inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Disodium tetra­aqua­bis­(sulfato)iron(II)

aInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic, and bMaterials Degree, Institute Technologic of Morelia, Michoacán, Mexico
*Correspondence e-mail: jozef.kozisek@stuba.sk

(Received 30 November 2007; accepted 3 January 2008; online 9 January 2008)

In the title compound, [FeNa2(SO4)2(H2O)4], the Fe2+ cation is situated on a centre of inversion and is hexa­coordinated by four O atoms from water mol­ecules and two O atoms from two sulfate anions in an octa­hedral geometry. The coordination environment of Na+ comprises six O atoms in a more distorted octa­hedral arrangement, with Na—O distances between 2.368 (1) and 2.612 (1) Å. The structure contains an extensive three-dimensional network of O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Held (2003[Held, P. (2003). Acta Cryst. E59, m197-m198.]); Barton et al. (2002[Barton, M. R., Zhang, Y. G. & Atwood, J. D. (2002). J. Coord. Chem. 55, 969-983.]).

Experimental

Crystal data
  • [FeNa2(SO4)2(H2O)4]

  • Mr = 366.01

  • Monoclinic, P 21 /c

  • a = 5.551 (1) Å

  • b = 8.252 (1) Å

  • c = 11.162 (1) Å

  • β = 100.20 (1)°

  • V = 503.1 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 301 (2) K

  • 0.55 × 0.44 × 0.17 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), based on Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.398, Tmax = 0.720

  • 19525 measured reflections

  • 1343 independent reflections

  • 1288 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.047

  • S = 1.07

  • 1343 reflections

  • 96 parameters

  • All H-atom parameters refined

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O5i 0.78 (3) 1.97 (3) 2.7513 (15) 172 (2)
O8—H8B⋯O6ii 0.73 (3) 2.00 (3) 2.7116 (15) 165 (2)
O9—H9A⋯O6iii 0.74 (3) 2.16 (3) 2.8741 (14) 162 (2)
O9—H9B⋯O5i 0.70 (3) 2.32 (3) 2.9379 (15) 150 (3)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In order to find convenient crystals as model compounds for investigation of the electronic structure of FeII complexes, the title compound was prepared. The unit cell contains two FeII cations situated on centres of inversion, four Na+ cations, four SO42- anions and eight water molecules. The structure contains a three-dimensional network of O—H···O hydrogen bonds.

In the title compound (Fig. 1), the Fe1—O8 [2.115 (1) Å] and Fe1—O9 [2.170 (1) Å] bond lengths are in reasonable agreement with a similar compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release). For example, in ethylenediammonium tetra-aqua-bis(sulfato-O)-iron(II) (Held, 2003; CSD refcode WABHIR), the Fe—O(water) distances are 2.111 and 2.143 Å, respectively. The Fe1—O2 distance to the sulfate anion [2.095 (1) Å] compares to 2.126 Å in WABHIR. In the crystal structure of pentaaqua-(3-(diphenylphosphino)phenylsulfonato)-iron(II) (diphenyl(3-sulfonatophenyl)phosphine) (Barton et al., 2002; CSD refcode XOHHOR), there are two symmetrically independent units with corresponding distances for Fe—O(water) in the range 2.085 to 2.125 Å and for Fe—O of the sulfonato anion between 2.10 and 2.126 Å.

Related literature top

For related structures, see: Held (2003); Barton et al. (2002).

Experimental top

A solution of 1.0 mmol of Fe(SO4)2 in 2 ml water with one drop of diluted H2SO4(aq) and a piece of Fe metal was mixed with a solution of 2.0 mmol NaNO2NCN in 10 ml water and a solution of 2.0 mmol of imidazole in 10 ml me thanol. From this system, pale yellow crystals were isolated after a few days standing.

Refinement top

H atoms were located in difference Fourier maps and refined freely with isotropic displacement parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids shown at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. Packing diagram viewed along the a axis. Hydrogen-bond interactions are indicated by dashed lines.
Disodium tetraaquabis(sulfonato)iron(II) top
Crystal data top
[FeNa2(SO4)2(H2O)4]F(000) = 368
Mr = 366.01Dx = 2.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17533 reflections
a = 5.551 (1) Åθ = 3.0–31.4°
b = 8.252 (1) ŵ = 2.06 mm1
c = 11.162 (1) ÅT = 301 K
β = 100.20 (1)°Block, pale yellow
V = 503.1 (1) Å30.55 × 0.44 × 0.17 mm
Z = 2
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1343 independent reflections
Radiation source: fine-focus sealed tube1288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scansθmax = 29.5°, θmin = 6.6°
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007), based on Clark & Reid (1995)]
h = 77
Tmin = 0.398, Tmax = 0.720k = 1111
19525 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018All H-atom parameters refined
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.3061P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1343 reflectionsΔρmax = 0.31 e Å3
96 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (3)
Crystal data top
[FeNa2(SO4)2(H2O)4]V = 503.1 (1) Å3
Mr = 366.01Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.551 (1) ŵ = 2.06 mm1
b = 8.252 (1) ÅT = 301 K
c = 11.162 (1) Å0.55 × 0.44 × 0.17 mm
β = 100.20 (1)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1343 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007), based on Clark & Reid (1995)]
1288 reflections with I > 2σ(I)
Tmin = 0.398, Tmax = 0.720Rint = 0.022
19525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.047All H-atom parameters refined
S = 1.08Δρmax = 0.31 e Å3
1343 reflectionsΔρmin = 0.40 e Å3
96 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.81620 (17)0.63212 (12)0.56957 (10)0.0228 (2)
O40.70650 (19)0.91424 (13)0.57758 (9)0.0234 (2)
O51.12799 (17)0.82849 (12)0.63063 (10)0.0234 (2)
O60.84525 (19)0.76778 (12)0.76330 (9)0.0224 (2)
O80.37101 (18)0.53699 (14)0.66515 (9)0.01827 (19)
H8A0.294 (4)0.617 (3)0.660 (2)0.039 (6)*
H8B0.290 (4)0.472 (3)0.679 (2)0.031 (6)*
O90.31917 (19)0.71528 (13)0.41612 (10)0.0201 (2)
H9A0.211 (5)0.707 (3)0.368 (2)0.039 (6)*
H9B0.272 (5)0.771 (3)0.453 (2)0.040 (7)*
S30.86989 (5)0.78740 (3)0.63455 (3)0.01276 (9)
Na70.62761 (10)0.56900 (7)0.86236 (5)0.02189 (13)
Fe10.50000.50000.50000.01297 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0175 (4)0.0203 (5)0.0302 (5)0.0039 (3)0.0031 (4)0.0113 (4)
O40.0263 (5)0.0248 (5)0.0183 (4)0.0113 (4)0.0017 (4)0.0034 (4)
O50.0148 (4)0.0218 (5)0.0342 (5)0.0049 (4)0.0058 (4)0.0040 (4)
O60.0292 (5)0.0243 (5)0.0142 (4)0.0024 (4)0.0054 (4)0.0024 (4)
O80.0190 (4)0.0188 (5)0.0182 (4)0.0011 (4)0.0068 (3)0.0005 (4)
O90.0203 (5)0.0178 (5)0.0198 (5)0.0025 (4)0.0030 (4)0.0015 (4)
S30.01181 (14)0.01334 (15)0.01272 (15)0.00036 (9)0.00107 (10)0.00092 (10)
Na70.0242 (3)0.0222 (3)0.0185 (3)0.0010 (2)0.0018 (2)0.0011 (2)
Fe10.01386 (13)0.01298 (13)0.01206 (13)0.00055 (8)0.00225 (8)0.00057 (8)
Geometric parameters (Å, º) top
O2—S31.4765 (10)O9—Na7i2.6122 (12)
O2—Fe12.0951 (9)O9—H9A0.74 (3)
O4—S31.4553 (10)O9—H9B0.70 (3)
O4—Na7i2.3683 (11)S3—Na7i3.3160 (6)
O4—Na7ii2.4413 (11)Na7—O4iv2.3684 (11)
O5—S31.4805 (9)Na7—O5v2.3974 (11)
O5—Na7iii2.3975 (11)Na7—O4vi2.4413 (11)
O6—S31.4764 (10)Na7—O9iv2.6123 (12)
O6—Na72.4178 (11)Na7—S3iv3.3160 (6)
O8—Fe12.1146 (9)Na7—Na7vii3.7798 (11)
O8—Na72.4153 (11)Na7—H8B2.64 (2)
O8—H8A0.78 (3)Fe1—O2viii2.0951 (9)
O8—H8B0.73 (3)Fe1—O8viii2.1146 (9)
O9—Fe12.1695 (10)Fe1—O9viii2.1695 (10)
S3—O2—Fe1135.77 (6)O8—Na7—O9iv88.81 (4)
S3—O4—Na7i118.30 (6)O6—Na7—O9iv92.51 (4)
S3—O4—Na7ii134.52 (6)O4vi—Na7—O9iv74.50 (4)
Na7i—O4—Na7ii103.59 (4)O4iv—Na7—S3iv22.73 (2)
S3—O5—Na7iii137.19 (6)O5v—Na7—S3iv97.50 (3)
S3—O6—Na7131.26 (6)O8—Na7—S3iv162.20 (3)
Fe1—O8—Na7125.04 (5)O6—Na7—S3iv91.27 (3)
Fe1—O8—H8A108.5 (17)O4vi—Na7—S3iv98.04 (3)
Na7—O8—H8A102.0 (17)O9iv—Na7—S3iv73.86 (3)
Fe1—O8—H8B113.3 (17)O4iv—Na7—Na7vii38.89 (3)
Na7—O8—H8B99.8 (17)O5v—Na7—Na7vii90.89 (3)
H8A—O8—H8B106 (2)O8—Na7—Na7vii117.55 (3)
Fe1—O9—Na7i112.65 (4)O6—Na7—Na7vii149.97 (4)
Fe1—O9—H9A120.0 (19)O4vi—Na7—Na7vii37.52 (2)
Na7i—O9—H9A111.8 (19)O9iv—Na7—Na7vii70.32 (3)
Fe1—O9—H9B118 (2)S3iv—Na7—Na7vii60.819 (15)
Na7i—O9—H9B91 (2)O4iv—Na7—H8B141.4 (5)
H9A—O9—H9B99 (3)O5v—Na7—H8B95.4 (5)
O4—S3—O6110.26 (6)O8—Na7—H8B15.9 (5)
O4—S3—O2110.70 (6)O6—Na7—H8B101.2 (5)
O6—S3—O2109.73 (6)O4vi—Na7—H8B65.5 (5)
O4—S3—O5110.72 (6)O9iv—Na7—H8B88.8 (5)
O6—S3—O5108.11 (6)S3iv—Na7—H8B159.2 (5)
O2—S3—O5107.24 (6)Na7vii—Na7—H8B102.8 (5)
O6—S3—Na7i146.99 (4)O2viii—Fe1—O2180.0
O2—S3—Na7i81.15 (5)O2viii—Fe1—O890.43 (4)
O5—S3—Na7i97.39 (5)O2—Fe1—O889.57 (4)
O4iv—Na7—O5v90.76 (4)O2viii—Fe1—O8viii89.57 (4)
O4iv—Na7—O8154.70 (4)O2—Fe1—O8viii90.43 (4)
O5v—Na7—O8100.26 (4)O8—Fe1—O8viii180.0
O4iv—Na7—O6114.00 (4)O2viii—Fe1—O9viii91.55 (4)
O5v—Na7—O6104.53 (4)O2—Fe1—O9viii88.45 (4)
O8—Na7—O685.36 (4)O8—Fe1—O9viii86.80 (4)
O4iv—Na7—O4vi76.41 (4)O8viii—Fe1—O9viii93.20 (4)
O5v—Na7—O4vi90.63 (4)O2viii—Fe1—O988.45 (4)
O8—Na7—O4vi80.73 (4)O2—Fe1—O991.55 (4)
O6—Na7—O4vi161.06 (4)O8—Fe1—O993.20 (4)
O4iv—Na7—O9iv74.82 (4)O8viii—Fe1—O986.80 (4)
O5v—Na7—O9iv161.21 (4)O9viii—Fe1—O9179.999 (1)
Na7i—O4—S3—O6164.83 (6)Fe1—O8—Na7—O9iv142.28 (6)
Na7ii—O4—S3—O610.15 (11)Fe1—O8—Na7—S3iv129.32 (9)
Na7i—O4—S3—O243.22 (8)Fe1—O8—Na7—Na7vii150.72 (5)
Na7ii—O4—S3—O2111.45 (9)S3—O6—Na7—O4iv172.17 (7)
Na7i—O4—S3—O575.58 (8)S3—O6—Na7—O5v74.68 (8)
Na7ii—O4—S3—O5129.75 (9)S3—O6—Na7—O824.74 (8)
Na7ii—O4—S3—Na7i154.67 (13)S3—O6—Na7—O4vi67.51 (16)
Na7—O6—S3—O4101.13 (8)S3—O6—Na7—O9iv113.34 (8)
Na7—O6—S3—O221.05 (9)S3—O6—Na7—S3iv172.76 (7)
Na7—O6—S3—O5137.70 (7)S3—O6—Na7—Na7vii166.63 (6)
Na7—O6—S3—Na7i83.55 (10)S3—O2—Fe1—O846.73 (10)
Fe1—O2—S3—O445.49 (11)S3—O2—Fe1—O8viii133.27 (10)
Fe1—O2—S3—O676.42 (10)S3—O2—Fe1—O9viii133.54 (10)
Fe1—O2—S3—O5166.38 (9)S3—O2—Fe1—O946.46 (10)
Fe1—O2—S3—Na7i71.33 (9)Na7—O8—Fe1—O2viii150.22 (6)
Na7iii—O5—S3—O432.62 (11)Na7—O8—Fe1—O229.78 (6)
Na7iii—O5—S3—O688.26 (10)Na7—O8—Fe1—O9viii58.69 (6)
Na7iii—O5—S3—O2153.49 (9)Na7—O8—Fe1—O9121.31 (6)
Na7iii—O5—S3—Na7i70.50 (9)Na7i—O9—Fe1—O2viii152.73 (5)
Fe1—O8—Na7—O4iv168.78 (8)Na7i—O9—Fe1—O227.27 (5)
Fe1—O8—Na7—O5v54.28 (7)Na7i—O9—Fe1—O8116.93 (5)
Fe1—O8—Na7—O649.67 (6)Na7i—O9—Fe1—O8viii63.07 (5)
Fe1—O8—Na7—O4vi143.24 (7)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x, y+3/2, z+1/2; (v) x+2, y1/2, z+3/2; (vi) x+1, y1/2, z+3/2; (vii) x+1, y+1, z+2; (viii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O5ix0.78 (3)1.97 (3)2.7513 (15)172 (2)
O8—H8B···O6vi0.73 (3)2.00 (3)2.7116 (15)165 (2)
O9—H9A···O6x0.74 (3)2.16 (3)2.8741 (14)162 (2)
O9—H9B···O5ix0.70 (3)2.32 (3)2.9379 (15)150 (3)
Symmetry codes: (vi) x+1, y1/2, z+3/2; (ix) x1, y, z; (x) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[FeNa2(SO4)2(H2O)4]
Mr366.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)301
a, b, c (Å)5.551 (1), 8.252 (1), 11.162 (1)
β (°) 100.20 (1)
V3)503.1 (1)
Z2
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.55 × 0.44 × 0.17
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2007), based on Clark & Reid (1995)]
Tmin, Tmax0.398, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
19525, 1343, 1288
Rint0.022
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.047, 1.08
No. of reflections1343
No. of parameters96
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.31, 0.40

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O5i0.78 (3)1.97 (3)2.7513 (15)172 (2)
O8—H8B···O6ii0.73 (3)2.00 (3)2.7116 (15)165 (2)
O9—H9A···O6iii0.74 (3)2.16 (3)2.8741 (14)162 (2)
O9—H9B···O5i0.70 (3)2.32 (3)2.9379 (15)150 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x1, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic (grant Nos. VEGA 1/2449/05 and COSNET 545.03-P) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarton, M. R., Zhang, Y. G. & Atwood, J. D. (2002). J. Coord. Chem. 55, 969–983.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeld, P. (2003). Acta Cryst. E59, m197–m198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds