organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phen­yl)-7-methyl-4-(4-methyl­phen­yl)-1-oxa-2,7-di­aza­spiro­[4.5]dec-2-en-10-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 10 December 2007; accepted 29 December 2007; online 9 January 2008)

In the title compound, C21H21ClN2O2, the dihydro­isoxazole ring adopts an envelope conformation and the piperidinone ring is in a chair conformation. The dihedral angle between the two benzene rings is 84.2 (1)°. The crystal used was an inversion twin.

Related literature

For general background, see: Diana et al. (1985[Diana, G. D., McKinlay, M. A., Brisson, C. J., Zalay, E. S., Miralles, J. V. & Salvador, U. J. (1985). J. Med. Chem. 28, 748-752.]); Huisgen (1984[Huisgen, R. (1984). In 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa. New York: John Wiley.]); Lepage et al. (1992[Lepage, F., Tombert, F., Cuvier, G., Marivain, A. & Gillardin, J. M. (1992). Eur. J. Med. Chem. 27, 581-593.]); Ryng et al. (1998[Ryng, S., Machon, Z., Wieczorek, Z., Zimecki, M. & Mokrosz, M. (1998). Eur. J. Med. Chem. 33, 831-836.]); Torssell (1988[Torssell, K. (1988). Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis. New York: VCH.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21ClN2O2

  • Mr = 368.85

  • Orthorhombic, P 21 21 21

  • a = 11.4585 (8) Å

  • b = 16.1132 (11) Å

  • c = 10.1038 (7) Å

  • V = 1865.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 (2) K

  • 0.24 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 16236 measured reflections

  • 4350 independent reflections

  • 3771 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.03

  • 4350 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1846 Friedel pairs

  • Flack parameter: 0.65 (6)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

1,3-Dipolar cycloaddition of nitrile oxides to alkenes and alkynes affords isoxazoles and isoxazolines (Torssell, 1988). Apart from exhibiting important biological activities such as antiviral (Diana et al., 1985), anticonvulsant (Lepage et al., 1992) and immunostimulatory (Ryng et al., 1998), isoxazolines are valuable synthons in the synthesis of α,β-unsaturated ketones, β-hydroxy ketones and γ-amino alcohols (Huisgen, 1984). In view of the above facts, we have undertaken the X-ray crystal structure determination of the title compound.

The sum of the bond angles around N2 (331.7°) indicates the sp3-hybridization. The dihydro-isoxazole ring (C1—C3/O1/N1) adopts an envelope conformation with atom C1 deviating by 0.350 (2) Å from the plane of rest of the atoms in the ring. The piperidinone ring adopts a chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the dihydro-isoxazole ring are q2 = 0.220 (2) Å, ϕ = 142.2 (4)° and Δs(C1) = 1.1 (2)°, and for the piperidinone ring q2 = 0.074 (2) Å, q3 = 0.569 (2) Å, QT = 0.574 (2) Å and θ = 7.5 (2)°. The dihedral angle between the two benzene rings (C9—C14 and C16—C21) is 84.2 (1)°. The chlorine atom deviates by -0.065 (1) Å from the plane of the attached C16—C21 benzene ring, and the methyl carbon atom C15 deviates by 0.082 (2) Å from the plane of the C9—C14 benzene ring.

The crystal packing is stabilized by van der Waals forces.

Related literature top

For general background, see: Diana et al. (1985); Huisgen (1984); Lepage et al. (1992); Ryng et al. (1998); Torssell (1988). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental top

To a well stirred mixture of 1-methyl-3-[(E)-4-methylphenylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol) and 4-chlorobenzohydroximoyl chloride (3 mmol) in benzene (15 ml), triethylamine (3 mmol) was added dropwise over a period of 10 min and stirring was continued for 5 h at ambient temperature. The triethylamine hydrochloride was filtered off, solvent evaporated in vacuo, and the product was purified by column chromatography using petroleum ether-ethyl acetate (4:1 v/v) mixture. The compound was then recrystallized from ethanol-ethyl acetate (1:1 v/v).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C). The crystal used was an inversion twin.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c axis.
3-(4-Chlorophenyl)-7-methyl-4-(4-methylphenyl)-1-oxa-2,7- diazaspiro[4.5]dec-2-en-10-one top
Crystal data top
C21H21ClN2O2F(000) = 776
Mr = 368.85Dx = 1.313 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2169 reflections
a = 11.4585 (8) Åθ = 2.2–25.0°
b = 16.1132 (11) ŵ = 0.22 mm1
c = 10.1038 (7) ÅT = 293 K
V = 1865.5 (2) Å3Block, colourless
Z = 40.24 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3771 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.0°, θmin = 2.2°
ω scansh = 1414
16236 measured reflectionsk = 2020
4350 independent reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.0494P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4350 reflectionsΔρmax = 0.24 e Å3
238 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983); 1846 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.65 (6)
Crystal data top
C21H21ClN2O2V = 1865.5 (2) Å3
Mr = 368.85Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.4585 (8) ŵ = 0.22 mm1
b = 16.1132 (11) ÅT = 293 K
c = 10.1038 (7) Å0.24 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3771 reflections with I > 2σ(I)
16236 measured reflectionsRint = 0.022
4350 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.111Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.16 e Å3
4350 reflectionsAbsolute structure: Flack (1983); 1846 Friedel pairs
238 parametersAbsolute structure parameter: 0.65 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39999 (14)0.21740 (10)0.26025 (16)0.0441 (4)
C20.47545 (14)0.14014 (10)0.28375 (16)0.0432 (4)
H20.50270.14000.37570.052*
C30.57576 (15)0.16160 (10)0.19396 (17)0.0451 (4)
C40.26874 (15)0.20376 (11)0.2506 (2)0.0498 (4)
H4A0.25230.16680.17710.060*
H4B0.24140.17720.33100.060*
C50.2264 (2)0.33753 (12)0.3408 (2)0.0643 (6)
H5A0.20490.31090.42330.077*
H5B0.17840.38660.33010.077*
C60.3552 (2)0.36245 (12)0.3452 (3)0.0666 (6)
H6A0.37730.38970.26330.080*
H6B0.36910.40050.41790.080*
C70.42530 (17)0.28489 (11)0.36367 (19)0.0516 (4)
C80.08128 (17)0.26456 (16)0.2160 (2)0.0703 (6)
H8A0.05230.23740.29390.106*
H8B0.06920.22950.14050.106*
H8C0.04040.31600.20350.106*
C90.42089 (13)0.05732 (10)0.25237 (16)0.0422 (3)
C100.40319 (16)0.03083 (11)0.12336 (18)0.0510 (4)
H100.42960.06340.05350.061*
C110.34703 (17)0.04313 (12)0.0970 (2)0.0567 (5)
H110.33650.05960.00960.068*
C120.30606 (15)0.09324 (11)0.1981 (2)0.0535 (4)
C130.32650 (18)0.06790 (12)0.3258 (2)0.0590 (5)
H130.30180.10120.39550.071*
C140.38319 (16)0.00627 (11)0.35339 (18)0.0520 (4)
H140.39590.02170.44090.062*
C150.2395 (2)0.17151 (13)0.1691 (3)0.0755 (7)
H15A0.21650.19720.25070.113*
H15B0.28820.20900.11990.113*
H15C0.17130.15840.11800.113*
C160.69030 (15)0.12007 (10)0.19526 (18)0.0453 (4)
C170.77102 (16)0.13329 (12)0.09496 (19)0.0522 (4)
H170.75060.16540.02210.063*
C180.88106 (17)0.09925 (12)0.1024 (2)0.0559 (4)
H180.93470.10790.03470.067*
C190.91083 (15)0.05239 (11)0.2108 (2)0.0526 (4)
C200.83202 (17)0.03571 (11)0.30978 (19)0.0559 (5)
H200.85260.00220.38100.067*
C210.72139 (17)0.06986 (12)0.30132 (19)0.0527 (4)
H210.66710.05900.36760.063*
N10.55545 (14)0.22078 (9)0.11384 (15)0.0530 (4)
N20.20607 (14)0.28110 (9)0.23159 (16)0.0548 (4)
O10.44115 (11)0.25059 (8)0.13460 (12)0.0552 (3)
O20.49219 (14)0.27449 (9)0.45270 (15)0.0714 (4)
Cl11.05097 (4)0.01181 (4)0.22360 (6)0.07411 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0457 (8)0.0424 (8)0.0441 (9)0.0017 (7)0.0011 (7)0.0028 (6)
C20.0438 (8)0.0449 (8)0.0410 (8)0.0035 (6)0.0025 (7)0.0023 (7)
C30.0428 (8)0.0451 (8)0.0476 (9)0.0007 (7)0.0009 (7)0.0016 (7)
C40.0457 (8)0.0503 (9)0.0532 (10)0.0026 (7)0.0022 (8)0.0016 (8)
C50.0689 (13)0.0495 (10)0.0744 (14)0.0179 (9)0.0117 (11)0.0037 (9)
C60.0768 (14)0.0425 (9)0.0805 (14)0.0026 (9)0.0013 (12)0.0085 (9)
C70.0498 (10)0.0469 (9)0.0580 (10)0.0047 (7)0.0042 (9)0.0014 (8)
C80.0503 (10)0.0856 (14)0.0751 (13)0.0143 (10)0.0057 (10)0.0159 (12)
C90.0379 (7)0.0420 (8)0.0467 (9)0.0046 (6)0.0004 (7)0.0029 (6)
C100.0549 (10)0.0498 (9)0.0482 (9)0.0000 (8)0.0031 (8)0.0028 (7)
C110.0554 (10)0.0553 (11)0.0595 (11)0.0033 (8)0.0044 (9)0.0067 (9)
C120.0407 (8)0.0428 (9)0.0769 (13)0.0073 (7)0.0018 (9)0.0003 (8)
C130.0582 (11)0.0477 (9)0.0710 (13)0.0022 (9)0.0080 (9)0.0151 (9)
C140.0563 (10)0.0509 (9)0.0489 (9)0.0031 (8)0.0013 (8)0.0037 (8)
C150.0590 (12)0.0509 (11)0.116 (2)0.0032 (9)0.0063 (13)0.0041 (12)
C160.0425 (8)0.0422 (8)0.0510 (9)0.0008 (7)0.0021 (7)0.0060 (7)
C170.0485 (9)0.0548 (10)0.0534 (10)0.0006 (8)0.0014 (8)0.0024 (8)
C180.0465 (9)0.0619 (11)0.0594 (11)0.0015 (8)0.0070 (9)0.0020 (9)
C190.0428 (8)0.0517 (9)0.0634 (11)0.0056 (7)0.0035 (8)0.0114 (8)
C200.0586 (11)0.0551 (10)0.0541 (10)0.0111 (8)0.0027 (9)0.0004 (8)
C210.0505 (9)0.0547 (10)0.0527 (10)0.0035 (8)0.0059 (8)0.0000 (8)
N10.0471 (8)0.0580 (9)0.0540 (8)0.0063 (7)0.0061 (7)0.0053 (7)
N20.0495 (8)0.0569 (9)0.0580 (9)0.0087 (7)0.0036 (7)0.0104 (7)
O10.0519 (7)0.0619 (7)0.0519 (6)0.0132 (6)0.0056 (6)0.0146 (6)
O20.0826 (11)0.0639 (9)0.0678 (9)0.0015 (8)0.0190 (8)0.0105 (7)
Cl10.0503 (3)0.0879 (4)0.0841 (4)0.0210 (2)0.0020 (2)0.0061 (3)
Geometric parameters (Å, º) top
C1—O11.456 (2)C9—C101.386 (2)
C1—C41.523 (2)C10—C111.380 (3)
C1—C21.534 (2)C10—H100.93
C1—C71.536 (2)C11—C121.384 (3)
C2—C31.505 (2)C11—H110.93
C2—C91.507 (2)C12—C131.374 (3)
C2—H20.98C12—C151.503 (3)
C3—N11.272 (2)C13—C141.389 (3)
C3—C161.473 (2)C13—H130.93
C4—N21.451 (2)C14—H140.93
C4—H4A0.97C15—H15A0.96
C4—H4B0.97C15—H15B0.96
C5—N21.448 (3)C15—H15C0.96
C5—C61.530 (3)C16—C171.388 (3)
C5—H5A0.97C16—C211.389 (3)
C5—H5B0.97C17—C181.377 (3)
C6—C71.497 (3)C17—H170.93
C6—H6A0.97C18—C191.373 (3)
C6—H6B0.97C18—H180.93
C7—O21.194 (2)C19—C201.374 (3)
C8—N21.463 (3)C19—Cl11.7386 (17)
C8—H8A0.96C20—C211.385 (3)
C8—H8B0.96C20—H200.93
C8—H8C0.96C21—H210.93
C9—C141.380 (2)N1—O11.411 (2)
O1—C1—C4108.48 (14)C11—C10—C9121.03 (17)
O1—C1—C2104.50 (13)C11—C10—H10119.5
C4—C1—C2116.71 (14)C9—C10—H10119.5
O1—C1—C7105.78 (13)C10—C11—C12121.29 (19)
C4—C1—C7109.40 (14)C10—C11—H11119.4
C2—C1—C7111.27 (14)C12—C11—H11119.4
C3—C2—C9113.17 (14)C13—C12—C11117.52 (17)
C3—C2—C198.68 (13)C13—C12—C15121.3 (2)
C9—C2—C1116.88 (13)C11—C12—C15121.2 (2)
C3—C2—H2109.2C12—C13—C14121.60 (18)
C9—C2—H2109.2C12—C13—H13119.2
C1—C2—H2109.2C14—C13—H13119.2
N1—C3—C16120.60 (16)C9—C14—C13120.73 (17)
N1—C3—C2114.59 (15)C9—C14—H14119.6
C16—C3—C2124.81 (14)C13—C14—H14119.6
N2—C4—C1111.92 (15)C12—C15—H15A109.5
N2—C4—H4A109.2C12—C15—H15B109.5
C1—C4—H4A109.2H15A—C15—H15B109.5
N2—C4—H4B109.2C12—C15—H15C109.5
C1—C4—H4B109.2H15A—C15—H15C109.5
H4A—C4—H4B107.9H15B—C15—H15C109.5
N2—C5—C6110.03 (17)C17—C16—C21118.79 (16)
N2—C5—H5A109.7C17—C16—C3121.15 (16)
C6—C5—H5A109.7C21—C16—C3119.99 (16)
N2—C5—H5B109.7C18—C17—C16120.60 (18)
C6—C5—H5B109.7C18—C17—H17119.7
H5A—C5—H5B108.2C16—C17—H17119.7
C7—C6—C5107.56 (16)C19—C18—C17119.33 (18)
C7—C6—H6A110.2C19—C18—H18120.3
C5—C6—H6A110.2C17—C18—H18120.3
C7—C6—H6B110.2C18—C19—C20121.66 (16)
C5—C6—H6B110.2C18—C19—Cl1119.72 (15)
H6A—C6—H6B108.5C20—C19—Cl1118.62 (15)
O2—C7—C6123.75 (19)C19—C20—C21118.62 (17)
O2—C7—C1122.32 (16)C19—C20—H20120.7
C6—C7—C1113.88 (17)C21—C20—H20120.7
N2—C8—H8A109.5C20—C21—C16120.92 (17)
N2—C8—H8B109.5C20—C21—H21119.5
H8A—C8—H8B109.5C16—C21—H21119.5
N2—C8—H8C109.5C3—N1—O1109.30 (14)
H8A—C8—H8C109.5C5—N2—C4111.01 (15)
H8B—C8—H8C109.5C5—N2—C8110.72 (16)
C14—C9—C10117.78 (16)C4—N2—C8109.97 (16)
C14—C9—C2120.12 (15)N1—O1—C1107.77 (12)
C10—C9—C2122.07 (15)
O1—C1—C2—C320.69 (15)C10—C11—C12—C15176.79 (18)
C4—C1—C2—C3140.47 (15)C11—C12—C13—C141.8 (3)
C7—C1—C2—C393.02 (15)C15—C12—C13—C14176.97 (18)
O1—C1—C2—C9100.88 (16)C10—C9—C14—C131.8 (3)
C4—C1—C2—C918.9 (2)C2—C9—C14—C13176.12 (16)
C7—C1—C2—C9145.41 (15)C12—C13—C14—C90.1 (3)
C9—C2—C3—N1110.31 (17)N1—C3—C16—C1711.9 (3)
C1—C2—C3—N113.93 (19)C2—C3—C16—C17168.66 (16)
C9—C2—C3—C1670.2 (2)N1—C3—C16—C21164.90 (17)
C1—C2—C3—C16165.53 (15)C2—C3—C16—C2114.5 (3)
O1—C1—C4—N263.77 (19)C21—C16—C17—C181.9 (3)
C2—C1—C4—N2178.61 (15)C3—C16—C17—C18174.95 (17)
C7—C1—C4—N251.2 (2)C16—C17—C18—C190.5 (3)
N2—C5—C6—C760.1 (2)C17—C18—C19—C202.7 (3)
C5—C6—C7—O2123.4 (2)C17—C18—C19—Cl1178.00 (15)
C5—C6—C7—C154.2 (2)C18—C19—C20—C212.4 (3)
O1—C1—C7—O2115.9 (2)Cl1—C19—C20—C21178.29 (14)
C4—C1—C7—O2127.43 (19)C19—C20—C21—C160.1 (3)
C2—C1—C7—O23.0 (2)C17—C16—C21—C202.2 (3)
O1—C1—C7—C666.42 (19)C3—C16—C21—C20174.70 (17)
C4—C1—C7—C650.2 (2)C16—C3—N1—O1178.78 (14)
C2—C1—C7—C6179.33 (16)C2—C3—N1—O10.7 (2)
C3—C2—C9—C14141.75 (16)C6—C5—N2—C464.4 (2)
C1—C2—C9—C14104.61 (18)C6—C5—N2—C8173.13 (17)
C3—C2—C9—C1040.4 (2)C1—C4—N2—C560.1 (2)
C1—C2—C9—C1073.2 (2)C1—C4—N2—C8177.08 (16)
C14—C9—C10—C111.6 (3)C3—N1—O1—C114.11 (18)
C2—C9—C10—C11176.26 (16)C4—C1—O1—N1147.46 (14)
C9—C10—C11—C120.3 (3)C2—C1—O1—N122.29 (16)
C10—C11—C12—C132.0 (3)C7—C1—O1—N195.25 (15)

Experimental details

Crystal data
Chemical formulaC21H21ClN2O2
Mr368.85
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.4585 (8), 16.1132 (11), 10.1038 (7)
V3)1865.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.24 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16236, 4350, 3771
Rint0.022
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.04
No. of reflections4350
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16
Absolute structureFlack (1983); 1846 Friedel pairs
Absolute structure parameter0.65 (6)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

 

Acknowledgements

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. The University Grants Commission (UGC–SAP) and the Department of Science and Technology (DST–FIST), Government of India, are acknowledged by DV for providing facilities to the department.

References

First citationBruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDiana, G. D., McKinlay, M. A., Brisson, C. J., Zalay, E. S., Miralles, J. V. & Salvador, U. J. (1985). J. Med. Chem. 28, 748–752.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuisgen, R. (1984). In 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa. New York: John Wiley.  Google Scholar
First citationLepage, F., Tombert, F., Cuvier, G., Marivain, A. & Gillardin, J. M. (1992). Eur. J. Med. Chem. 27, 581–593.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRyng, S., Machon, Z., Wieczorek, Z., Zimecki, M. & Mokrosz, M. (1998). Eur. J. Med. Chem. 33, 831–836.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorssell, K. (1988). Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis. New York: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds