metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­aqua­bis­(nicotinamide-κN)cadmium(II) bi­phenyl-4,4′-di­sulfonate

aDepartment of Applied Chemistry, College of Science, South China Agricultural University, Guangzhou 510642, People's Republic of China, bCentre of Experimental Teaching of Common Basic Courses, South China Agricultural University, Guangzhou 510642, People's Republic of China, and cSchool of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
*Correspondence e-mail: chunyuan-li@163.com

(Received 11 January 2008; accepted 22 January 2008; online 25 January 2008)

In the title compound, [Cd(C6H6N2O)2(H2O)4](C10H8O6S2), the CdII ion is located on a crystallographic inversion centre. An octa­hedral coordination geometry is defined by four water mol­ecules in one plane, and two trans N-atom donors of the nicotinamide ligands. The biphenyl-4,4′-disulfonate anion also lies on a crystallographic inversion centre. In the crystal structure, the complex cations are connected to the counter-anions via N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related literature, see: Beatty (2001[Beatty, A. M. (2001). CrystEngComm, 3, 1-13.]); Christer et al. (2004[Christer, B. A., John, P. & Jesús, V. M. (2004). CrystEngComm, 6, 413-418.]); Holman et al. (2001[Holman, K. T., Pivovar, A. M., Swift, J. A. & Ward, M. D. (2001). Acc. Chem. Res. 34, 107-118.]); Lian & Li (2007a[Lian, Z.-X. & Li, H.-H. (2007a). Acta Cryst. E63, m853-m855.],b[Lian, Z.-X. & Li, H.-H. (2007b). Acta Cryst. E63, m939-m941.],c[Lian, Z.-X. & Li, H.-H. (2007c). Acta Cryst. E63, m731-m733.],d[Lian, Z.-X. & Li, H.-H. (2007d). Acta Cryst. E63, m734-m736.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H6N2O)2(H2O)4](C10H8O6S2)

  • Mr = 741.02

  • Monoclinic, P 2/c

  • a = 14.742 (8) Å

  • b = 6.899 (4) Å

  • c = 15.292 (8) Å

  • β = 110.980 (9)°

  • V = 1452.2 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 298 (2) K

  • 0.40 × 0.36 × 0.31 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.682, Tmax = 0.741

  • 7656 measured reflections

  • 2842 independent reflections

  • 2477 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.092

  • S = 1.07

  • 2842 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.81 2.03 2.832 (3) 171
O5—H5B⋯O4ii 0.86 1.83 2.676 (2) 172
O6—H6A⋯O3 0.85 1.93 2.777 (3) 178
O6—H6B⋯O2iii 0.83 1.89 2.716 (3) 171
N2—H2A⋯O1iv 0.86 2.08 2.932 (2) 171
N2—H2B⋯O2v 0.86 2.17 3.025 (3) 172
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) -x, -y, -z+1; (v) [x, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The strong and directional nature of hydrogen bonds is exploited in the organized self-assembly of molecules in the solid state. Amides are commonly used functional groups in crystal engineering owing to the inherent coordination and hydrogen bonding donor/acceptor functionalities, and were used to construct extended frameworks sustained both by hydrogen bonds and coordination bonds (Beatty 2001; Christer et al., 2004). On the other hand, the sulfonate group is a suitable hydrogen-bond acceptor, and has been used to build extended frameworks. (Holman et al., 2001; Lian & Li, 2007a,b,c,d) In this paper, we report the synthesis and crystal structure of the title compound.

In the title compound, the metal centre, located on a crystallographic inversion centre, is in an octahedral geometry defined by four O atoms from four aqua ligands,respectively, and two trans-positioned N-atom donors of the nicotinamide ligands, as shown in Fig 1. The amide substituents are twisted away from the conformation in the pyridine ring plane by 37.6 (6)°. The biphenyl-4,4'-disulfonate anion also lies on a crystallographic inversion centre. The planes through phenyl ring in biphenyl-4,4'-disulfonate are twisted by 28.5 (7)°. In the crystal structure, all the amide groups are involved in amide-amide hydrogen bonded linkage in head to head fashion leading to infinite chains of the cations. These chains are linked by hydrogen bonds formed by the remaining N—H protons on the nicotinamide and sulfonate oxygen atoms, and coordinated water molecules and sulfonate oxygen atoms into three-dimensional networks as shown in Fig 2.

Related literature top

For related literature, see: Beatty (2001); Christer et al. (2004); Holman et al. (2001); Lian & Li (2007a,b,c,d).

Experimental top

Nicotinamide (0.050 g, 0.4 mmol) was added with constant stirring to an aqueous solution (10 mL) of Cd(CH3COO)2.2H2O (0.058 g, 0.2 mmol). The solution was then treated with disodium biphenyl-4,4'-disulfonate (0.070 g, 0.2 mmol). Colourless crystals of the title complex were collected by slow evaporation at room temperature after 7 days, (80% yield based on Cd).

Refinement top

All the non-H atoms were refined with anisotropic thermal parameters.

H atoms attached to C or N atoms were placed in geometrically calculated positions (C—H = 0.93 Å, N–H=0.86 Å), and refined as riding with Uiso(H) = 1.2Ueq(C or N).

The O-bound H atoms were located in difference maps and refined as riding on the attached O atoms, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), with the atom labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are represented as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. Symmetry codes:(i) -x, y, -z + 1/2; (ii): -x + 1, -y, -z + 1.
[Figure 2] Fig. 2. The three dimensional H-bonded network viewed from b axis direction. Hydrogen bonds are shown as dashed lines.
trans-Tetraaquabis(nicotinamide-κN)cadmium(II) biphenyl-4,4'-disulfonate top
Crystal data top
[Cd(C6H6N2O)2(H2O)4](C10H8O6S2)F(000) = 752
Mr = 741.02Dx = 1.695 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 7656 reflections
a = 14.742 (8) Åθ = 12–18°
b = 6.899 (4) ŵ = 0.97 mm1
c = 15.292 (8) ÅT = 298 K
β = 110.980 (9)°Block, colourless
V = 1452.2 (13) Å30.40 × 0.36 × 0.31 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2842 independent reflections
Radiation source: fine-focus sealed tube2477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1812
Tmin = 0.682, Tmax = 0.741k = 87
7656 measured reflectionsl = 1318
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.3728P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2842 reflectionsΔρmax = 0.58 e Å3
197 parametersΔρmin = 1.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (2)
Crystal data top
[Cd(C6H6N2O)2(H2O)4](C10H8O6S2)V = 1452.2 (13) Å3
Mr = 741.02Z = 2
Monoclinic, P2/cMo Kα radiation
a = 14.742 (8) ŵ = 0.97 mm1
b = 6.899 (4) ÅT = 298 K
c = 15.292 (8) Å0.40 × 0.36 × 0.31 mm
β = 110.980 (9)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2842 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2477 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.741Rint = 0.034
7656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.07Δρmax = 0.58 e Å3
2842 reflectionsΔρmin = 1.19 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00000.50000.02772 (14)
S10.31842 (5)0.50038 (6)0.18505 (5)0.03230 (18)
O10.03394 (9)0.0836 (3)0.40310 (11)0.0485 (4)
O20.30985 (11)0.3259 (3)0.12698 (14)0.0544 (5)
O30.39387 (14)0.4851 (2)0.27876 (16)0.0462 (5)
O40.32299 (12)0.6768 (3)0.13379 (15)0.0582 (5)
O50.51977 (12)0.2553 (3)0.41016 (16)0.0738 (7)
H5A0.48030.31930.36980.089*
H5B0.56980.28760.39760.089*
O60.51991 (12)0.2033 (3)0.38506 (14)0.0657 (6)
H6A0.48020.28890.35310.079*
H6B0.57010.25270.38170.079*
N10.34204 (14)0.00860 (19)0.41343 (14)0.0296 (4)
N20.12317 (10)0.1123 (3)0.52234 (10)0.0370 (4)
H2A0.08020.11480.54840.044*
H2B0.17660.17540.54690.044*
C10.27511 (17)0.0072 (2)0.45320 (16)0.0279 (5)
H10.29320.00440.51800.033*
C20.18103 (17)0.0100 (2)0.39791 (17)0.0277 (5)
C30.15424 (17)0.0111 (2)0.29767 (16)0.0316 (5)
H30.08880.00660.26000.038*
C40.22217 (18)0.0186 (3)0.25694 (16)0.0334 (5)
H40.20570.02490.19230.040*
C50.31554 (17)0.0164 (2)0.31683 (16)0.0320 (5)
H50.36450.02020.29190.038*
C60.10639 (16)0.0082 (2)0.44191 (16)0.0302 (5)
C70.21328 (17)0.5140 (2)0.20881 (19)0.0303 (5)
C80.21293 (18)0.4744 (3)0.30073 (19)0.0348 (5)
H80.27070.44550.34940.042*
C90.12884 (18)0.4791 (3)0.31652 (19)0.0349 (5)
H90.12710.45380.37560.042*
C100.04503 (16)0.5228 (2)0.24163 (18)0.0311 (5)
C110.04791 (14)0.5662 (3)0.15037 (15)0.0353 (4)
H110.00950.59760.10170.042*
C120.13142 (14)0.5621 (3)0.13407 (14)0.0342 (4)
H120.13380.59040.07540.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01281 (17)0.03481 (19)0.03689 (19)0.00051 (5)0.01054 (11)0.00146 (6)
S10.0174 (3)0.0352 (3)0.0500 (4)0.00152 (14)0.0190 (3)0.00351 (17)
O10.0210 (7)0.0697 (11)0.0582 (9)0.0136 (8)0.0181 (6)0.0197 (9)
O20.0275 (8)0.0627 (11)0.0810 (11)0.0076 (8)0.0290 (8)0.0316 (10)
O30.0196 (9)0.0565 (11)0.0619 (12)0.0001 (5)0.0136 (8)0.0056 (6)
O40.0369 (9)0.0594 (11)0.0942 (13)0.0054 (8)0.0427 (9)0.0243 (10)
O50.0318 (8)0.0794 (13)0.1183 (16)0.0128 (9)0.0366 (10)0.0596 (13)
O60.0289 (8)0.0791 (13)0.0921 (13)0.0042 (8)0.0254 (8)0.0459 (11)
N10.0152 (9)0.0393 (10)0.0338 (9)0.0004 (5)0.0083 (7)0.0008 (6)
N20.0186 (7)0.0542 (11)0.0399 (9)0.0035 (7)0.0125 (6)0.0069 (8)
C10.0161 (11)0.0381 (12)0.0295 (10)0.0004 (6)0.0082 (8)0.0001 (6)
C20.0189 (11)0.0288 (10)0.0353 (12)0.0000 (6)0.0095 (9)0.0004 (6)
C30.0184 (11)0.0377 (12)0.0340 (12)0.0001 (6)0.0036 (9)0.0009 (7)
C40.0283 (12)0.0421 (12)0.0277 (10)0.0005 (7)0.0075 (9)0.0006 (7)
C50.0228 (11)0.0398 (11)0.0362 (11)0.0007 (7)0.0139 (9)0.0008 (7)
C60.0154 (10)0.0387 (12)0.0352 (11)0.0019 (6)0.0074 (8)0.0013 (7)
C70.0183 (11)0.0288 (10)0.0499 (13)0.0005 (6)0.0197 (10)0.0014 (7)
C80.0212 (10)0.0388 (10)0.0483 (13)0.0048 (7)0.0172 (9)0.0074 (8)
C90.0254 (11)0.0388 (11)0.0469 (12)0.0054 (7)0.0209 (10)0.0098 (8)
C100.0200 (11)0.0287 (9)0.0508 (12)0.0002 (7)0.0202 (9)0.0007 (8)
C110.0195 (9)0.0427 (11)0.0454 (11)0.0000 (9)0.0139 (8)0.0004 (10)
C120.0237 (9)0.0419 (10)0.0412 (10)0.0029 (9)0.0169 (8)0.0012 (10)
Geometric parameters (Å, º) top
Cd1—N1i2.230 (2)C1—C21.341 (3)
Cd1—N12.230 (2)C1—H10.9300
Cd1—O5i2.316 (2)C2—C31.439 (3)
Cd1—O52.316 (2)C2—C61.481 (3)
Cd1—O6i2.3479 (19)C3—C41.357 (4)
Cd1—O62.3479 (19)C3—H30.9300
S1—O41.463 (2)C4—C51.353 (3)
S1—O31.470 (2)C4—H40.9300
S1—O21.4742 (19)C5—H50.9300
S1—C71.717 (2)C7—C121.373 (3)
O1—C61.200 (3)C7—C81.434 (4)
O5—H5A0.8108C8—C91.346 (3)
O5—H5B0.8551C8—H80.9300
O6—H6A0.8517C9—C101.384 (4)
O6—H6B0.8328C9—H90.9300
N1—C11.332 (3)C10—C10ii1.439 (4)
N1—C51.387 (3)C10—C111.443 (3)
N2—C61.368 (3)C11—C121.341 (3)
N2—H2A0.8600C11—H110.9300
N2—H2B0.8600C12—H120.9300
N1i—Cd1—N1180.00 (6)C2—C1—H1120.7
N1i—Cd1—O5i87.37 (7)C1—C2—C3119.9 (2)
N1—Cd1—O5i92.63 (7)C1—C2—C6118.8 (2)
N1i—Cd1—O592.63 (6)C3—C2—C6121.2 (2)
N1—Cd1—O587.37 (7)C4—C3—C2121.5 (2)
O5i—Cd1—O5180.0C4—C3—H3119.2
N1i—Cd1—O6i87.44 (7)C2—C3—H3119.2
N1—Cd1—O6i92.56 (7)C5—C4—C3115.4 (2)
O5i—Cd1—O6i86.23 (10)C5—C4—H4122.3
O5—Cd1—O6i93.77 (10)C3—C4—H4122.3
N1i—Cd1—O692.56 (7)C4—C5—N1123.5 (2)
N1—Cd1—O687.44 (7)C4—C5—H5118.3
O5i—Cd1—O693.77 (10)N1—C5—H5118.3
O5—Cd1—O686.23 (10)O1—C6—N2124.3 (2)
O6i—Cd1—O6180.0O1—C6—C2117.0 (2)
O4—S1—O3114.71 (11)N2—C6—C2118.65 (18)
O4—S1—O2111.55 (16)C12—C7—C8123.5 (2)
O3—S1—O2113.62 (11)C12—C7—S1115.34 (19)
O4—S1—C7106.64 (9)C8—C7—S1121.17 (18)
O3—S1—C7102.88 (13)C9—C8—C7119.9 (2)
O2—S1—C7106.44 (9)C9—C8—H8120.1
Cd1—O5—H5A131.1C7—C8—H8120.1
Cd1—O5—H5B129.3C8—C9—C10117.6 (2)
H5A—O5—H5B97.4C8—C9—H9121.2
Cd1—O6—H6A126.9C10—C9—H9121.2
Cd1—O6—H6B130.0C9—C10—C10ii117.4 (3)
H6A—O6—H6B97.1C9—C10—C11121.3 (2)
C1—N1—C5120.96 (19)C10ii—C10—C11121.4 (3)
C1—N1—Cd1121.05 (16)C12—C11—C10121.50 (19)
C5—N1—Cd1117.99 (15)C12—C11—H11119.3
C6—N2—H2A120.0C10—C11—H11119.3
C6—N2—H2B120.0C11—C12—C7116.2 (2)
H2A—N2—H2B120.0C11—C12—H12121.9
N1—C1—C2118.7 (2)C7—C12—H12121.9
N1—C1—H1120.7
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3iii0.812.032.832 (3)171
O5—H5B···O4iv0.861.832.676 (2)172
O6—H6A···O30.851.932.777 (3)178
O6—H6B···O2v0.831.892.716 (3)171
N2—H2A···O1vi0.862.082.932 (2)171
N2—H2B···O2vii0.862.173.025 (3)172
Symmetry codes: (iii) x, y1, z; (iv) x+1, y1, z+1/2; (v) x+1, y, z+1/2; (vi) x, y, z+1; (vii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C6H6N2O)2(H2O)4](C10H8O6S2)
Mr741.02
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)14.742 (8), 6.899 (4), 15.292 (8)
β (°) 110.980 (9)
V3)1452.2 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.40 × 0.36 × 0.31
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.682, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
7656, 2842, 2477
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.092, 1.07
No. of reflections2842
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 1.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.812.032.832 (3)171
O5—H5B···O4ii0.861.832.676 (2)172
O6—H6A···O30.851.932.777 (3)178
O6—H6B···O2iii0.831.892.716 (3)171
N2—H2A···O1iv0.862.082.932 (2)171
N2—H2B···O2v0.862.173.025 (3)172
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z+1/2; (iii) x+1, y, z+1/2; (iv) x, y, z+1; (v) x, y, z+1/2.
 

Acknowledgements

The authors thank the President's Foundation of South China Agricultural University (Nos. 2006X013, 2007Y006 and 2007 K031) for financial support.

References

First citationBeatty, A. M. (2001). CrystEngComm, 3, 1–13.  Web of Science CrossRef Google Scholar
First citationBruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChrister, B. A., John, P. & Jesús, V. M. (2004). CrystEngComm, 6, 413–418.  Google Scholar
First citationHolman, K. T., Pivovar, A. M., Swift, J. A. & Ward, M. D. (2001). Acc. Chem. Res. 34, 107–118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLian, Z.-X. & Li, H.-H. (2007a). Acta Cryst. E63, m853–m855.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLian, Z.-X. & Li, H.-H. (2007b). Acta Cryst. E63, m939–m941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLian, Z.-X. & Li, H.-H. (2007c). Acta Cryst. E63, m731–m733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLian, Z.-X. & Li, H.-H. (2007d). Acta Cryst. E63, m734–m736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds