metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[2-(di­phenyl­phos­phino)­aceto­phenone]gold(I)

aJohannes Kepler Universität Linz, Institut für Anorganische Chemie, Altenbergerstrasse 69, 4040 Linz, Austria, and bUniversität Regensburg, Zentrale Analytik, Röntgenstrukturanalyse, Universitätsstrasse 31, 93053 Regensburg, Germany
*Correspondence e-mail: uwe.monkowius@jku.at

(Received 7 December 2007; accepted 10 December 2007; online 18 December 2007)

In the crystal structure of the title compound, [AuCl(C20H17OP)], the phosphine acts as a monodentate ligand. The Au atoms are attached solely to the P and Cl atoms. The coordination is linear without any tendency to aggregate via aurophilic inter­actions.

Related literature

For related literature, see: Monkowius et al. (2003a[Monkowius, U., Nogai, S. & Schmidbaur, H. (2003a). Organometallics, 22, 145-152.],b[Monkowius, U., Nogai, S. & Schmidbaur, H. (2003b). Z. Naturforsch. Teil B, 58, 751-758.]); Coote et al. (1993[Coote, S. J., Dawson, G. J., Frost, C. G. & Williams, J. M. J. (1993). Synlett, pp. 509-510.]); Johansson et al. (2002[Johansson, M. H., Andersson, C. & Oskarsson, Å. (2002). J. Mol. Struct. 606, 51-59.]).

[Scheme 1]

Experimental

Crystal data
  • [AuCl(C20H17OP)]

  • Mr = 536.73

  • Monoclinic, P 21 /c

  • a = 11.3665 (8) Å

  • b = 9.3110 (9) Å

  • c = 18.7813 (14) Å

  • β = 103.945 (8)°

  • V = 1929.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.85 mm−1

  • T = 297 K

  • 0.42 × 0.12 × 0.04 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: analytical (X-SHAPE and X-RED; Stoe, 1998[Stoe (1998). IPDS Software. Version 2.89. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.029, Tmax = 0.099

  • 21230 measured reflections

  • 4045 independent reflections

  • 3224 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 0.96

  • 4045 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 2.24 e Å−3

  • Δρmin = −0.85 e Å−3

Data collection: IPDS Software (Stoe, 1998[Stoe (1998). IPDS Software. Version 2.89. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared from 2-(diphenylphosphino)acetophenone and (tht)AuCl (tht = tetrahydrothiophene) in methylene chloride in nearly quantitative yields. The crystals are built of monomeric units which show no tendency to aggregate via aurophilic interactions. In principle, the applied phosphine is capable of coordinating as a bidentate P,O-ligand (Johansson et al., 2002). Nevertheless, the gold atom is in a standard linear coordination [P—Au—Cl 178.99 (6)°] and entertains no short oxygen contacts. The Au—Cl and Au—P bond lengths are 2.2838 (19) and 2.2323 (16) Å, respectively, and are lying in the expected range for (aryl3P)AuCl complexes (Monkowius et al., 2003a,b). All Au—P—C angles are larger than the tetrahedral standard [109.9 (2)–116.0 (2)°], and all C—P—C angles are smaller [103.8 (3)–106.4°]. The keto group of the phosphine ligand is twisted out of the plane of the aromatic ring by 26.5 (10)° (C13—C18—C19—O1), with the oxygen oriented towards the gold atom.

Related literature top

For related literature, see: Monkowius et al. (2003a,b; Coote et al. (1993); Johansson et al. (2002).

Experimental top

2-(Diphenylphosphino)acetophenone was synthesized according to a published procedure (Coote et al., 1993). The title complex was prepared analogous to a previously published procedure (Monkowius et al., 2003a,b): 2-(diphenylphosphino)acetophenone (0.10 g, 0.31 mmol) and (tht)AuCl (0.10 g, 0.31 mmol, tht = tetrahydrothiophene) were stirred in methylene chloride (20 ml) at room temperature for 2 h. The product was precipitated with n-pentane and isolated by filtration. Recrystallization from methylene chloride/diethylether yields colourless crystals suitable for X-ray crystallography. Yield: 0.16 mg (0.30 mmol, 97%); 1H-NMR (300 MHz, CDCl3): δ = 8.09 (ddd, J = 7.75, 4.42, 1.17 Hz, 1 H, C6H4), 7.69 (pseudo-tt, J = 7.75, 1.32 Hz, 1 H, C6H4), 7.39–7.56 (m, 11 H, Ph2P, C6H4), 6.99 (ddd, J = 12.91, 1.05, 1.08 Hz, 1 H, C6H4), 2.59 (s, 3 H, CH3).

Refinement top

The data were collected at room temperature. The structure was solved by direct methods (SIR97) and refined by full-matrix anisotropic least squares (SHELXL97). The H-atoms were calculated geometrically and a riding model was used during refinement process.

Structure description top

The title compound was prepared from 2-(diphenylphosphino)acetophenone and (tht)AuCl (tht = tetrahydrothiophene) in methylene chloride in nearly quantitative yields. The crystals are built of monomeric units which show no tendency to aggregate via aurophilic interactions. In principle, the applied phosphine is capable of coordinating as a bidentate P,O-ligand (Johansson et al., 2002). Nevertheless, the gold atom is in a standard linear coordination [P—Au—Cl 178.99 (6)°] and entertains no short oxygen contacts. The Au—Cl and Au—P bond lengths are 2.2838 (19) and 2.2323 (16) Å, respectively, and are lying in the expected range for (aryl3P)AuCl complexes (Monkowius et al., 2003a,b). All Au—P—C angles are larger than the tetrahedral standard [109.9 (2)–116.0 (2)°], and all C—P—C angles are smaller [103.8 (3)–106.4°]. The keto group of the phosphine ligand is twisted out of the plane of the aromatic ring by 26.5 (10)° (C13—C18—C19—O1), with the oxygen oriented towards the gold atom.

For related literature, see: Monkowius et al. (2003a,b; Coote et al. (1993); Johansson et al. (2002).

Computing details top

Data collection: IPDS Software (Stoe, 1998); cell refinement: IPDS Software (Stoe, 1998); data reduction: IPDS Software (Stoe, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Chlorido[2-(diphenylphosphino)acetophenone]gold(I) top
Crystal data top
[AuCl(C20H17OP)]F(000) = 1024
Mr = 536.73Cell parameters were determined by indexing 8000 reflections with I/sigma limit 6.0.
Monoclinic, P21/cDx = 1.848 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.3665 (8) ÅCell parameters from 8000 reflections
b = 9.3110 (9) Åθ = 2.2–26.8°
c = 18.7813 (14) ŵ = 7.85 mm1
β = 103.945 (8)°T = 297 K
V = 1929.1 (3) Å3Rod, colourless
Z = 40.42 × 0.12 × 0.04 mm
Data collection top
Stoe IPDS
diffractometer
4045 independent reflections
Radiation source: fine-focus sealed tube3224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
rotation scansθmax = 26.8°, θmin = 2.2°
Absorption correction: analytical
(X-SHAPE and X-RED; Stoe, 1998)
h = 1414
Tmin = 0.029, Tmax = 0.099k = 1111
21230 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0744P)2]
where P = (Fo2 + 2Fc2)/3
4045 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 2.24 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[AuCl(C20H17OP)]V = 1929.1 (3) Å3
Mr = 536.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3665 (8) ŵ = 7.85 mm1
b = 9.3110 (9) ÅT = 297 K
c = 18.7813 (14) Å0.42 × 0.12 × 0.04 mm
β = 103.945 (8)°
Data collection top
Stoe IPDS
diffractometer
4045 independent reflections
Absorption correction: analytical
(X-SHAPE and X-RED; Stoe, 1998)
3224 reflections with I > 2σ(I)
Tmin = 0.029, Tmax = 0.099Rint = 0.078
21230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.96Δρmax = 2.24 e Å3
4045 reflectionsΔρmin = 0.85 e Å3
217 parameters
Special details top

Experimental. Data were collected applying an imaging plate system (Stoe) with the following measurement parameters:

Detector distance [mm] 65 Phi movement mode Oscillation Phi incr. [degrees] 1.0 Number of exposures 260 Irradiation / exposure [min] 5.00

For a detailed description of the method see: Sheldrick, G.M., Paulus, E. Vertesy, L. & Hahn, F. (1995) Acta Cryst. B51, 89–98.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.83069 (2)0.15157 (2)0.39235 (1)0.0549 (1)
Cl10.96075 (16)0.00052 (19)0.35351 (11)0.0735 (6)
P10.70126 (14)0.29885 (16)0.42840 (8)0.0509 (4)
O10.7785 (5)0.4367 (5)0.3125 (3)0.0733 (17)
C10.6561 (6)0.2224 (6)0.5065 (3)0.0562 (17)
C20.7470 (8)0.1689 (8)0.5639 (5)0.078 (3)
C30.7186 (10)0.1166 (10)0.6266 (5)0.093 (3)
C40.6024 (10)0.1173 (9)0.6333 (5)0.083 (3)
C50.5085 (8)0.1650 (7)0.5755 (5)0.077 (3)
C60.5369 (6)0.2179 (7)0.5125 (4)0.065 (2)
C70.5599 (6)0.3296 (5)0.3609 (3)0.0543 (17)
C80.5156 (7)0.2220 (7)0.3111 (4)0.071 (2)
C90.4060 (8)0.2378 (9)0.2603 (5)0.091 (3)
C100.3411 (7)0.3604 (8)0.2587 (5)0.078 (3)
C110.3850 (7)0.4692 (8)0.3066 (4)0.078 (3)
C120.4945 (6)0.4552 (7)0.3587 (4)0.068 (2)
C130.7607 (5)0.4768 (6)0.4609 (3)0.0554 (17)
C140.7386 (6)0.5287 (8)0.5259 (4)0.067 (2)
C150.7808 (8)0.6639 (7)0.5525 (5)0.078 (3)
C160.8470 (7)0.7445 (9)0.5154 (5)0.085 (3)
C170.8714 (7)0.6944 (8)0.4532 (5)0.077 (3)
C180.8290 (5)0.5625 (7)0.4224 (4)0.0603 (19)
C190.8492 (6)0.5158 (8)0.3518 (4)0.069 (2)
C200.9575 (9)0.5755 (13)0.3279 (6)0.107 (4)
H20.827000.168400.560000.0940*
H30.779800.080500.664600.1110*
H40.585000.085800.676700.0990*
H50.428400.161300.579200.0930*
H60.475300.250800.473900.0780*
H80.560000.137900.311800.0850*
H90.376900.164400.227100.1090*
H100.266800.370400.225000.0940*
H110.341000.553900.304300.0930*
H120.523200.529300.391500.0810*
H140.695300.472800.551800.0800*
H150.763900.699000.595300.0930*
H160.875300.834500.533100.1010*
H170.918600.750300.429800.0930*
H20A1.030600.549200.363000.1280*
H20B0.951400.678200.324700.1280*
H20C0.959100.536800.280700.1280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0536 (2)0.0529 (2)0.0568 (2)0.0033 (1)0.0104 (1)0.0045 (1)
Cl10.0653 (9)0.0705 (9)0.0882 (12)0.0053 (7)0.0251 (9)0.0151 (8)
P10.0534 (8)0.0480 (7)0.0485 (7)0.0022 (6)0.0068 (6)0.0027 (6)
O10.081 (3)0.081 (3)0.059 (3)0.008 (3)0.019 (2)0.005 (2)
C10.062 (3)0.051 (3)0.056 (3)0.005 (3)0.015 (3)0.002 (2)
C20.071 (5)0.096 (5)0.065 (4)0.014 (4)0.014 (4)0.018 (4)
C30.103 (7)0.104 (6)0.072 (5)0.026 (5)0.022 (5)0.035 (4)
C40.104 (7)0.078 (4)0.073 (5)0.005 (4)0.034 (5)0.020 (4)
C50.075 (5)0.074 (4)0.089 (5)0.001 (3)0.033 (4)0.008 (4)
C60.067 (4)0.062 (3)0.066 (4)0.007 (3)0.017 (3)0.008 (3)
C70.062 (3)0.047 (3)0.052 (3)0.001 (2)0.010 (3)0.003 (2)
C80.077 (4)0.052 (3)0.075 (4)0.001 (3)0.001 (3)0.008 (3)
C90.089 (5)0.072 (4)0.089 (5)0.013 (4)0.021 (4)0.007 (4)
C100.062 (4)0.090 (5)0.072 (5)0.006 (3)0.004 (4)0.017 (4)
C110.075 (4)0.074 (4)0.080 (5)0.029 (4)0.012 (4)0.019 (4)
C120.072 (4)0.059 (3)0.066 (4)0.012 (3)0.005 (3)0.002 (3)
C130.056 (3)0.051 (3)0.053 (3)0.001 (2)0.001 (3)0.004 (2)
C140.068 (4)0.069 (4)0.062 (4)0.004 (3)0.012 (3)0.013 (3)
C150.078 (5)0.074 (4)0.076 (5)0.008 (4)0.009 (4)0.028 (3)
C160.082 (5)0.066 (4)0.097 (6)0.011 (4)0.004 (4)0.025 (4)
C170.062 (4)0.065 (4)0.102 (6)0.012 (3)0.014 (4)0.012 (4)
C180.043 (3)0.063 (3)0.071 (4)0.005 (3)0.006 (3)0.000 (3)
C190.064 (4)0.071 (4)0.068 (4)0.003 (3)0.010 (3)0.009 (3)
C200.099 (7)0.134 (9)0.101 (7)0.026 (6)0.050 (6)0.014 (6)
Geometric parameters (Å, º) top
Au1—Cl12.2838 (19)C16—C171.347 (13)
Au1—P12.2323 (16)C17—C181.393 (10)
P1—C11.812 (6)C18—C191.465 (10)
P1—C71.814 (6)C19—C201.514 (13)
P1—C131.837 (6)C2—H20.9300
O1—C191.203 (9)C3—H30.9300
C1—C21.393 (11)C4—H40.9300
C1—C61.387 (10)C5—H50.9300
C2—C31.383 (13)C6—H60.9300
C3—C41.357 (16)C8—H80.9300
C4—C51.399 (13)C9—H90.9300
C5—C61.390 (11)C10—H100.9300
C7—C81.380 (9)C11—H110.9300
C7—C121.381 (9)C12—H120.9300
C8—C91.382 (12)C14—H140.9300
C9—C101.356 (12)C15—H150.9300
C10—C111.367 (11)C16—H160.9300
C11—C121.392 (11)C17—H170.9300
C13—C141.391 (9)C20—H20A0.9600
C13—C181.426 (9)C20—H20B0.9600
C14—C151.396 (10)C20—H20C0.9600
C15—C161.367 (12)
Au1···O13.037 (5)C13···H122.7400
Au1···C193.493 (7)C14···H20Ai3.0200
Au1···C16i3.782 (8)C14···H123.0600
Au1···C10ii4.067 (8)C15···H20Ai3.0700
Au1···C17i4.148 (9)C15···H6viii2.9400
Au1···H23.1600C17···H20B2.7800
Au1···H10ii3.4300C17···H20A3.0700
Au1···H83.0900C19···H9vi2.9800
Au1···H16i3.3000C20···H172.6300
Cl1···H17iii2.8400H2···Au13.1600
Cl1···H20Biii3.0500H2···Cl1v3.0100
Cl1···H10ii2.9100H3···Cl1v3.1400
Cl1···H20Civ2.9000H3···O1ix2.7900
Cl1···H2v3.0100H6···C72.6400
Cl1···H3v3.1400H6···C122.9300
Cl1···H16i2.9100H6···C15viii2.9400
P1···O12.842 (6)H8···Au13.0900
O1···Au13.037 (5)H8···C11ii2.9100
O1···P12.842 (6)H9···O1ii2.7400
O1···C73.014 (9)H9···C19ii2.9800
O1···H9vi2.7400H10···Au1vi3.4300
O1···H3vii2.7900H10···Cl1vi2.9100
C2···C143.422 (11)H12···C132.7400
C6···C123.576 (10)H12···C143.0600
C7···O13.014 (9)H12···C5viii2.9500
C8···C11ii3.593 (10)H14···C12.4900
C10···Au1vi4.067 (8)H14···C22.8900
C11···C8vi3.593 (10)H14···C62.9600
C12···C63.576 (10)H14···C11viii3.0600
C14···C23.422 (11)H16···Au1i3.3000
C16···Au1i3.782 (8)H16···Cl1i2.9100
C17···Au1i4.148 (9)H17···Cl1x2.8400
C19···Au13.493 (7)H17···C202.6300
C1···H142.4900H17···H20B2.2000
C2···H142.8900H20A···C173.0700
C5···H12viii2.9500H20A···C14i3.0200
C6···H142.9600H20A···C15i3.0700
C7···H62.6400H20B···Cl1x3.0500
C11···H14viii3.0600H20B···C172.7800
C11···H8vi2.9100H20B···H172.2000
C12···H62.9300H20C···Cl1xi2.9000
Cl1—Au1—P1178.99 (6)C18—C19—C20118.4 (7)
Au1—P1—C1109.9 (2)C1—C2—H2120.00
Au1—P1—C7115.00 (19)C3—C2—H2120.00
Au1—P1—C13116.0 (2)C2—C3—H3120.00
C1—P1—C7104.6 (3)C4—C3—H3120.00
C1—P1—C13103.8 (3)C3—C4—H4120.00
C7—P1—C13106.4 (2)C5—C4—H4120.00
P1—C1—C2117.7 (6)C4—C5—H5121.00
P1—C1—C6123.4 (5)C6—C5—H5121.00
C2—C1—C6118.9 (6)C1—C6—H6120.00
C1—C2—C3120.2 (9)C5—C6—H6120.00
C2—C3—C4120.6 (9)C7—C8—H8120.00
C3—C4—C5120.5 (9)C9—C8—H8120.00
C4—C5—C6118.9 (8)C8—C9—H9120.00
C1—C6—C5120.8 (7)C10—C9—H9120.00
P1—C7—C8118.4 (5)C9—C10—H10120.00
P1—C7—C12122.3 (4)C11—C10—H10120.00
C8—C7—C12119.3 (6)C10—C11—H11119.00
C7—C8—C9120.8 (7)C12—C11—H11119.00
C8—C9—C10120.0 (8)C7—C12—H12121.00
C9—C10—C11119.9 (8)C11—C12—H12121.00
C10—C11—C12121.1 (7)C13—C14—H14120.00
C7—C12—C11119.0 (6)C15—C14—H14120.00
P1—C13—C14118.4 (5)C14—C15—H15120.00
P1—C13—C18122.5 (4)C16—C15—H15120.00
C14—C13—C18119.1 (6)C15—C16—H16120.00
C13—C14—C15120.6 (7)C17—C16—H16120.00
C14—C15—C16119.8 (8)C16—C17—H17119.00
C15—C16—C17120.4 (8)C18—C17—H17119.00
C16—C17—C18122.8 (8)C19—C20—H20A110.00
C13—C18—C17117.3 (6)C19—C20—H20B109.00
C13—C18—C19121.1 (6)C19—C20—H20C109.00
C17—C18—C19121.6 (6)H20A—C20—H20B110.00
O1—C19—C18120.7 (6)H20A—C20—H20C109.00
O1—C19—C20120.9 (7)H20B—C20—H20C109.00
Au1—P1—C1—C247.5 (5)C4—C5—C6—C10.6 (10)
C7—P1—C1—C2171.4 (5)P1—C7—C8—C9177.6 (6)
C13—P1—C1—C277.2 (6)C8—C7—C12—C110.6 (10)
Au1—P1—C1—C6134.2 (5)C12—C7—C8—C91.2 (11)
C7—P1—C1—C610.2 (6)P1—C7—C12—C11178.2 (5)
C13—P1—C1—C6101.2 (5)C7—C8—C9—C100.4 (13)
Au1—P1—C13—C14133.4 (5)C8—C9—C10—C111.0 (13)
Au1—P1—C7—C829.6 (6)C9—C10—C11—C121.7 (13)
C1—P1—C7—C891.0 (6)C10—C11—C12—C70.9 (11)
C13—P1—C7—C8159.5 (5)P1—C13—C14—C15179.4 (6)
Au1—P1—C7—C12151.7 (5)C18—C13—C14—C151.1 (10)
C1—P1—C7—C1287.7 (6)P1—C13—C18—C17178.7 (5)
C13—P1—C7—C1221.8 (6)P1—C13—C18—C193.7 (9)
C7—P1—C13—C1497.3 (5)C14—C13—C18—C170.8 (9)
Au1—P1—C13—C1846.2 (5)C14—C13—C18—C19176.8 (6)
C1—P1—C13—C1412.7 (6)C13—C14—C15—C161.7 (12)
C7—P1—C13—C1883.2 (5)C14—C15—C16—C170.2 (13)
C1—P1—C13—C18166.8 (5)C15—C16—C17—C181.8 (13)
C6—C1—C2—C32.0 (11)C16—C17—C18—C132.3 (11)
P1—C1—C2—C3176.4 (6)C16—C17—C18—C19175.3 (8)
C2—C1—C6—C51.9 (10)C13—C18—C19—O126.5 (10)
P1—C1—C6—C5176.5 (5)C13—C18—C19—C20156.6 (7)
C1—C2—C3—C40.4 (13)C17—C18—C19—O1150.9 (7)
C2—C3—C4—C52.9 (13)C17—C18—C19—C2026.0 (11)
C3—C4—C5—C63.0 (12)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y1, z; (iv) x+2, y1/2, z+1/2; (v) x+2, y, z+1; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z1/2; (viii) x+1, y+1, z+1; (ix) x, y+1/2, z+1/2; (x) x, y+1, z; (xi) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[AuCl(C20H17OP)]
Mr536.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)11.3665 (8), 9.3110 (9), 18.7813 (14)
β (°) 103.945 (8)
V3)1929.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.85
Crystal size (mm)0.42 × 0.12 × 0.04
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionAnalytical
(X-SHAPE and X-RED; Stoe, 1998)
Tmin, Tmax0.029, 0.099
No. of measured, independent and
observed [I > 2σ(I)] reflections
21230, 4045, 3224
Rint0.078
(sin θ/λ)max1)0.635
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 0.96
No. of reflections4045
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.24, 0.85

Computer programs: IPDS Software (Stoe, 1998), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoote, S. J., Dawson, G. J., Frost, C. G. & Williams, J. M. J. (1993). Synlett, pp. 509–510.  CrossRef Google Scholar
First citationJohansson, M. H., Andersson, C. & Oskarsson, Å. (2002). J. Mol. Struct. 606, 51–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonkowius, U., Nogai, S. & Schmidbaur, H. (2003a). Organometallics, 22, 145–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonkowius, U., Nogai, S. & Schmidbaur, H. (2003b). Z. Naturforsch. Teil B, 58, 751–758.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (1998). IPDS Software. Version 2.89. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds