metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-chloro­pyridinium) tetra­chlorido­nickelate(II)

aCollege of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, People's Republic of China, and bInstitut für Anorganische Chemie, RWTH Aachen, Prof.-Pirlet-Strasse 1, 52074 Aachen, Germany
*Correspondence e-mail: qili@bnu.edu.cn

(Received 7 January 2008; accepted 14 January 2008; online 23 January 2008)

In the title compound, (C5H5ClN)2[NiCl4], the dianion lies on a twofold rotation axis. Two cations are linked to each anion by classical N—H⋯Cl hydrogen bonds, and short Cl⋯Cl contacts and Cl⋯π stacking inter­actions [with distances of 3.376 (2) and 3.684 (2) Å, respectively] extend this pattern into a chain. The [NiCl4]2− anion shows significant deviation from ideal tetra­hedral geometry.

Related literature

For related literature, see: Espallargas et al. (2006[Espallargas, G. M., Brammer, L. & Sherwood, P. (2006). Angew. Chem. Int. Ed. 45, 435-440.]); Luque et al. (2001[Luque, A., Sertucha, J., Casillo, O. & Romain, P. (2001). New J. Chem. 25, 1208-1214.]); Willett et al. (2003[Willett, R. D., Awwadi, F. & Butcher, R. (2003). Cryst. Growth Des. 3, 301-311.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H5ClN)2[NiCl4]

  • Mr = 429.61

  • Monoclinic, C 2/c

  • a = 16.513 (2) Å

  • b = 7.2862 (11) Å

  • c = 13.948 (2) Å

  • β = 100.526 (3)°

  • V = 1650.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 298 (2) K

  • 0.36 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.46, Tmax = 0.57

  • 5779 measured reflections

  • 2049 independent reflections

  • 1820 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.07

  • 2049 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Cl3 0.93 2.79 3.586 (4) 145
N1—H1⋯Cl2i 0.86 2.41 3.158 (3) 145
C5—H5A⋯Cl2ii 0.93 2.75 3.633 (4) 159
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Short intermolecular X···X (X = F, Cl, Br) interactions in crystals have attracted increasing attention. The title compound is isotypic and probably isomorphous with (4-X'pyH)2[CoX4], wherein X' = Cl, X = Cl or X' = Br, X = Cl (Espallargas et al., 2006). Studies by Willett et al. have been devoted to bromopyridinium tetrahalocuprate salts (Willett et al., 2003), and methyl pyridinium derivatives were reported earlier by Luque and his coworkers (Luque et al., 2001). In the structure communicated here, the anionic building block is a [NiCl4]2- group with site symmetry 2 and metal–halide distances of 2.2280 (9) and 2.2833 (10) Å and Cl—Ni—Cl bond angles ranging from 98.06 (6) to 115.62 (4)°. The 4-chloropyridinium cation is located in general position and planar within error. A displacement ellipsoid plot of the ionic constituents is given in Fig. 1. Fig. 2 shows the classical hydrogen bonds and the short interhalogen contacts (dashed red lines, Cl···Cl = 3.3762 (16) Å). Shortest interatomic distances between neighbouring cations amount to ca 3.5Å and indicate π interactions. A projection of the unit cell is provided in Fig. 3. The above-mentioned contacts and the classical N—H···Cl bonds result in a chain which extends in [101] direction. Adjacent strands are crosslinked by additional weak non-classical H bonds.

Related literature top

For related literature, see: Espallargas et al. (2006); Luque et al. (2001); Willett et al. (2003).

Experimental top

2.0 mmol NiCl2.6H2O (476 mg) were dissolved in ca 10 ml conc hydrochloric acid. 4.0 mmol 4-chloropyridine (600 mg) in 2 ml H2O were added. The mixture was stirred at room temp for 1 h. After several days of isothermal evaporation, 1.9 mmol, 816 mg of the product were obtained, corresp to yield of 95%.

The product does not melt but decomposes at temperatures above 443 K. At this temperature, pyridine may be sublimed off under vacuum.

Microanalytical data, found: C 27.14, H 2.71, N 6.37%. Calculated for C10H10Cl6N2Ni: C 27.96, H2.35, N 6.52%.

Refinement top

All H atoms were placed in idealized positions and treated as riding atoms with C—H distance of 0.93 Å and and N—H distance of 0.86 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability level) of the cation (left) and anion in the title compound; symmetry code: i = 1 - x, y, 1.5 - z.
[Figure 2] Fig. 2. Closest intermolecular interactions between cations and anions; hydrogen bonds and Cl···Cl contacts are drawn as dashed lines. Symmetry codes: ii = 1 - x, -y, 1 - z; iii = x, -y, z - 1/2; iv = x - 1/2, y + 1/2, z; v = 0.5 - x, 0.5 - y, 1 - z.
[Figure 3] Fig. 3. Packing diagram of the titie compound. Shortest interactions (shown in Fig. 2) extend along [101].
Bis(4-chloropyridinium) tetrachloridonickelate(II) top
Crystal data top
(C5H5ClN)2[NiCl4]F(000) = 856
Mr = 429.61Dx = 1.729 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5779 reflections
a = 16.513 (2) Åθ = 2.5–28.3°
b = 7.2862 (11) ŵ = 2.13 mm1
c = 13.948 (2) ÅT = 298 K
β = 100.526 (3)°Block, light green
V = 1650.0 (4) Å30.36 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2049 independent reflections
Radiation source: fine-focus sealed tube1820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1222
Tmin = 0.46, Tmax = 0.57k = 99
5779 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0592P)2 + 3.4552P]
where P = (Fo2 + 2Fc2)/3
2049 reflections(Δ/σ)max < 0.001
87 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
(C5H5ClN)2[NiCl4]V = 1650.0 (4) Å3
Mr = 429.61Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.513 (2) ŵ = 2.13 mm1
b = 7.2862 (11) ÅT = 298 K
c = 13.948 (2) Å0.36 × 0.28 × 0.26 mm
β = 100.526 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2049 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1820 reflections with I > 2σ(I)
Tmin = 0.46, Tmax = 0.57Rint = 0.026
5779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.07Δρmax = 0.80 e Å3
2049 reflectionsΔρmin = 0.98 e Å3
87 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.04605 (7)0.75000.03657 (17)
Cl10.23687 (6)0.54295 (11)0.57163 (7)0.0551 (2)
N10.4043 (2)0.3152 (4)0.3908 (3)0.0575 (8)
H10.43720.27170.35530.069*
C60.3310 (2)0.3788 (5)0.3468 (3)0.0561 (8)
H6A0.31620.37450.27920.067*
C50.2776 (2)0.4503 (4)0.4014 (3)0.0488 (7)
H5A0.22620.49420.37190.059*
C40.30238 (19)0.4555 (4)0.5012 (2)0.0425 (6)
C30.3784 (2)0.3868 (5)0.5454 (3)0.0557 (8)
H3A0.39470.38870.61290.067*
C20.4285 (2)0.3161 (5)0.4867 (3)0.0604 (9)
H2A0.47980.26850.51410.072*
Cl20.42552 (5)0.15941 (15)0.64578 (9)0.0716 (3)
Cl30.59081 (7)0.21312 (15)0.68764 (8)0.0692 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0316 (3)0.0336 (3)0.0470 (3)0.0000.0137 (2)0.000
Cl10.0570 (5)0.0507 (5)0.0633 (5)0.0008 (4)0.0259 (4)0.0050 (3)
N10.0537 (17)0.0489 (15)0.077 (2)0.0035 (13)0.0319 (16)0.0008 (14)
C60.063 (2)0.0528 (18)0.0570 (18)0.0012 (17)0.0217 (16)0.0033 (15)
C50.0463 (17)0.0456 (16)0.0560 (18)0.0044 (13)0.0130 (14)0.0072 (13)
C40.0402 (15)0.0360 (14)0.0538 (16)0.0028 (11)0.0146 (13)0.0009 (12)
C30.0510 (19)0.0515 (18)0.062 (2)0.0024 (15)0.0026 (16)0.0000 (16)
C20.0416 (17)0.0540 (19)0.085 (3)0.0063 (15)0.0112 (17)0.0002 (18)
Cl20.0384 (4)0.0777 (6)0.0951 (7)0.0017 (4)0.0026 (4)0.0373 (6)
Cl30.0636 (6)0.0751 (6)0.0769 (6)0.0151 (5)0.0337 (5)0.0112 (5)
Geometric parameters (Å, º) top
Ni1—Cl32.2280 (9)C6—C51.368 (5)
Ni1—Cl3i2.2280 (9)C6—H6A0.9300
Ni1—Cl22.2833 (10)C5—C41.379 (5)
Ni1—Cl2i2.2833 (10)C5—H5A0.9300
Cl1—C41.712 (3)C4—C31.387 (5)
N1—C21.324 (5)C3—C21.368 (5)
N1—C61.336 (5)C3—H3A0.9300
N1—H10.8600C2—H2A0.9300
Cl3—Ni1—Cl3i113.76 (6)C6—C5—C4118.0 (3)
Cl3—Ni1—Cl2115.62 (4)C6—C5—H5A121.0
Cl3i—Ni1—Cl2106.51 (4)C4—C5—H5A121.0
Cl3—Ni1—Cl2i106.51 (4)C5—C4—C3121.1 (3)
Cl3i—Ni1—Cl2i115.62 (4)C5—C4—Cl1119.2 (3)
Cl2—Ni1—Cl2i98.06 (6)C3—C4—Cl1119.6 (3)
C2—N1—C6122.9 (3)C2—C3—C4117.8 (3)
C2—N1—H1118.5C2—C3—H3A121.1
C6—N1—H1118.5C4—C3—H3A121.1
N1—C6—C5119.9 (3)N1—C2—C3120.2 (3)
N1—C6—H6A120.1N1—C2—H2A119.9
C5—C6—H6A120.1C3—C2—H2A119.9
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl30.932.793.586 (4)145
N1—H1···Cl2ii0.862.413.158 (3)145
C5—H5A···Cl2iii0.932.753.633 (4)159
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula(C5H5ClN)2[NiCl4]
Mr429.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.513 (2), 7.2862 (11), 13.948 (2)
β (°) 100.526 (3)
V3)1650.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.36 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.46, 0.57
No. of measured, independent and
observed [I > 2σ(I)] reflections
5779, 2049, 1820
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.07
No. of reflections2049
No. of parameters87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.98

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008), SHELXTL (Bruker, 2000), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl30.932.7863.586 (4)144.8
N1—H1···Cl2i0.862.4133.158 (3)145.2
C5—H5A···Cl2ii0.932.7493.633 (4)159.1
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

Support from the NSFC (grant No. 20571012) and the NSFBJ (grant No. 2042013) is gratefully acknowledged.

References

First citationBruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationEspallargas, G. M., Brammer, L. & Sherwood, P. (2006). Angew. Chem. Int. Ed. 45, 435–440.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuque, A., Sertucha, J., Casillo, O. & Romain, P. (2001). New J. Chem. 25, 1208–1214.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillett, R. D., Awwadi, F. & Butcher, R. (2003). Cryst. Growth Des. 3, 301–311.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds