4)
P4—W1—P2—C658.8 (2)C4—P1—C1—C2177.6 (4)
N11—W1—P2—C291.2 (3)W1—P1—C1—C254.9 (4)
N12—W1—P2—C283.6 (5)P1—C1—C2—P253.9 (4)
Cl22—W1—P2—C289.8 (2)C5—P2—C2—C1160.7 (3)
Cl21—W1—P2—C284.53 (19)C6—P2—C2—C189.0 (4)
Cl1—W1—P2—C2179.05 (18)W1—P2—C2—C132.2 (4)
P3—W1—P2—C25.7 (2)C10—P3—C7—C8179.3 (3)
P1—W1—P2—C21.03 (18)C9—P3—C7—C871.3 (4)
P4—W1—P2—C2174.18 (18)W1—P3—C7—C853.8 (3)
N11—W1—P3—C1043.7 (3)P3—C7—C8—P454.2 (4)
N12—W1—P3—C10132.0 (5)C12—P4—C8—C7158.3 (3)
Cl22—W1—P3—C1042.6 (2)C11—P4—C8—C789.3 (4)
Cl21—W1—P3—C10133.7 (2)W1—P4—C8—C733.7 (4)
Cl1—W1—P3—C10128.8 (2)Cl22—W1—N11—O112 (10)
P1—W1—P3—C1050.6 (2)Cl1—W1—N11—O11174 (4)
P2—W1—P3—C1044.0 (2)P3—W1—N11—O1144 (4)
P4—W1—P3—C10136.1 (2)P1—W1—N11—O1132 (4)
N11—W1—P3—C9176.1 (3)P2—W1—N11—O11105 (4)
N12—W1—P3—C90.5 (5)P4—W1—N11—O11118 (4)

Experimental details

Crystal data
Chemical formula[WCl2(NO)(C6H16P2)2]Cl
Mr620.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)183
a, b, c (Å)8.0929 (7), 26.118 (2), 10.5703 (10)
β (°) 94.19 (1)
V3)2228.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.83
Crystal size (mm)0.20 × 0.15 × 0.07
Data collection
DiffractometerStoe IPDS
Absorption correctionNumerical
(Coppens et al., 1965)
Tmin, Tmax0.410, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
7761, 3937, 3353
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 0.98
No. of reflections3937
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 1.28

Computer programs: X-RED in IPDS Software (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
W1—P12.5665 (11)W1—Cl212.445 (3)
W1—P22.5745 (11)W1—Cl222.431 (5)
W1—P32.5583 (11)W1—N111.840 (11)
W1—P42.5788 (11)W1—N121.845 (13)
W1—Cl12.4935 (11)
P1—W1—P273.07 (4)Cl1—W1—P468.56 (4)
P1—W1—P376.49 (3)P3—W1—P473.37 (4)
Cl1—W1—P268.84 (4)
 

Acknowledgements

We thank the University of Zürich and the Swiss National Science Foundation for financial support.

References

First citationBencze, L. & Kohàn, J. (1982). Inorg. Chim. Acta, 65, L17–L19.  CrossRef CAS Web of Science Google Scholar
First citationCarmona, E., Gutiérrez-Puebla, E., Monge, A., Pérez, P. J. & Sanchez, L. J. (1989). Inorg. Chem. 28, 2120–2127.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, Z., Schmalle, H. W., Fox, T., Blacque, O. & Berke, H. (2007). J. Organomet. Chem. 692, 4875–4885.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHunter, A. D. & Legzdins, P. (1984). Inorg. Chem. 23, 4198–4204.  CrossRef CAS Web of Science Google Scholar
First citationLiang, F., Schmalle, H. W. & Berke, H. (2006). Eur. J. Inorg. Chem. 24, 5081–5088.  Web of Science CSD CrossRef Google Scholar
First citationLiang, F., Schmalle, H. W., Fox, T. & Berke, H. (2003). Organometallics, 22, 3382–3393.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). IPDS Software. Version 2.92. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds