metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl­chlorido(pyrrolidine-1-di­thio­carboxyl­ato-κ2S,S′)tin(IV)

aMarine Drug and Food Institute, Ocean University of China, Qingdao 266003, People's Republic of China, bDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, and cCollege of Weifang Science and Technology Vocational, Weifang 262700, People's Republic of China
*Correspondence e-mail: liyantuanouc@163.com

(Received 8 November 2007; accepted 29 November 2007; online 6 December 2007)

The title compound, [Sn(C4H9)2(C5H8NS2)Cl], contains two mol­ecules in the asymmetric unit, with similar conformations. In both mol­ecules, the Sn atom adopts a distorted trigonal-bipyramidal geometry arising from two C atoms, one Cl atom and two S atoms from the bidentate dithio­carbamate ligand, with one Sn—S bond much longer than the other. One C atom of the pyrrolidine ring is disordered equally over two sites.

Related literature

For related structures, see: Ng et al. (1989[Ng, S. W., Chen, W., Kumar Das, V. G., Charland, J. P. & Smith, F. E. (1989). J. Organomet. Chem. 364, 343-351.]); Furue et al. (1970[Furue, K., Kimura, T., Yasuoka, N., Kasai, N. & Kakudo, M. (1970). Bull. Chem. Soc. Jpn, 43, 1661-1667.]); Hall & Tiekink (1995[Hall, V. J. & Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 611-620.]); Jung & Sohn (1988[Jung, O. S. & Sohn, Y. S. (1988). Bull. Kor. Chem. Soc. 9, 365-368.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C5H8NS2)Cl]

  • Mr = 414.61

  • Monoclinic, P 21 /c

  • a = 12.399 (3) Å

  • b = 25.159 (5) Å

  • c = 12.104 (2) Å

  • β = 97.764 (3)°

  • V = 3741.2 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 293 (2) K

  • 0.47 × 0.34 × 0.29 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.500, Tmax = 0.636

  • 24292 measured reflections

  • 9079 independent reflections

  • 4691 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.00

  • 9079 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—S1 2.4696 (15)
Sn1—S2 2.8264 (16)
Sn1—C6 2.190 (6)
Sn1—C10 2.182 (5)
Sn1—Cl1 2.4669 (16)
Sn2—S3 2.4681 (15)
Sn2—S4 2.8209 (16)
Sn2—Cl2 2.4447 (17)
Sn2—C19 2.187 (6)
Sn2—C23 2.189 (6)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chlorodialkyltin(IV) derivatives of monobasic chelating ligands generally exist as six-coordinate compounds arising from chloride-ion bridging (Ng et al., 1989). An example of such a compound is chloride-bridged, dimeric chlorodimethyl(N,N-dimethyldithiocarbamato)tin, whose crystal structure has been known for a long time (Furue et al., 1970). Replacing the methyl group on tin by the phenyl group interferes with the bridging, as noted in chlorobis(N-cyclohexyl-N-ethyldithiocarbamato)diphenyltin (Hall & Tiekink, 1995).

The sterically bulky t-butyl group in the title compound, (I), is also expected to disrupt bridging, and a molecular species results (Fig. 1). There are two molecules in the asymmetric unit, with similar geometries. In both cases, the tin(IV) atom adopts a distorted C2ClS2Sn-trigonal bipyramidal geometry (Table 1). The formally double-bonded sulfur atom occupies one of the apical sites and the chloride ion the other in the axially most-electronegative configuration. Othwerwise, the geometrical parameters for (I) may be regarded as normal (Allen et al., 1987) and are similar to those found in the other R2ClSnS2CNR'2 mentioned above.

Related literature top

For related structures, see: Ng et al. (1989); Furue et al. (1970); Hall & Tiekink (1995); Jung & Sohn (1988). For reference structural data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by the method described in the literature (Jung & Sohn, 1988). Recrystallization from a 1:1 v/v mixture of dichloromethane-hexane yielded colourless blocks of (I). M.P. 439 K. Analysis. Calc. for C26H52N2S4ClSn2: C 37.66, H 6.32; N 3.38%. Found: C 34.43, H 6.18, N 3.52%.

Refinement top

Some of the carbon atoms of the t-butyl groups show significant anisotropic displacements. Attempts to model this as disorder over two or more sites were not successful. Atom C4 is disordered over two positions in a 0.50 (3):0.50 (3) ratio.

The hydrogen atoms were geometrically placed (C–H = 0.96–0.97 Å), and refined as riding with U(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Structure description top

Chlorodialkyltin(IV) derivatives of monobasic chelating ligands generally exist as six-coordinate compounds arising from chloride-ion bridging (Ng et al., 1989). An example of such a compound is chloride-bridged, dimeric chlorodimethyl(N,N-dimethyldithiocarbamato)tin, whose crystal structure has been known for a long time (Furue et al., 1970). Replacing the methyl group on tin by the phenyl group interferes with the bridging, as noted in chlorobis(N-cyclohexyl-N-ethyldithiocarbamato)diphenyltin (Hall & Tiekink, 1995).

The sterically bulky t-butyl group in the title compound, (I), is also expected to disrupt bridging, and a molecular species results (Fig. 1). There are two molecules in the asymmetric unit, with similar geometries. In both cases, the tin(IV) atom adopts a distorted C2ClS2Sn-trigonal bipyramidal geometry (Table 1). The formally double-bonded sulfur atom occupies one of the apical sites and the chloride ion the other in the axially most-electronegative configuration. Othwerwise, the geometrical parameters for (I) may be regarded as normal (Allen et al., 1987) and are similar to those found in the other R2ClSnS2CNR'2 mentioned above.

For related structures, see: Ng et al. (1989); Furue et al. (1970); Hall & Tiekink (1995); Jung & Sohn (1988). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the Sn2 molecule in (I) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). The long Sn—S contact is shown as a double dashed line.
Di-tert-butylchlorido(pyrrolidine-1-dithiocarboxylato-κ2S,S')tin(IV) top
Crystal data top
[Sn(C4H9)2(C5H8NS2)Cl]F(000) = 1680
Mr = 414.61Dx = 1.472 Mg m3
Monoclinic, P21/cMelting point: 439 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.399 (3) ÅCell parameters from 4903 reflections
b = 25.159 (5) Åθ = 2.3–23.7°
c = 12.104 (2) ŵ = 1.72 mm1
β = 97.764 (3)°T = 293 K
V = 3741.2 (13) Å3Block, colourless
Z = 80.47 × 0.34 × 0.29 mm
Data collection top
Siemens SMART CCD
diffractometer
9079 independent reflections
Radiation source: fine-focus sealed tube4691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1516
Tmin = 0.500, Tmax = 0.636k = 3333
24292 measured reflectionsl = 1611
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0411P)2 + 2.9577P]
where P = (Fo2 + 2Fc2)/3
9079 reflections(Δ/σ)max = 0.002
325 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Sn(C4H9)2(C5H8NS2)Cl]V = 3741.2 (13) Å3
Mr = 414.61Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.399 (3) ŵ = 1.72 mm1
b = 25.159 (5) ÅT = 293 K
c = 12.104 (2) Å0.47 × 0.34 × 0.29 mm
β = 97.764 (3)°
Data collection top
Siemens SMART CCD
diffractometer
9079 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
4691 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 0.636Rint = 0.048
24292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.00Δρmax = 0.99 e Å3
9079 reflectionsΔρmin = 0.46 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.19927 (3)0.129544 (14)0.43807 (3)0.05039 (12)
C10.4091 (4)0.1000 (2)0.3436 (4)0.0530 (13)
C20.5521 (4)0.0316 (2)0.3531 (5)0.0656 (16)
H2A0.50500.00130.33310.079*
H2B0.57180.03230.43340.079*
C30.6511 (6)0.0297 (3)0.2947 (7)0.122 (3)
H3A0.71390.01830.34590.147*
H3B0.64020.00490.23290.147*
C4A0.6687 (15)0.0843 (9)0.253 (2)0.084 (7)*0.50 (3)
H4A10.71600.10440.30880.101*0.50 (3)
H4A20.70160.08300.18530.101*0.50 (3)
C4B0.6406 (14)0.0636 (8)0.2067 (18)0.076 (6)*0.50 (3)
H4B10.61140.04500.13890.091*0.50 (3)
H4B20.71080.07840.19660.091*0.50 (3)
C50.5605 (4)0.1089 (2)0.2330 (5)0.0652 (15)
H5A0.52720.10310.15670.078*
H5B0.56460.14680.24760.078*
C60.2373 (5)0.2007 (2)0.5401 (5)0.0728 (17)
C70.2331 (6)0.2489 (3)0.4688 (7)0.107 (3)
H7A0.16290.25130.42450.161*
H7B0.28840.24660.42060.161*
H7C0.24520.27990.51500.161*
C80.1499 (8)0.2060 (3)0.6171 (7)0.148 (4)
H8A0.14940.17460.66210.222*
H8B0.07990.21030.57310.222*
H8C0.16530.23640.66440.222*
C90.3471 (7)0.1940 (3)0.6056 (8)0.166 (5)
H9A0.34740.16290.65150.249*
H9B0.36410.22460.65200.249*
H9C0.40040.19010.55560.249*
C100.0631 (5)0.1179 (3)0.3061 (5)0.0694 (17)
C110.0560 (7)0.1630 (3)0.2258 (7)0.138 (4)
H11A0.12370.16640.19620.207*
H11B0.04140.19530.26340.207*
H11C0.00170.15650.16610.207*
C120.0851 (9)0.0686 (3)0.2428 (9)0.189 (6)
H12A0.15170.07290.21150.284*
H12B0.02620.06270.18400.284*
H12C0.09140.03870.29250.284*
C130.0373 (7)0.1138 (6)0.3534 (8)0.251 (8)
H13A0.03220.08480.40550.377*
H13B0.09640.10740.29510.377*
H13C0.05000.14620.39120.377*
N10.4993 (3)0.08164 (16)0.3120 (4)0.0540 (11)
S10.34854 (12)0.06438 (6)0.44053 (13)0.0652 (4)
S20.34882 (13)0.15709 (6)0.29081 (14)0.0707 (4)
Cl10.13750 (14)0.07141 (7)0.58121 (14)0.0856 (5)
Sn20.76534 (3)0.139079 (15)0.85114 (3)0.05640 (13)
C140.7473 (4)0.0294 (2)0.9603 (4)0.0560 (14)
C150.8512 (5)0.0358 (2)1.0835 (5)0.0699 (16)
H15A0.85830.01771.15480.084*
H15B0.91700.03031.04980.084*
C160.8299 (6)0.0941 (3)1.0971 (7)0.098 (2)
H16A0.86270.11481.04290.117*
H16B0.85920.10601.17130.117*
C170.7135 (6)0.0995 (3)1.0794 (7)0.109 (3)
H17A0.68390.09421.14870.130*
H17B0.69330.13481.05160.130*
C180.6694 (5)0.0577 (2)0.9943 (5)0.0731 (17)
H18A0.66060.07190.91910.088*
H18B0.60020.04371.01010.088*
C190.6519 (5)0.1953 (2)0.9113 (5)0.0738 (17)
C200.5356 (6)0.1769 (4)0.8820 (9)0.170 (5)
H20A0.51860.17390.80250.255*
H20B0.48760.20230.90920.255*
H20C0.52670.14290.91570.255*
C210.6793 (8)0.1989 (3)1.0358 (6)0.128 (3)
H21A0.75300.21101.05440.192*
H21B0.67180.16441.06810.192*
H21C0.63080.22341.06450.192*
C220.6713 (8)0.2495 (3)0.8622 (7)0.133 (3)
H22A0.65600.24780.78240.199*
H22B0.74580.25970.88350.199*
H22C0.62420.27520.88970.199*
C230.7730 (6)0.1232 (3)0.6746 (5)0.0767 (18)
C240.6554 (7)0.1218 (4)0.6157 (6)0.129 (3)
H24A0.61630.09390.64680.194*
H24B0.65560.11550.53750.194*
H24C0.62080.15530.62580.194*
C250.8356 (7)0.1679 (3)0.6291 (7)0.130 (3)
H25A0.79910.20100.63770.194*
H25B0.83970.16180.55150.194*
H25C0.90780.16940.66930.194*
C260.8287 (8)0.0714 (3)0.6631 (7)0.140 (4)
H26A0.78910.04360.69400.210*
H26B0.90130.07300.70210.210*
H26C0.83150.06430.58560.210*
N20.7552 (3)0.01685 (17)1.0098 (4)0.0564 (11)
S30.85602 (11)0.07357 (6)0.98437 (14)0.0682 (4)
S40.63452 (12)0.04916 (7)0.87493 (14)0.0756 (5)
Cl20.92997 (15)0.19225 (7)0.89949 (19)0.1153 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0460 (2)0.0545 (2)0.0514 (2)0.00284 (17)0.00948 (16)0.00291 (18)
C10.045 (3)0.055 (3)0.062 (4)0.001 (2)0.017 (3)0.005 (3)
C20.061 (4)0.067 (4)0.070 (4)0.017 (3)0.013 (3)0.005 (3)
C30.099 (6)0.154 (8)0.127 (7)0.070 (6)0.065 (5)0.029 (6)
C50.063 (4)0.075 (4)0.062 (4)0.003 (3)0.025 (3)0.002 (3)
C60.083 (5)0.059 (4)0.075 (4)0.004 (3)0.007 (4)0.014 (3)
C70.124 (7)0.066 (4)0.131 (7)0.003 (4)0.016 (5)0.013 (5)
C80.219 (11)0.107 (6)0.140 (8)0.004 (7)0.104 (8)0.043 (6)
C90.147 (8)0.129 (7)0.192 (10)0.018 (6)0.091 (8)0.068 (7)
C100.059 (4)0.081 (4)0.065 (4)0.011 (3)0.006 (3)0.007 (3)
C110.130 (7)0.132 (7)0.132 (7)0.007 (6)0.056 (6)0.028 (6)
C120.200 (11)0.130 (7)0.198 (11)0.039 (7)0.118 (9)0.075 (8)
C130.050 (5)0.57 (3)0.123 (8)0.049 (10)0.010 (5)0.051 (12)
N10.050 (3)0.058 (3)0.056 (3)0.007 (2)0.016 (2)0.001 (2)
S10.0643 (10)0.0593 (9)0.0771 (11)0.0141 (7)0.0283 (8)0.0201 (8)
S20.0653 (10)0.0629 (9)0.0900 (12)0.0163 (7)0.0326 (9)0.0275 (8)
Cl10.0828 (12)0.0949 (12)0.0859 (12)0.0063 (9)0.0361 (9)0.0295 (10)
Sn20.0486 (2)0.0586 (2)0.0612 (3)0.00115 (17)0.00451 (18)0.00429 (19)
C140.048 (3)0.068 (4)0.052 (3)0.002 (3)0.009 (3)0.000 (3)
C150.068 (4)0.064 (4)0.078 (4)0.003 (3)0.011 (3)0.012 (3)
C160.105 (6)0.075 (5)0.116 (6)0.009 (4)0.024 (5)0.023 (4)
C170.105 (6)0.055 (4)0.171 (8)0.008 (4)0.040 (6)0.014 (5)
C180.067 (4)0.066 (4)0.089 (5)0.024 (3)0.017 (3)0.009 (4)
C190.083 (5)0.068 (4)0.072 (5)0.013 (3)0.016 (3)0.008 (3)
C200.073 (6)0.157 (9)0.279 (14)0.034 (6)0.022 (7)0.076 (9)
C210.226 (10)0.084 (5)0.081 (6)0.014 (6)0.049 (6)0.005 (4)
C220.204 (10)0.085 (5)0.115 (7)0.061 (6)0.046 (6)0.025 (5)
C230.092 (5)0.075 (4)0.068 (4)0.005 (4)0.029 (4)0.003 (3)
C240.147 (8)0.175 (8)0.061 (5)0.006 (7)0.002 (5)0.008 (5)
C250.174 (9)0.121 (7)0.109 (7)0.010 (6)0.077 (6)0.022 (5)
C260.212 (10)0.089 (6)0.138 (8)0.040 (6)0.092 (7)0.001 (5)
N20.053 (3)0.057 (3)0.060 (3)0.003 (2)0.009 (2)0.002 (2)
S30.0478 (8)0.0676 (9)0.0841 (11)0.0126 (7)0.0103 (8)0.0192 (8)
S40.0508 (9)0.0848 (11)0.0855 (12)0.0142 (8)0.0108 (8)0.0149 (9)
Cl20.0780 (12)0.0915 (12)0.167 (2)0.0381 (10)0.0170 (12)0.0282 (13)
Geometric parameters (Å, º) top
Sn1—S12.4696 (15)C13—H13B0.9600
Sn1—S22.8264 (16)C13—H13C0.9600
Sn1—C62.190 (6)Sn2—S32.4681 (15)
Sn1—C102.182 (5)Sn2—S42.8209 (16)
Sn1—Cl12.4669 (16)Sn2—Cl22.4447 (17)
C1—N11.313 (6)Sn2—C192.187 (6)
C1—S21.704 (5)Sn2—C232.189 (6)
C1—S11.726 (5)C14—N21.306 (6)
C2—N11.475 (6)C14—S41.697 (5)
C2—C31.498 (8)C14—S31.741 (5)
C2—H2A0.9700C15—N21.468 (7)
C2—H2B0.9700C15—C161.502 (8)
C3—C4B1.357 (14)C15—H15A0.9700
C3—C4A1.487 (18)C15—H15B0.9700
C3—H3A0.9700C16—C171.437 (9)
C3—H3B0.9700C16—H16A0.9700
C4A—C51.467 (14)C16—H16B0.9700
C4A—H4A10.9700C17—C181.521 (9)
C4A—H4A20.9700C17—H17A0.9700
C4B—C51.573 (16)C17—H17B0.9700
C4B—H4B10.9700C18—N21.473 (6)
C4B—H4B20.9700C18—H18A0.9700
C5—N11.469 (6)C18—H18B0.9700
C5—H5A0.9700C19—C211.502 (9)
C5—H5B0.9700C19—C201.510 (10)
C6—C71.484 (8)C19—C221.520 (9)
C6—C91.490 (9)C20—H20A0.9600
C6—C81.528 (9)C20—H20B0.9600
C7—H7A0.9600C20—H20C0.9600
C7—H7B0.9600C21—H21A0.9600
C7—H7C0.9600C21—H21B0.9600
C8—H8A0.9600C21—H21C0.9600
C8—H8B0.9600C22—H22A0.9600
C8—H8C0.9600C22—H22B0.9600
C9—H9A0.9600C22—H22C0.9600
C9—H9B0.9600C23—C261.490 (9)
C9—H9C0.9600C23—C251.512 (9)
C10—C131.443 (10)C23—C241.534 (10)
C10—C111.489 (9)C24—H24A0.9600
C10—C121.502 (10)C24—H24B0.9600
C11—H11A0.9600C24—H24C0.9600
C11—H11B0.9600C25—H25A0.9600
C11—H11C0.9600C25—H25B0.9600
C12—H12A0.9600C25—H25C0.9600
C12—H12B0.9600C26—H26A0.9600
C12—H12C0.9600C26—H26B0.9600
C13—H13A0.9600C26—H26C0.9600
C10—Sn1—C6127.5 (2)H13A—C13—H13C109.5
C10—Sn1—Cl198.75 (17)H13B—C13—H13C109.5
C6—Sn1—Cl198.76 (18)C1—N1—C5124.1 (4)
C10—Sn1—S1115.12 (18)C1—N1—C2123.9 (4)
C6—Sn1—S1115.61 (17)C5—N1—C2112.0 (4)
Cl1—Sn1—S184.33 (5)C1—S1—Sn192.39 (18)
C10—Sn1—S294.56 (17)C1—S2—Sn181.30 (18)
C6—Sn1—S292.62 (18)C19—Sn2—C23123.9 (2)
Cl1—Sn1—S2151.72 (5)C19—Sn2—Cl296.91 (18)
S1—Sn1—S267.41 (5)C23—Sn2—Cl2100.86 (19)
N1—C1—S2122.3 (4)C19—Sn2—S3118.09 (18)
N1—C1—S1118.8 (4)C23—Sn2—S3116.12 (18)
S2—C1—S1118.9 (3)Cl2—Sn2—S385.24 (6)
N1—C2—C3102.8 (5)C19—Sn2—S494.58 (18)
N1—C2—H2A111.2C23—Sn2—S493.15 (18)
C3—C2—H2A111.2Cl2—Sn2—S4152.55 (6)
N1—C2—H2B111.2S3—Sn2—S467.37 (5)
C3—C2—H2B111.2N2—C14—S4123.0 (4)
H2A—C2—H2B109.1N2—C14—S3118.9 (4)
C4B—C3—C4A32.8 (7)S4—C14—S3118.1 (3)
C4B—C3—C2110.7 (8)N2—C15—C16104.1 (5)
C4A—C3—C2107.2 (8)N2—C15—H15A110.9
C4B—C3—H3A132.1C16—C15—H15A110.9
C4A—C3—H3A110.3N2—C15—H15B110.9
C2—C3—H3A110.3C16—C15—H15B110.9
C4B—C3—H3B79.0H15A—C15—H15B108.9
C4A—C3—H3B110.3C17—C16—C15105.4 (6)
C2—C3—H3B110.3C17—C16—H16A110.7
H3A—C3—H3B108.5C15—C16—H16A110.7
C5—C4A—C3105.9 (12)C17—C16—H16B110.7
C5—C4A—H4A1110.6C15—C16—H16B110.7
C3—C4A—H4A1110.6H16A—C16—H16B108.8
C5—C4A—H4A2110.6C16—C17—C18107.3 (6)
C3—C4A—H4A2110.6C16—C17—H17A110.3
H4A1—C4A—H4A2108.7C18—C17—H17A110.3
C3—C4B—C5107.0 (11)C16—C17—H17B110.3
C3—C4B—H4B1110.3C18—C17—H17B110.3
C5—C4B—H4B1110.3H17A—C17—H17B108.5
C3—C4B—H4B2110.3N2—C18—C17102.1 (5)
C5—C4B—H4B2110.3N2—C18—H18A111.4
H4B1—C4B—H4B2108.6C17—C18—H18A111.3
C4A—C5—N1103.5 (7)N2—C18—H18B111.3
C4A—C5—C4B30.8 (7)C17—C18—H18B111.3
N1—C5—C4B100.9 (6)H18A—C18—H18B109.2
C4A—C5—H5A111.1C21—C19—C20109.5 (7)
N1—C5—H5A111.1C21—C19—C22108.2 (6)
C4B—C5—H5A84.1C20—C19—C22112.3 (7)
C4A—C5—H5B111.1C21—C19—Sn2107.7 (5)
N1—C5—H5B111.1C20—C19—Sn2111.2 (5)
C4B—C5—H5B137.0C22—C19—Sn2107.9 (5)
H5A—C5—H5B109.0C19—C20—H20A109.5
C7—C6—C9111.1 (7)C19—C20—H20B109.5
C7—C6—C8108.2 (6)H20A—C20—H20B109.5
C9—C6—C8110.9 (7)C19—C20—H20C109.5
C7—C6—Sn1110.6 (4)H20A—C20—H20C109.5
C9—C6—Sn1108.6 (4)H20B—C20—H20C109.5
C8—C6—Sn1107.4 (5)C19—C21—H21A109.5
C6—C7—H7A109.5C19—C21—H21B109.5
C6—C7—H7B109.5H21A—C21—H21B109.5
H7A—C7—H7B109.5C19—C21—H21C109.5
C6—C7—H7C109.5H21A—C21—H21C109.5
H7A—C7—H7C109.5H21B—C21—H21C109.5
H7B—C7—H7C109.5C19—C22—H22A109.5
C6—C8—H8A109.5C19—C22—H22B109.5
C6—C8—H8B109.5H22A—C22—H22B109.5
H8A—C8—H8B109.5C19—C22—H22C109.5
C6—C8—H8C109.5H22A—C22—H22C109.5
H8A—C8—H8C109.5H22B—C22—H22C109.5
H8B—C8—H8C109.5C26—C23—C25110.5 (6)
C6—C9—H9A109.5C26—C23—C24111.1 (7)
C6—C9—H9B109.5C25—C23—C24110.5 (6)
H9A—C9—H9B109.5C26—C23—Sn2109.4 (5)
C6—C9—H9C109.5C25—C23—Sn2108.2 (5)
H9A—C9—H9C109.5C24—C23—Sn2107.1 (4)
H9B—C9—H9C109.5C23—C24—H24A109.5
C13—C10—C11109.7 (8)C23—C24—H24B109.5
C13—C10—C12111.6 (8)H24A—C24—H24B109.5
C11—C10—C12107.2 (7)C23—C24—H24C109.5
C13—C10—Sn1110.0 (5)H24A—C24—H24C109.5
C11—C10—Sn1110.3 (4)H24B—C24—H24C109.5
C12—C10—Sn1107.9 (4)C23—C25—H25A109.5
C10—C11—H11A109.5C23—C25—H25B109.5
C10—C11—H11B109.5H25A—C25—H25B109.5
H11A—C11—H11B109.5C23—C25—H25C109.5
C10—C11—H11C109.5H25A—C25—H25C109.5
H11A—C11—H11C109.5H25B—C25—H25C109.5
H11B—C11—H11C109.5C23—C26—H26A109.5
C10—C12—H12A109.5C23—C26—H26B109.5
C10—C12—H12B109.5H26A—C26—H26B109.5
H12A—C12—H12B109.5C23—C26—H26C109.5
C10—C12—H12C109.5H26A—C26—H26C109.5
H12A—C12—H12C109.5H26B—C26—H26C109.5
H12B—C12—H12C109.5C14—N2—C15125.0 (4)
C10—C13—H13A109.5C14—N2—C18123.7 (5)
C10—C13—H13B109.5C15—N2—C18111.3 (4)
H13A—C13—H13B109.5C14—S3—Sn292.45 (19)
C10—C13—H13C109.5C14—S4—Sn281.93 (19)
N1—C2—C3—C4B17.3 (14)C10—Sn1—S2—C1115.9 (2)
N1—C2—C3—C4A17.2 (13)C6—Sn1—S2—C1116.2 (2)
C4B—C3—C4A—C572.6 (19)Cl1—Sn1—S2—C12.2 (2)
C2—C3—C4A—C529.0 (19)S1—Sn1—S2—C10.57 (18)
C4A—C3—C4B—C563.5 (17)N2—C15—C16—C1726.0 (8)
C2—C3—C4B—C526.4 (19)C15—C16—C17—C1832.6 (8)
C3—C4A—C5—N128.0 (18)C16—C17—C18—N225.7 (7)
C3—C4A—C5—C4B60.7 (17)C23—Sn2—C19—C21174.5 (5)
C3—C4B—C5—C4A74.0 (19)Cl2—Sn2—C19—C2166.4 (5)
C3—C4B—C5—N124.2 (17)S3—Sn2—C19—C2121.9 (5)
C10—Sn1—C6—C748.4 (6)S4—Sn2—C19—C2188.6 (5)
Cl1—Sn1—C6—C7156.6 (5)C23—Sn2—C19—C2065.6 (7)
S1—Sn1—C6—C7115.6 (5)Cl2—Sn2—C19—C20173.7 (6)
S2—Sn1—C6—C749.4 (5)S3—Sn2—C19—C2098.1 (6)
C10—Sn1—C6—C9170.5 (6)S4—Sn2—C19—C2031.3 (6)
Cl1—Sn1—C6—C981.3 (6)C23—Sn2—C19—C2257.9 (6)
S1—Sn1—C6—C96.6 (6)Cl2—Sn2—C19—C2250.1 (5)
S2—Sn1—C6—C972.7 (6)S3—Sn2—C19—C22138.4 (4)
C10—Sn1—C6—C869.4 (6)S4—Sn2—C19—C22154.8 (5)
Cl1—Sn1—C6—C838.7 (5)C19—Sn2—C23—C26160.5 (5)
S1—Sn1—C6—C8126.6 (5)Cl2—Sn2—C23—C2693.5 (5)
S2—Sn1—C6—C8167.2 (5)S3—Sn2—C23—C263.5 (6)
C6—Sn1—C10—C1371.1 (8)S4—Sn2—C23—C2662.8 (5)
Cl1—Sn1—C10—C1337.1 (8)C19—Sn2—C23—C2579.1 (6)
S1—Sn1—C10—C13124.9 (8)Cl2—Sn2—C23—C2526.9 (5)
S2—Sn1—C10—C13167.9 (8)S3—Sn2—C23—C25116.9 (5)
C6—Sn1—C10—C1150.0 (6)S4—Sn2—C23—C25176.8 (5)
Cl1—Sn1—C10—C11158.2 (5)C19—Sn2—C23—C2440.0 (6)
S1—Sn1—C10—C11113.9 (5)Cl2—Sn2—C23—C24146.0 (5)
S2—Sn1—C10—C1146.8 (5)S3—Sn2—C23—C24124.0 (4)
C6—Sn1—C10—C12166.9 (6)S4—Sn2—C23—C2457.7 (5)
Cl1—Sn1—C10—C1284.9 (6)S4—C14—N2—C15179.5 (4)
S1—Sn1—C10—C122.9 (6)S3—C14—N2—C151.7 (8)
S2—Sn1—C10—C1270.1 (6)S4—C14—N2—C182.3 (8)
S2—C1—N1—C52.9 (7)S3—C14—N2—C18178.9 (4)
S1—C1—N1—C5178.0 (4)C16—C15—N2—C14167.6 (5)
S2—C1—N1—C2178.1 (4)C16—C15—N2—C1810.0 (7)
S1—C1—N1—C21.0 (7)C17—C18—N2—C14173.5 (6)
C4A—C5—N1—C1161.3 (13)C17—C18—N2—C158.9 (6)
C4B—C5—N1—C1167.3 (11)N2—C14—S3—Sn2176.6 (4)
C4A—C5—N1—C217.8 (13)S4—C14—S3—Sn24.5 (3)
C4B—C5—N1—C213.6 (11)C19—Sn2—S3—C1485.4 (3)
C3—C2—N1—C1178.7 (6)C23—Sn2—S3—C1479.5 (3)
C3—C2—N1—C50.4 (7)Cl2—Sn2—S3—C14179.3 (2)
N1—C1—S1—Sn1179.9 (4)S4—Sn2—S3—C142.58 (18)
S2—C1—S1—Sn11.0 (3)N2—C14—S4—Sn2177.2 (5)
C10—Sn1—S1—C184.8 (3)S3—C14—S4—Sn24.0 (3)
C6—Sn1—S1—C181.1 (3)C19—Sn2—S4—C14121.3 (3)
Cl1—Sn1—S1—C1178.15 (18)C23—Sn2—S4—C14114.4 (3)
S2—Sn1—S1—C10.56 (18)Cl2—Sn2—S4—C146.7 (3)
N1—C1—S2—Sn1179.9 (5)S3—Sn2—S4—C142.67 (19)
S1—C1—S2—Sn10.9 (3)

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(C5H8NS2)Cl]
Mr414.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.399 (3), 25.159 (5), 12.104 (2)
β (°) 97.764 (3)
V3)3741.2 (13)
Z8
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.47 × 0.34 × 0.29
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.500, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
24292, 9079, 4691
Rint0.048
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.00
No. of reflections9079
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 0.46

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Sn1—S12.4696 (15)Sn2—S32.4681 (15)
Sn1—S22.8264 (16)Sn2—S42.8209 (16)
Sn1—C62.190 (6)Sn2—Cl22.4447 (17)
Sn1—C102.182 (5)Sn2—C192.187 (6)
Sn1—Cl12.4669 (16)Sn2—C232.189 (6)
 

Acknowledgements

We acknowledge the financial support of the Natural Science Foundation of China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFurue, K., Kimura, T., Yasuoka, N., Kasai, N. & Kakudo, M. (1970). Bull. Chem. Soc. Jpn, 43, 1661–1667.  CrossRef CAS Web of Science Google Scholar
First citationHall, V. J. & Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 611–620.  CAS Google Scholar
First citationJung, O. S. & Sohn, Y. S. (1988). Bull. Kor. Chem. Soc. 9, 365–368.  CAS Google Scholar
First citationNg, S. W., Chen, W., Kumar Das, V. G., Charland, J. P. & Smith, F. E. (1989). J. Organomet. Chem. 364, 343–351.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds