metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m350-m351

Tris(piperazinediium) bis­­[tris­­(pyridine-2,6-di­carboxyl­ato)neodymate(III)] 15.33-hydrate

aFaculty of Science, Department of Chemistry, Islamic Azad University, Khorramabad Branch, Iran, bFaculty of Chemistry, Teacher Training University, Tehran, Iran, and cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 18 November 2007; accepted 24 December 2007; online 16 January 2008)

The title compound, (C4H12N2)3[Nd(C7H3NO4)3]2·15.33H2O or (pipzH2)3[Nd(pydc)3]2·15.33H2O (in which pipz is piperazine and pydcH2 is pyridine-2,6-dicarboxylic acid), was synthesized by the reaction of NdCl3·6H2O with the proton-transfer compound (pipzH2)(pydc) in aqueous solution. The nine donor atoms of the three pydc2− ligands form a distorted tricapped trigonal–prismatic arrangement around the NdIII center. Considerable C—O⋯π stacking inter­actions between CO groups of carboxyl­ate fragments and aromatic rings of pydc2− with distances of 3.135 (5)–3.255 (5) Å are observed. In the crystal structure, a wide range of hydrogen-bonding [of the types O—H⋯O, N—H⋯O and C—H⋯O, with DA distances ranging from 2.608 (10) to 3.278 (7) Å], ion-pairing and C—O⋯π stacking interactions connect the various components into a supra­molecular structure. There is a high degree of solvent disorder in the structure; the occupancies of five water molecules refined to 0.6, 0.5, 0.4, 0.25 and 0.25.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803-m1804.]); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007[Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710-m1711.]); Aghabozorg, Daneshvar et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]). For synthesis, see: Aghabozorg et al. (2006[Aghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, N. (2006). Z. Anorg. Allg. Chem. 632, 2058-2064.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)3[Nd(C7H3NO4)3]2·15.33H2O

  • Mr = 915.24

  • Trigonal, [P \overline 3]

  • a = 25.5045 (9) Å

  • c = 10.0984 (7) Å

  • V = 5688.7 (5) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 100 (2) K

  • 0.49 × 0.18 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.536, Tmax = 0.892

  • 64426 measured reflections

  • 9135 independent reflections

  • 7444 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.198

  • S = 1.02

  • 9135 reflections

  • 509 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 4.81 e Å−3

  • Δρmin = −2.19 e Å−3

Table 1
Selected geometric parameters (Å, °)

Nd1—O3 2.465 (4)
Nd1—O7 2.467 (4)
Nd1—O5 2.483 (4)
Nd1—O1 2.482 (4)
Nd1—O9 2.485 (4)
Nd1—O11 2.487 (4)
Nd1—N2 2.565 (4)
Nd1—N1 2.568 (4)
Nd1—N3 2.575 (4)
N2—Nd1—N1 118.22 (12)
N2—Nd1—N3 121.23 (12)
N1—Nd1—N3 120.15 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2S—H3⋯O4 0.92 1.97 2.804 (6) 151
N2S—H4⋯O6i 0.92 1.92 2.760 (6) 151
N3S—H5⋯O10ii 0.92 1.95 2.780 (6) 150
N3S—H6⋯O8iii 0.92 1.99 2.836 (6) 153
N1S—H1⋯O2iv 0.92 1.92 2.758 (6) 150
N1S—H2⋯O12v 0.92 2.03 2.874 (6) 153
O1W—H7⋯O9ii 0.85 2.03 2.863 (7) 167
O1W—H8⋯O9Wvi 0.85 2.00 2.838 (17) 166
O2W—H9⋯O1iv 0.85 2.43 3.278 (7) 180
O2W—H10⋯O1Wii 0.85 2.17 3.024 (8) 180
O3W—H11⋯O5i 0.85 2.14 2.970 (7) 167
O3W—H12⋯O6Wi 0.85 2.11 2.950 (11) 171
O4W—H13⋯O1iv 0.85 2.04 2.878 (7) 166
O4W—H14⋯O8Wiv 0.85 2.17 2.985 (14) 162
O5W—H15⋯O4vii 0.85 1.82 2.674 (6) 180
O5W—H16⋯O6Wviii 0.85 1.95 2.804 (9) 179
O6W—H17⋯O10W 0.85 2.13 2.972 (10) 174
O6W—H18⋯O12vii 0.85 2.16 3.011 (10) 180
O7W—H19⋯O8vii 0.85 1.76 2.608 (10) 179
O7W—H20⋯O7Wix 0.85 1.95 2.797 (11) 177
O8W—H21⋯O5W 0.85 1.99 2.787 (12) 156
O8W—H22⋯O5Wx 0.85 1.87 2.723 (11) 180
O9W—H23⋯O8xi 0.85 2.29 3.136 (18) 179
O9W—H24⋯O7W 0.85 1.92 2.765 (20) 179
C3S—H3Sc⋯O10ii 0.99 2.49 3.200 (8) 129
C4S—H4SB⋯O6i 0.99 2.47 3.179 (8) 128
C4S—H4SB⋯O7iii 0.99 2.51 3.076 (9) 116
C5S—H5SA⋯O6i 0.99 2.46 3.180 (8) 129
C6S—H6SB⋯O3 0.99 2.52 3.092 (8) 116
C6S—H6SB⋯O10ii 0.99 2.45 3.169 (7) 129
C1S—H1SC⋯O2xii 0.99 2.43 3.151 (7) 129
C2S—H2SB⋯O11v 0.99 2.55 3.112 (8) 116
C2S—H2SB⋯O2xii 0.99 2.49 3.194 (7) 128
Symmetry codes: (i) x, y, z-1; (ii) x-y, x, -z+1; (iii) x-y, x, -z; (iv) -y, x-y, z; (v) -y, x-y, z+1; (vi) -x+y+1, -x+1, z-1; (vii) -x+1, -y, -z+1; (viii) -x+1, -y, -z+2; (ix) y+1, -x+y+1, -z+2; (x) -y, x-y-1, z; (xi) -x+y+1, -x, z+1; (xii) y, -x+y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have defined a plan to prepare water soluble proton transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfers from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylicacid, btcH4, to propane-1,3-diamine (pn) and 1,10-phenanthroline, (phen), resulted in the formation of novel self-assembled (pnH2)(pydc).(pydcH2).2.5H2O, (pnH2)2(btc).2H2O and (phenH)4(btcH3)2(btcH2) systems, respectively. The resulting compounds with some remaining sites as electron donors can coordinate to metallic ions (Aghabozorg, Attar Gharamaleki, Ghadermazi et al., 2007; Aghabozorg, Attar Gharamaleki, Ghasemikhah et al., 2007; Aghabozorg, Daneshvar et al., 2007, and references therein).

Here, we report on the synthesis and X-ray crystal structure of the title compound. The molecular structure of the title compound (I) is presented in Fig. 1. Selected bond lengths and angles of the structure (I) are presented in Table 1. Hydrogen bond lengths are given separately in Table 2.

In structure (I), NdIII is coordinated by three (pydc)2– groups as tridentate ligands and a nine coordinated complex results. For balancing the anionic complex, protonated piperazine, (pipzH2)2+, exists. The sum of bond angles, N1—Nd1—N2, N1—Nd1—N3 and N2—Nd1—N3 equals to 359.60 (12)° and indicates that Nd1 is located in the center of N1N2N3 plane. The three O atoms O1, O5 and O9 form a triangle and the other three, O3, O7 and O11 form another triangle around the NdIII. So a distorted tricapped prism polyhedron is proposed.

Moreover, there are uncoordinated water molecules which are involved in the formation of hydrogen bonds. These water molecules form six members cyclic rings with acyclic side chains water clusters (Fig. 2).

A noticeable feature of the title compound is the presence of C—O···π stacking interactions between CO group of carboxylates with aromatic rings of (pydc)2– units. The C—O···π distances (measured to the center of phenyl ring) are 3.134 (5) Å for C6—O2···Cg1 (1 + x, y, z), 3.245 (5) for C21—O10···Cg2 (x, y, z) and 3.255 (5) Å for C13—O6···Cg3, [Cg1, Cg2 and Cg3 are the centroids of N1/C1—C5, N2/C8—C12 and N3/C15—C19 rings, respectively] (Fig. 3).

In the crystal structure, a wide range of non-covalent interactions consisting of hydrogen bonding (of the type O—H···O, N—H···O and C—H···O with D···A ranging from 2.608 (10) to 3.278 (7) Å, ion pairing and C—O···π stacking connect the various components into a supramolecular structure (Table 2, Fig. 4).

Related literature top

For related literature, see: Aghabozorg, Attar Gharamaleki, Ghadermazi et al. (2007); Aghabozorg, Attar Gharamaleki, Ghasemikhah et al. (2007); Aghabozorg, Daneshvar et al. (2007). For synthesis, see: Aghabozorg et al. (2006).

Experimental top

The proton transfer compound of (pipzH2)(pydc) was prepared according to our reported procedure (Aghabozorg et al., 2006). A solution of NdCl3.6H2O (320 mg, 1 mmol) in water (15 ml) was added to a solution of a solution of proton transfer compound (pipzH2)(pydc) (500 mg, 2 mmol) in water (10 ml) in a 1:2 molar ratio. Colorless crystals of (I) suitable for X-ray characterization were obtained after a few days at room temperature.

Refinement top

There is a high positive residual density of 4.81 e Å-3 at 0.63 Å near the Nd1 center due to considerable absorption effects which could not be completely corrected.

There is a high solvent disorder in the structure. Occupancies of water molecules O7W, O8W, O9W, O10W and O11W were found out by refinement of occupation factors for this molecules as free variables and are equal to 0.6, 1/2, 0.4, 0.25 and 1/4, respectively.

The hydrogen atoms positions on carbon atoms were found geometrically. The hydrogen atoms on ordered water molecules and nitrogen atoms were found from difference Fourier maps, and for disordered water molecules were not located. All hydrogen atoms were treated in riding model with the Uiso(H) parameters equal to 1.2 Ueq(C), 1.2 Ueq(N) and 1.5 Ueq(O) where Ueq(C), Ueq(N) and Ueq(O) are the equivalent thermal parameters of the atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), displacement ellipsoids are drawn at the 50% probability level. Water molecules are omitted for clarity.
[Figure 2] Fig. 2. C—O···π stacking interactions between CO groups of carboxylates with aromatic rings of (pydc)2– units. The C—O···π distances (measured to the center of phenyl ring) are 3.134 (5) Å for C6—O2···Cg1 (1 + x, y, z), 3.245 (5) Å for C21—O10···Cg2 (x, y, z) and 3.255 (5) Å for C13—O6···Cg3, [Cg1, Cg2 and Cg3 are the centroids of N1/C1—C5, N2/C8—C12 and N3/C15—C19 rings, respectively].
[Figure 3] Fig. 3. Six membrane cyclic rings with acyclic side chains water clusters in the compound (I).
[Figure 4] Fig. 4. The crystal packing of the compound (I), hydrogen bonds are shown as dashed lines.
Tris(piperazinediium) bis[tris(pyridine-2,6-dicarboxylato)neodymiumate(III)] 15.33-hydrate top
Crystal data top
(C4H12N2)3[Nd(C7H3NO4)3]2·15.33H2ODx = 1.603 Mg m3
Mr = 915.24Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 9656 reflections
Hall symbol: -P 3θ = 2.6–31.5°
a = 25.5045 (9) ŵ = 1.46 mm1
c = 10.0984 (7) ÅT = 100 K
V = 5688.7 (5) Å3Prism, pink
Z = 60.49 × 0.18 × 0.08 mm
F(000) = 2798
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9135 independent reflections
Radiation source: fine-focus sealed tube7444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 3333
Tmin = 0.536, Tmax = 0.892k = 3333
64426 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: difference Fourier map
wR(F2) = 0.198H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.12P)2 + 36P]
where P = (Fo2 + 2Fc2)/3
9135 reflections(Δ/σ)max = 0.001
509 parametersΔρmax = 4.81 e Å3
18 restraintsΔρmin = 2.19 e Å3
Crystal data top
(C4H12N2)3[Nd(C7H3NO4)3]2·15.33H2OZ = 6
Mr = 915.24Mo Kα radiation
Trigonal, P3µ = 1.46 mm1
a = 25.5045 (9) ÅT = 100 K
c = 10.0984 (7) Å0.49 × 0.18 × 0.08 mm
V = 5688.7 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9135 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
7444 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.892Rint = 0.055
64426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06318 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.12P)2 + 36P]
where P = (Fo2 + 2Fc2)/3
9135 reflectionsΔρmax = 4.81 e Å3
509 parametersΔρmin = 2.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.331570 (11)0.005899 (11)0.42662 (3)0.01072 (12)
O10.38216 (18)0.03403 (16)0.5997 (4)0.0180 (8)
O20.46277 (18)0.01274 (17)0.7241 (4)0.0169 (8)
O30.38330 (17)0.07347 (16)0.2577 (4)0.0148 (7)
O40.46472 (18)0.14173 (18)0.1487 (4)0.0186 (8)
O50.36067 (18)0.07296 (17)0.5999 (4)0.0172 (8)
O60.3421 (2)0.13558 (18)0.7208 (4)0.0222 (9)
O70.25222 (18)0.03294 (16)0.2577 (4)0.0165 (8)
O80.1863 (2)0.0172 (2)0.1468 (4)0.0303 (11)
O90.25092 (18)0.05731 (17)0.5959 (4)0.0178 (8)
O100.1930 (2)0.13711 (18)0.7233 (4)0.0234 (9)
O110.36004 (17)0.05794 (17)0.2571 (4)0.0162 (7)
O120.3501 (2)0.13946 (19)0.1546 (4)0.0297 (10)
N10.4476 (2)0.05714 (18)0.4369 (4)0.0114 (8)
N20.2714 (2)0.05001 (18)0.4347 (4)0.0133 (8)
N30.27787 (19)0.12230 (19)0.4359 (4)0.0126 (8)
C10.4768 (2)0.0497 (2)0.5382 (5)0.0132 (9)
C20.5381 (2)0.0882 (2)0.5601 (5)0.0158 (10)
H2A0.55770.08220.63380.019*
C30.5706 (3)0.1360 (3)0.4715 (6)0.0195 (11)
H3A0.61250.16330.48430.023*
C40.5401 (2)0.1427 (2)0.3642 (5)0.0170 (10)
H4A0.56100.17410.30130.020*
C50.4785 (2)0.1026 (2)0.3516 (5)0.0126 (9)
C60.4374 (3)0.0035 (2)0.6287 (5)0.0144 (10)
C70.4391 (2)0.1062 (2)0.2437 (5)0.0126 (9)
C80.2805 (3)0.0888 (2)0.5331 (5)0.0159 (10)
C90.2451 (3)0.1149 (3)0.5509 (6)0.0232 (12)
H9A0.25200.14150.62290.028*
C100.1985 (3)0.1010 (3)0.4598 (6)0.0268 (13)
H10A0.17310.11810.46880.032*
C110.1901 (3)0.0619 (3)0.3566 (6)0.0242 (12)
H11A0.15920.05230.29280.029*
C120.2269 (3)0.0370 (2)0.3475 (5)0.0164 (10)
C130.3317 (3)0.1005 (2)0.6274 (5)0.0160 (10)
C140.2214 (3)0.0082 (2)0.2421 (5)0.0185 (11)
C150.2920 (2)0.1530 (2)0.3489 (5)0.0150 (10)
C160.2680 (3)0.2154 (2)0.3588 (6)0.0207 (11)
H16A0.27780.23660.29540.025*
C170.2292 (3)0.2458 (2)0.4636 (6)0.0241 (12)
H17A0.21270.28820.47360.029*
C180.2145 (3)0.2137 (2)0.5542 (6)0.0208 (11)
H18A0.18810.23350.62650.025*
C190.2398 (2)0.1517 (2)0.5348 (5)0.0145 (10)
C200.3377 (2)0.1140 (2)0.2444 (5)0.0169 (10)
C210.2260 (2)0.1127 (2)0.6265 (5)0.0144 (10)
N2S0.3770 (2)0.1421 (2)0.0182 (5)0.0184 (9)
H30.40370.13130.01640.022*
H40.37430.13480.10790.022*
N3S0.2955 (2)0.1879 (2)0.0138 (5)0.0201 (10)
H50.29800.19530.10340.024*
H60.26880.19840.02150.024*
C3S0.4008 (3)0.2077 (2)0.0051 (6)0.0184 (11)
H3SB0.44040.23150.03970.022*
H3SC0.40710.21630.10120.022*
C4S0.3567 (3)0.2264 (3)0.0477 (6)0.0191 (11)
H4SA0.37180.26950.02680.023*
H4SB0.35360.22160.14510.023*
C5S0.2722 (3)0.1220 (3)0.0092 (6)0.0228 (12)
H5SA0.26620.11330.10530.027*
H5SB0.23260.09800.03530.027*
C6S0.3159 (3)0.1037 (2)0.0434 (5)0.0190 (11)
H6SA0.30080.06050.02290.023*
H6SB0.31900.10860.14080.023*
N1S0.0447 (2)0.4816 (2)0.9869 (4)0.0171 (9)
H10.04480.47610.89690.020*
H20.07260.47321.02420.020*
C1S0.0629 (2)0.5463 (2)1.0145 (5)0.0172 (10)
H1SB0.10300.57330.97410.021*
H1SC0.06660.55341.11130.021*
C2S0.0168 (3)0.4387 (2)1.0410 (5)0.0176 (11)
H2SB0.01610.44171.13880.021*
H2SC0.02830.39671.01690.021*
O1W0.2187 (3)0.2131 (3)0.1999 (5)0.0417 (13)
H70.24060.22020.26840.063*
H80.18160.18610.20570.063*
O2W0.0045 (2)0.3336 (2)0.8678 (6)0.0386 (14)
H90.01200.35510.79850.058*
H100.00480.30130.84910.058*
O3W0.4578 (3)0.1242 (3)0.1969 (5)0.0473 (15)
H110.43460.11330.26400.071*
H120.49510.15000.20750.071*
O4W0.1237 (3)0.4570 (4)0.8062 (5)0.0565 (18)
H130.10170.45000.73800.085*
H140.15670.48930.78970.085*
O5W0.4304 (2)0.2332 (2)0.9394 (5)0.0404 (12)
H150.46380.20410.91170.061*
H160.42470.22731.01970.061*
O6W0.5887 (4)0.2126 (4)0.7969 (7)0.085 (2)
H170.61170.24830.76820.127*
H180.60590.19190.81060.127*
O7W0.8981 (4)0.0019 (4)0.9461 (11)0.058 (3)0.60
H190.87030.00430.91720.086*0.60
H200.92810.02840.98180.086*0.60
O8W0.3286 (5)0.2430 (5)0.8135 (10)0.046 (3)0.50
H210.36280.24010.82810.069*0.50
H220.29890.27230.85280.069*0.50
O9W0.8626 (7)0.0465 (7)1.1997 (15)0.056 (4)0.40
H230.84420.08451.18670.084*0.40
H240.87330.03331.12140.084*0.40
O10W0.66670.33330.6747 (12)0.058 (4)0.75
O11W0.0224 (9)0.0463 (9)0.403 (2)0.041 (5)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01785 (17)0.00708 (15)0.00477 (18)0.00439 (11)0.00048 (8)0.00019 (8)
O10.026 (2)0.0124 (17)0.0108 (18)0.0059 (15)0.0037 (15)0.0012 (13)
O20.025 (2)0.0203 (19)0.0088 (17)0.0144 (16)0.0007 (14)0.0038 (14)
O30.0186 (18)0.0156 (17)0.0116 (18)0.0095 (15)0.0020 (14)0.0033 (14)
O40.025 (2)0.0221 (19)0.0144 (19)0.0157 (17)0.0053 (15)0.0114 (15)
O50.024 (2)0.0142 (17)0.0122 (18)0.0089 (16)0.0010 (14)0.0033 (14)
O60.039 (2)0.0194 (19)0.0120 (19)0.0179 (19)0.0076 (17)0.0075 (15)
O70.025 (2)0.0135 (17)0.0108 (18)0.0096 (15)0.0037 (14)0.0049 (14)
O80.054 (3)0.027 (2)0.020 (2)0.028 (2)0.024 (2)0.0138 (17)
O90.025 (2)0.0139 (18)0.0133 (18)0.0089 (16)0.0024 (15)0.0012 (14)
O100.032 (2)0.0157 (19)0.0132 (19)0.0046 (17)0.0092 (16)0.0001 (15)
O110.0204 (18)0.0142 (17)0.0110 (18)0.0064 (15)0.0037 (14)0.0014 (13)
O120.032 (2)0.018 (2)0.024 (2)0.0018 (18)0.0131 (18)0.0075 (17)
N10.019 (2)0.0097 (18)0.0068 (19)0.0084 (16)0.0011 (15)0.0001 (15)
N20.022 (2)0.0080 (18)0.009 (2)0.0064 (17)0.0020 (16)0.0013 (15)
N30.016 (2)0.0105 (19)0.008 (2)0.0038 (16)0.0018 (15)0.0013 (15)
C10.024 (3)0.013 (2)0.005 (2)0.011 (2)0.0002 (18)0.0009 (17)
C20.019 (2)0.019 (2)0.009 (2)0.010 (2)0.0007 (19)0.0010 (19)
C30.018 (3)0.023 (3)0.015 (3)0.008 (2)0.001 (2)0.004 (2)
C40.021 (3)0.016 (2)0.015 (3)0.010 (2)0.001 (2)0.0059 (19)
C50.022 (3)0.011 (2)0.009 (2)0.011 (2)0.0009 (18)0.0000 (17)
C60.025 (3)0.012 (2)0.006 (2)0.009 (2)0.0001 (19)0.0001 (17)
C70.027 (3)0.015 (2)0.003 (2)0.016 (2)0.0022 (18)0.0025 (17)
C80.027 (3)0.011 (2)0.007 (2)0.007 (2)0.0030 (19)0.0007 (18)
C90.035 (3)0.027 (3)0.014 (3)0.020 (3)0.003 (2)0.009 (2)
C100.035 (3)0.031 (3)0.021 (3)0.022 (3)0.006 (2)0.009 (2)
C110.029 (3)0.026 (3)0.022 (3)0.017 (3)0.010 (2)0.008 (2)
C120.026 (3)0.011 (2)0.010 (2)0.008 (2)0.001 (2)0.0009 (18)
C130.029 (3)0.008 (2)0.009 (2)0.008 (2)0.002 (2)0.0015 (17)
C140.035 (3)0.012 (2)0.007 (2)0.010 (2)0.005 (2)0.0012 (18)
C150.013 (2)0.014 (2)0.013 (2)0.0029 (19)0.0017 (18)0.0048 (18)
C160.023 (3)0.012 (2)0.021 (3)0.004 (2)0.003 (2)0.006 (2)
C170.029 (3)0.009 (2)0.025 (3)0.003 (2)0.002 (2)0.003 (2)
C180.024 (3)0.012 (2)0.015 (3)0.000 (2)0.005 (2)0.0006 (19)
C190.016 (2)0.011 (2)0.010 (2)0.0024 (19)0.0008 (18)0.0023 (18)
C200.017 (2)0.015 (2)0.009 (2)0.002 (2)0.0007 (19)0.0041 (19)
C210.019 (2)0.014 (2)0.006 (2)0.005 (2)0.0010 (18)0.0004 (18)
N2S0.031 (3)0.023 (2)0.012 (2)0.022 (2)0.0039 (18)0.0012 (17)
N3S0.029 (3)0.029 (3)0.013 (2)0.023 (2)0.0060 (18)0.0002 (18)
C3S0.024 (3)0.021 (3)0.015 (3)0.015 (2)0.004 (2)0.000 (2)
C4S0.028 (3)0.023 (3)0.015 (3)0.019 (2)0.005 (2)0.000 (2)
C5S0.027 (3)0.028 (3)0.015 (3)0.015 (3)0.007 (2)0.001 (2)
C6S0.032 (3)0.017 (3)0.011 (2)0.015 (2)0.005 (2)0.0008 (19)
N1S0.021 (2)0.021 (2)0.010 (2)0.0104 (19)0.0030 (17)0.0002 (17)
C1S0.021 (3)0.014 (2)0.012 (2)0.005 (2)0.0055 (19)0.0031 (18)
C2S0.025 (3)0.015 (2)0.011 (2)0.008 (2)0.003 (2)0.0010 (19)
O1W0.050 (3)0.074 (4)0.023 (2)0.047 (3)0.001 (2)0.008 (2)
O2W0.055 (3)0.063 (4)0.015 (3)0.042 (3)0.0003 (19)0.0022 (19)
O3W0.071 (4)0.084 (4)0.018 (2)0.063 (4)0.000 (2)0.002 (3)
O4W0.064 (4)0.115 (6)0.027 (3)0.072 (4)0.004 (3)0.002 (3)
O5W0.039 (3)0.031 (3)0.042 (3)0.011 (2)0.017 (2)0.009 (2)
O6W0.103 (6)0.109 (7)0.049 (4)0.058 (5)0.001 (4)0.016 (4)
O7W0.042 (5)0.038 (5)0.091 (8)0.020 (4)0.022 (5)0.005 (5)
O8W0.030 (4)0.049 (4)0.043 (4)0.007 (3)0.001 (3)0.021 (3)
O9W0.064 (6)0.063 (6)0.045 (5)0.034 (4)0.014 (4)0.003 (4)
O10W0.076 (6)0.076 (6)0.022 (6)0.038 (3)0.0000.000
O11W0.041 (6)0.041 (6)0.042 (6)0.023 (5)0.001 (4)0.002 (4)
Geometric parameters (Å, º) top
Nd1—O32.465 (4)C17—H17A0.9500
Nd1—O72.467 (4)C18—C191.390 (7)
Nd1—O52.483 (4)C18—H18A0.9500
Nd1—O12.482 (4)C19—C211.524 (7)
Nd1—O92.485 (4)N2S—C3S1.487 (7)
Nd1—O112.487 (4)N2S—C6S1.501 (8)
Nd1—N22.565 (4)N2S—H30.9200
Nd1—N12.568 (4)N2S—H40.9200
Nd1—N32.575 (4)N3S—C5S1.495 (8)
O1—C61.258 (7)N3S—C4S1.501 (8)
O2—C61.246 (6)N3S—H50.9200
O3—C71.247 (7)N3S—H60.9200
O4—C71.255 (6)C3S—C4S1.521 (7)
O5—C131.278 (7)C3S—H3SB0.9900
O6—C131.235 (6)C3S—H3SC0.9900
O7—C141.240 (7)C4S—H4SA0.9900
O8—C141.254 (7)C4S—H4SB0.9900
O9—C211.263 (6)C5S—C6S1.503 (8)
O10—C211.236 (6)C5S—H5SA0.9900
O11—C201.254 (6)C5S—H5SB0.9900
O12—C201.245 (7)C6S—H6SA0.9900
N1—C11.333 (6)C6S—H6SB0.9900
N1—C51.340 (6)N1S—C2S1.497 (7)
N2—C81.338 (6)N1S—C1S1.499 (7)
N2—C121.341 (7)N1S—H10.9200
N3—C191.332 (7)N1S—H20.9200
N3—C151.340 (7)C1S—C2Si1.515 (8)
C1—C21.386 (7)C1S—H1SB0.9900
C1—C61.524 (7)C1S—H1SC0.9900
C2—C31.401 (7)C2S—C1Si1.515 (8)
C2—H2A0.9500C2S—H2SB0.9900
C3—C41.393 (7)C2S—H2SC0.9900
C3—H3A0.9500O1W—H70.8499
C4—C51.386 (7)O1W—H80.8500
C4—H4A0.9500O2W—H90.8501
C5—C71.516 (7)O2W—H100.8498
C7—O41.255 (6)O3W—H110.8500
C8—C91.375 (8)O3W—H120.8501
C8—C131.521 (7)O4W—H130.8500
C9—C101.401 (8)O4W—H140.8498
C9—H9A0.9500O5W—H150.8500
C10—C111.383 (8)O5W—H160.8502
C10—H10A0.9500O6W—H170.8499
C11—C121.374 (8)O6W—H180.8500
C11—H11A0.9500O7W—H190.8503
C12—C141.523 (7)O7W—H200.8494
C15—C161.393 (7)O8W—H210.8501
C15—C201.517 (7)O8W—H220.8500
C16—C171.390 (8)O9W—H230.8500
C16—H16A0.9500O9W—H240.8499
C17—C181.398 (8)
O3—Nd1—O777.20 (13)O6—C13—C8118.2 (5)
O3—Nd1—O590.11 (12)O5—C13—C8115.6 (4)
O7—Nd1—O5125.79 (12)O7—C14—O8125.4 (5)
O3—Nd1—O1125.64 (12)O7—C14—C12117.1 (5)
O7—Nd1—O1151.47 (12)O8—C14—C12117.6 (5)
O5—Nd1—O175.51 (13)N3—C15—C16121.8 (5)
O3—Nd1—O9150.59 (12)N3—C15—C20114.5 (4)
O7—Nd1—O988.93 (13)C16—C15—C20123.6 (5)
O5—Nd1—O977.05 (13)C17—C16—C15118.3 (5)
O1—Nd1—O977.04 (13)C17—C16—H16A120.8
O3—Nd1—O1177.45 (12)C15—C16—H16A120.8
O7—Nd1—O1178.02 (13)C16—C17—C18119.8 (5)
O5—Nd1—O11150.31 (13)C16—C17—H17A120.1
O1—Nd1—O1189.88 (13)C18—C17—H17A120.1
O9—Nd1—O11125.28 (12)C19—C18—C17117.8 (5)
O3—Nd1—N277.80 (13)C19—C18—H18A121.1
O7—Nd1—N262.76 (13)C17—C18—H18A121.1
O5—Nd1—N263.06 (13)N3—C19—C18122.6 (5)
O1—Nd1—N2132.85 (13)N3—C19—C21115.4 (4)
O9—Nd1—N272.79 (13)C18—C19—C21122.0 (5)
O11—Nd1—N2137.21 (13)O12—C20—O11125.4 (5)
O3—Nd1—N162.48 (12)O12—C20—C15118.5 (5)
O7—Nd1—N1136.93 (13)O11—C20—C15116.0 (5)
O5—Nd1—N171.35 (13)O10—C21—O9126.3 (5)
O1—Nd1—N163.23 (13)O10—C21—C19118.2 (5)
O9—Nd1—N1133.88 (13)O9—C21—C19115.5 (4)
O11—Nd1—N179.02 (13)C3S—N2S—C6S112.1 (4)
N2—Nd1—N1118.22 (12)C3S—N2S—H3109.2
O3—Nd1—N3136.85 (13)C6S—N2S—H3109.2
O7—Nd1—N379.27 (13)C3S—N2S—H4109.2
O5—Nd1—N3132.81 (13)C6S—N2S—H4109.2
O1—Nd1—N372.23 (13)H3—N2S—H4107.9
O9—Nd1—N362.87 (13)C5S—N3S—C4S111.7 (4)
O11—Nd1—N362.53 (13)C5S—N3S—H5109.3
N2—Nd1—N3121.23 (12)C4S—N3S—H5109.3
N1—Nd1—N3120.15 (12)C5S—N3S—H6109.3
C6—O1—Nd1124.6 (3)C4S—N3S—H6109.3
C7—O3—Nd1126.3 (3)H5—N3S—H6107.9
C13—O5—Nd1125.3 (3)N2S—C3S—C4S110.3 (4)
C14—O7—Nd1125.8 (3)N2S—C3S—H3SB109.6
C21—O9—Nd1125.4 (3)C4S—C3S—H3SB109.6
C20—O11—Nd1126.3 (3)N2S—C3S—H3SC109.6
C1—N1—C5119.2 (5)C4S—C3S—H3SC109.6
C1—N1—Nd1119.5 (3)H3SB—C3S—H3SC108.1
C5—N1—Nd1120.7 (3)N3S—C4S—C3S109.9 (4)
C8—N2—C12118.8 (5)N3S—C4S—H4SA109.7
C8—N2—Nd1120.3 (3)C3S—C4S—H4SA109.7
C12—N2—Nd1120.7 (3)N3S—C4S—H4SB109.7
C19—N3—C15119.7 (4)C3S—C4S—H4SB109.7
C19—N3—Nd1119.6 (3)H4SA—C4S—H4SB108.2
C15—N3—Nd1120.4 (3)N3S—C5S—C6S110.8 (5)
N1—C1—C2122.3 (5)N3S—C5S—H5SA109.5
N1—C1—C6114.9 (5)C6S—C5S—H5SA109.5
C2—C1—C6122.8 (5)N3S—C5S—H5SB109.5
C1—C2—C3118.7 (5)C6S—C5S—H5SB109.5
C1—C2—H2A120.6H5SA—C5S—H5SB108.1
C3—C2—H2A120.6C5S—C6S—N2S109.9 (4)
C4—C3—C2118.7 (5)C5S—C6S—H6SA109.7
C4—C3—H3A120.6N2S—C6S—H6SA109.7
C2—C3—H3A120.6C5S—C6S—H6SB109.7
C5—C4—C3118.5 (5)N2S—C6S—H6SB109.7
C5—C4—H4A120.8H6SA—C6S—H6SB108.2
C3—C4—H4A120.8C2S—N1S—C1S111.8 (4)
N1—C5—C4122.6 (5)C2S—N1S—H1109.3
N1—C5—C7113.2 (4)C1S—N1S—H1109.3
C4—C5—C7124.2 (5)C2S—N1S—H2109.3
O2—C6—O1126.1 (5)C1S—N1S—H2109.3
O2—C6—C1117.3 (5)H1—N1S—H2107.9
O1—C6—C1116.6 (4)N1S—C1S—C2Si110.9 (4)
O3—C7—O4125.3 (5)N1S—C1S—H1SB109.5
O3—C7—O4125.3 (5)C2Si—C1S—H1SB109.5
O3—C7—C5116.6 (4)N1S—C1S—H1SC109.5
O4—C7—C5118.1 (5)C2Si—C1S—H1SC109.5
O4—C7—C5118.1 (5)H1SB—C1S—H1SC108.0
N2—C8—C9122.9 (5)N1S—C2S—C1Si110.0 (4)
N2—C8—C13115.0 (5)N1S—C2S—H2SB109.7
C9—C8—C13122.1 (5)C1Si—C2S—H2SB109.7
C8—C9—C10118.1 (5)N1S—C2S—H2SC109.7
C8—C9—H9A120.9C1Si—C2S—H2SC109.7
C10—C9—H9A120.9H2SB—C2S—H2SC108.2
C11—C10—C9118.8 (6)H7—O1W—H8117.6
C11—C10—H10A120.6H9—O2W—H10109.6
C9—C10—H10A120.6H11—O3W—H12118.7
C12—C11—C10119.2 (5)H13—O4W—H14105.9
C12—C11—H11A120.4H15—O5W—H16110.1
C10—C11—H11A120.4H17—O6W—H18115.1
N2—C12—C11122.1 (5)H19—O7W—H20115.6
N2—C12—C14113.1 (5)H21—O8W—H22114.8
C11—C12—C14124.8 (5)H23—O9W—H24101.1
O6—C13—O5126.2 (5)
O3—Nd1—O1—C612.5 (5)N2—Nd1—N3—C15132.0 (4)
O7—Nd1—O1—C6150.9 (4)N1—Nd1—N3—C1555.3 (4)
O5—Nd1—O1—C666.9 (4)C5—N1—C1—C21.3 (7)
O9—Nd1—O1—C6146.7 (4)Nd1—N1—C1—C2170.3 (4)
O11—Nd1—O1—C686.9 (4)C5—N1—C1—C6179.7 (4)
N2—Nd1—O1—C695.5 (4)Nd1—N1—C1—C68.7 (5)
N1—Nd1—O1—C69.2 (4)N1—C1—C2—C31.0 (8)
N3—Nd1—O1—C6148.0 (4)C6—C1—C2—C3179.8 (5)
O7—Nd1—O3—C7160.7 (4)C1—C2—C3—C40.5 (8)
O5—Nd1—O3—C772.5 (4)C2—C3—C4—C51.5 (8)
O1—Nd1—O3—C70.4 (5)C1—N1—C5—C40.2 (7)
O9—Nd1—O3—C7135.6 (4)Nd1—N1—C5—C4171.3 (4)
O11—Nd1—O3—C780.3 (4)C1—N1—C5—C7178.7 (4)
N2—Nd1—O3—C7134.9 (4)Nd1—N1—C5—C77.3 (5)
N1—Nd1—O3—C73.7 (4)C3—C4—C5—N11.2 (8)
N3—Nd1—O3—C7102.1 (4)C3—C4—C5—C7177.2 (5)
O3—Nd1—O5—C1384.2 (4)Nd1—O1—C6—O2171.7 (4)
O7—Nd1—O5—C139.9 (5)Nd1—O1—C6—C18.4 (6)
O1—Nd1—O5—C13148.9 (4)N1—C1—C6—O2179.2 (4)
O9—Nd1—O5—C1369.1 (4)C2—C1—C6—O21.8 (7)
O11—Nd1—O5—C13148.4 (4)N1—C1—C6—O10.7 (7)
N2—Nd1—O5—C137.9 (4)C2—C1—C6—O1178.3 (5)
N1—Nd1—O5—C13144.9 (4)Nd1—O3—C7—O4171.8 (4)
N3—Nd1—O5—C13100.8 (4)Nd1—O3—C7—O4171.8 (4)
O3—Nd1—O7—C1478.3 (5)Nd1—O3—C7—C58.8 (6)
O5—Nd1—O7—C142.5 (5)O4—O4—C7—O30.00 (15)
O1—Nd1—O7—C14135.3 (4)O4—O4—C7—C50.0 (3)
O9—Nd1—O7—C1475.6 (4)N1—C5—C7—O310.1 (6)
O11—Nd1—O7—C14157.9 (5)C4—C5—C7—O3168.4 (5)
N2—Nd1—O7—C144.5 (4)N1—C5—C7—O4170.4 (4)
N1—Nd1—O7—C1498.7 (5)C4—C5—C7—O411.1 (7)
N3—Nd1—O7—C14138.2 (5)N1—C5—C7—O4170.4 (4)
O3—Nd1—O9—C21149.9 (4)C4—C5—C7—O411.1 (7)
O7—Nd1—O9—C2188.9 (4)C12—N2—C8—C91.7 (8)
O5—Nd1—O9—C21143.9 (4)Nd1—N2—C8—C9172.5 (4)
O1—Nd1—O9—C2166.1 (4)C12—N2—C8—C13179.7 (5)
O11—Nd1—O9—C2114.4 (5)Nd1—N2—C8—C135.4 (6)
N2—Nd1—O9—C21150.6 (4)N2—C8—C9—C101.5 (9)
N1—Nd1—O9—C2196.5 (4)C13—C8—C9—C10179.3 (5)
N3—Nd1—O9—C2110.4 (4)C8—C9—C10—C110.1 (10)
O3—Nd1—O11—C20161.4 (5)C9—C10—C11—C121.0 (10)
O7—Nd1—O11—C2082.1 (5)C8—N2—C12—C110.6 (8)
O5—Nd1—O11—C20131.3 (4)Nd1—N2—C12—C11173.7 (4)
O1—Nd1—O11—C2071.9 (4)C8—N2—C12—C14179.4 (5)
O9—Nd1—O11—C202.1 (5)Nd1—N2—C12—C145.1 (6)
N2—Nd1—O11—C20105.4 (4)C10—C11—C12—N20.8 (9)
N1—Nd1—O11—C20134.6 (4)C10—C11—C12—C14177.8 (6)
N3—Nd1—O11—C201.9 (4)Nd1—O5—C13—O6172.8 (4)
O3—Nd1—N1—C1174.1 (4)Nd1—O5—C13—C88.2 (6)
O7—Nd1—N1—C1163.3 (3)N2—C8—C13—O6179.5 (5)
O5—Nd1—N1—C173.8 (4)C9—C8—C13—O61.5 (8)
O1—Nd1—N1—C19.0 (3)N2—C8—C13—O51.4 (7)
O9—Nd1—N1—C124.6 (4)C9—C8—C13—O5179.4 (5)
O11—Nd1—N1—C1104.4 (4)Nd1—O7—C14—O8171.0 (5)
N2—Nd1—N1—C1117.5 (3)Nd1—O7—C14—C128.7 (7)
N3—Nd1—N1—C155.5 (4)N2—C12—C14—O78.7 (7)
O3—Nd1—N1—C52.7 (3)C11—C12—C14—O7170.1 (6)
O7—Nd1—N1—C525.3 (4)N2—C12—C14—O8171.1 (5)
O5—Nd1—N1—C597.6 (4)C11—C12—C14—O810.1 (9)
O1—Nd1—N1—C5179.6 (4)C19—N3—C15—C160.1 (8)
O9—Nd1—N1—C5146.8 (3)Nd1—N3—C15—C16173.9 (4)
O11—Nd1—N1—C584.1 (4)C19—N3—C15—C20177.7 (5)
N2—Nd1—N1—C553.9 (4)Nd1—N3—C15—C203.6 (6)
N3—Nd1—N1—C5133.1 (3)N3—C15—C16—C171.1 (9)
O3—Nd1—N2—C8103.0 (4)C20—C15—C16—C17176.2 (5)
O7—Nd1—N2—C8175.3 (4)C15—C16—C17—C181.1 (9)
O5—Nd1—N2—C86.5 (4)C16—C17—C18—C190.0 (9)
O1—Nd1—N2—C824.8 (5)C15—N3—C19—C181.4 (8)
O9—Nd1—N2—C877.4 (4)Nd1—N3—C19—C18172.7 (4)
O11—Nd1—N2—C8158.9 (3)C15—N3—C19—C21179.0 (5)
N1—Nd1—N2—C853.7 (4)Nd1—N3—C19—C216.9 (6)
N3—Nd1—N2—C8119.1 (4)C17—C18—C19—N31.3 (9)
O3—Nd1—N2—C1282.9 (4)C17—C18—C19—C21179.1 (5)
O7—Nd1—N2—C121.1 (4)Nd1—O11—C20—O12175.9 (4)
O5—Nd1—N2—C12179.3 (4)Nd1—O11—C20—C154.4 (7)
O1—Nd1—N2—C12149.4 (4)N3—C15—C20—O12175.2 (5)
O9—Nd1—N2—C1296.8 (4)C16—C15—C20—O127.3 (8)
O11—Nd1—N2—C1227.0 (5)N3—C15—C20—O115.1 (7)
N1—Nd1—N2—C12132.1 (4)C16—C15—C20—O11172.4 (5)
N3—Nd1—N2—C1255.0 (4)Nd1—O9—C21—O10168.0 (4)
O3—Nd1—N3—C19160.6 (3)Nd1—O9—C21—C1910.9 (6)
O7—Nd1—N3—C19102.7 (4)N3—C19—C21—O10177.0 (5)
O5—Nd1—N3—C1926.8 (5)C18—C19—C21—O102.7 (8)
O1—Nd1—N3—C1975.9 (4)N3—C19—C21—O92.0 (7)
O9—Nd1—N3—C198.4 (4)C18—C19—C21—O9178.4 (5)
O11—Nd1—N3—C19175.3 (4)C6S—N2S—C3S—C4S57.2 (6)
N2—Nd1—N3—C1954.0 (4)C5S—N3S—C4S—C3S56.4 (6)
N1—Nd1—N3—C19118.7 (4)N2S—C3S—C4S—N3S55.9 (6)
O3—Nd1—N3—C1525.4 (5)C4S—N3S—C5S—C6S57.1 (6)
O7—Nd1—N3—C1583.2 (4)N3S—C5S—C6S—N2S56.2 (6)
O5—Nd1—N3—C15147.3 (4)C3S—N2S—C6S—C5S57.2 (6)
O1—Nd1—N3—C1598.2 (4)C2S—N1S—C1S—C2Si56.8 (6)
O9—Nd1—N3—C15177.6 (4)C1S—N1S—C2S—C1Si56.3 (6)
O11—Nd1—N3—C151.3 (4)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2S—H3···O40.921.972.804 (6)151
N2S—H4···O6ii0.921.922.760 (6)151
N3S—H5···O10iii0.921.952.780 (6)150
N3S—H6···O8iv0.921.992.836 (6)153
N1S—H1···O2v0.921.922.758 (6)150
N1S—H2···O12vi0.922.032.874 (6)153
O1W—H7···O9iii0.852.032.863 (7)167
O1W—H8···O9Wvii0.852.012.838 (17)167
O2W—H9···O1v0.852.433.278 (7)180
O2W—H10···O1Wiii0.852.173.024 (8)180
O3W—H11···O5ii0.852.142.970 (7)167
O3W—H12···O6Wii0.852.112.950 (11)171
O4W—H13···O1v0.852.052.878 (7)166
O4W—H14···O8Wv0.852.172.985 (14)162
O5W—H15···O4viii0.851.822.674 (6)180
O5W—H16···O6Wix0.851.952.804 (9)179
O6W—H17···O10W0.852.132.972 (10)174
O6W—H18···O12viii0.852.163.011 (10)180
O7W—H19···O8viii0.851.762.608 (10)179
O7W—H20···O7Wx0.851.952.797 (11)177
O8W—H21···O5W0.851.992.787 (12)156
O8W—H22···O5Wxi0.851.872.723 (11)180
O9W—H23···O8xii0.852.293.136 (18)179
O9W—H24···O7W0.851.922.77 (2)179
C3S—H3Sc···O10iii0.992.493.200 (8)129
C4S—H4SB···O6ii0.992.473.179 (8)128
C4S—H4SB···O7iv0.992.513.076 (9)116
C5S—H5SA···O6ii0.992.463.180 (8)129
C6S—H6SB···O30.992.523.092 (8)116
C6S—H6SB···O10iii0.992.453.169 (7)129
C1S—H1SC···O2xiii0.992.433.151 (7)129
C2S—H2SB···O11vi0.992.553.112 (8)116
C2S—H2SB···O2xiii0.992.493.194 (7)128
Symmetry codes: (ii) x, y, z1; (iii) xy, x, z+1; (iv) xy, x, z; (v) y, xy, z; (vi) y, xy, z+1; (vii) x+y+1, x+1, z1; (viii) x+1, y, z+1; (ix) x+1, y, z+2; (x) y+1, x+y+1, z+2; (xi) y, xy1, z; (xii) x+y+1, x, z+1; (xiii) y, x+y+1, z+2.

Experimental details

Crystal data
Chemical formula(C4H12N2)3[Nd(C7H3NO4)3]2·15.33H2O
Mr915.24
Crystal system, space groupTrigonal, P3
Temperature (K)100
a, c (Å)25.5045 (9), 10.0984 (7)
V3)5688.7 (5)
Z6
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.49 × 0.18 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.536, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
64426, 9135, 7444
Rint0.055
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.198, 1.02
No. of reflections9135
No. of parameters509
No. of restraints18
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.12P)2 + 36P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)4.81, 2.19

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 1998).

Selected geometric parameters (Å, º) top
Nd1—O32.465 (4)Nd1—O112.487 (4)
Nd1—O72.467 (4)Nd1—N22.565 (4)
Nd1—O52.483 (4)Nd1—N12.568 (4)
Nd1—O12.482 (4)Nd1—N32.575 (4)
Nd1—O92.485 (4)
N2—Nd1—N1118.22 (12)N1—Nd1—N3120.15 (12)
N2—Nd1—N3121.23 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2S—H3···O40.9201.9662.804 (6)150.63
N2S—H4···O6i0.9201.9192.760 (6)151.00
N3S—H5···O10ii0.9201.9452.780 (6)150.04
N3S—H6···O8iii0.9201.9882.836 (6)152.49
N1S—H1···O2iv0.9201.9242.758 (6)149.74
N1S—H2···O12v0.9202.0262.874 (6)152.58
O1W—H7···O9ii0.8502.0282.863 (7)166.81
O1W—H8···O9Wvi0.8502.0052.838 (17)166.45
O2W—H9···O1iv0.8502.4283.278 (7)179.47
O2W—H10···O1Wii0.8502.1743.024 (8)179.64
O3W—H11···O5i0.8502.1362.970 (7)166.80
O3W—H12···O6Wi0.8502.1072.950 (11)171.40
O4W—H13···O1iv0.8502.0452.878 (7)166.36
O4W—H14···O8Wiv0.8502.1652.985 (14)162.29
O5W—H15···O4vii0.8501.8242.674 (6)179.64
O5W—H16···O6Wviii0.8501.9542.804 (9)178.94
O6W—H17···O10W0.8502.1262.972 (10)173.61
O6W—H18···O12vii0.8502.1613.011 (10)179.91
O7W—H19···O8vii0.8501.7572.608 (10)178.50
O7W—H20···O7Wix0.8491.9482.797 (11)176.74
O8W—H21···O5W0.8501.9912.787 (12)155.54
O8W—H22···O5Wx0.8501.8732.723 (11)179.54
O9W—H23···O8xi0.8502.2873.136 (18)178.51
O9W—H24···O7W0.8501.9152.765 (20)178.84
C3S—H3Sc···O10ii0.992.493.200 (8)129
C4S—H4SB···O6i0.992.473.179 (8)128
C4S—H4SB···O7iii0.992.513.076 (9)116
C5S—H5SA···O6i0.992.463.180 (8)129
C6S—H6SB···O30.992.523.092 (8)116
C6S—H6SB···O10ii0.992.453.169 (7)129
C1S—H1SC···O2xii0.992.433.151 (7)129
C2S—H2SB···O11v0.992.553.112 (8)116
C2S—H2SB···O2xii0.992.493.194 (7)128
Symmetry codes: (i) x, y, z1; (ii) xy, x, z+1; (iii) xy, x, z; (iv) y, xy, z; (v) y, xy, z+1; (vi) x+y+1, x+1, z1; (vii) x+1, y, z+1; (viii) x+1, y, z+2; (ix) y+1, x+y+1, z+2; (x) y, xy1, z; (xi) x+y+1, x, z+1; (xii) y, x+y+1, z+2.
 

References

First citationAghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, N. (2006). Z. Anorg. Allg. Chem. 632, 2058–2064.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m350-m351
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds