organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic form of 1,2,4,5-tetra­cyclo­hexyl­benzene

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

(Received 13 December 2007; accepted 18 December 2007; online 4 January 2008)

The mol­ecule of the title compound, C30H46, has a crystallographically imposed inversion center and the cyclo­hexyl groups are oriented with their methine H atoms pointing towards one another (H⋯H = 1.99 Å). The cyclohexyl groups adopt chair conformations. A significant C—H⋯π inter­action assembles mol­ecules into layers parallel to (100).

Related literature

For related structures, see: Mague et al. (2008a[Mague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008a). Acta Cryst. E64, o376.],b[Mague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008b). Acta Cryst. E64, o335.]); Vilardo et al. (2000[Vilardo, J. S., Salberg, M. M., Parker, J. R., Fanwick, P. E. & Rothwell, I. P. (2000). Inorg. Chim. Acta, 299, 135-141.]). For related literature, see: Koudelka et al. (1985[Koudelka, J., Saman, J. & Exner, O. (1985). Collect. Czech. Chem. Commun. 50, 208-214.]); Saito et al. (2004[Saito, M., Tokitoh, N. & Okazaki, R. (2004). J. Am. Chem. Soc. 126, 15572-15582.]); Schweiger et al. (2001[Schweiger, S. W., Salberg, M. M., Pulvirenti, A. L., Freeman, E. E., Fanwick, P. E. & Rothwell, I. P. (2001). J. Chem. Soc. Dalton Trans. pp. 2020-2031.]).

[Scheme 1]

Experimental

Crystal data
  • C30H46

  • Mr = 406.67

  • Monoclinic, P 21 /c

  • a = 10.3868 (7) Å

  • b = 10.1434 (7) Å

  • c = 11.5419 (8) Å

  • β = 93.314 (1)°

  • V = 1213.99 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 100 (2) K

  • 0.24 × 0.21 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS, Version 2.05. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.993

  • 10421 measured reflections

  • 2805 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.04

  • 2805 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6ACgi 0.99 2.62 3.520 (2) 150
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker 2004[Bruker (2004). SAINT-Plus. Version 7.03. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Poly(cyclohexyl)benzenes have been used in the synthesis of a variety of sterically bulky protecting groups (Koudelka et al., 1985); Saito et al., 2004; Vilardo et al., 2000; Schweiger et al., 2001). Crystallization of 1,2,4,5-tetracylohexylbenzene (C30H46) from hot methylcyclohexane forms colorless needle-shaped crystals together with a smaller quantity having a distinctly different block-shaped morphology. The latter is monoclinic with the molecule having crystallographically imposed centrosymmetry. The cyclohexyl rings adopt the chair conformation and are oriented with their methine hydrogen atoms pointed towards one another (H···H distance 1.99 Å). This contrasts with the structure of 1-bromo-2,4,6-tricyclohexylbenzene (Mague et al., 2008b) where the methine hydrogen atoms of the meta-disposed cyclohexyl groups point towards the intervening ring substituent. This is presumably to minimize intramolecular contacts between the ortho-disposed cyclohexyl rings. Indeed, there are very few close contacts involving these substituents, the shortest being H4···H10 (1.99 Å), H3···H5a (2.18 Å) and H3···H11a' (2.07 Å). The plane defined by the atoms C5, C6, C8, C9 ("seat" of the chair) is inclined to the plane of the aromatic ring by 79.0 (2)° while that for the other cyclohexyl ring (C11, C12, C14, C15) is inclined at an angle of only 61.7 (2)°. A significant C—H···π interaction occurs between C6—H6A and the center of gravity (Cg) of the aromatic ring in the molecule at 1 - x, 1/2 + y, 0.5 - z where the H—Cg distance is 2.62 Å and the C—H···Cg angle is 150°. This interaction forms layers of molecules parallel to (100) at approximately x = 0.5.

Related literature top

For related structures, see: Mague et al. (2008a,b); Vilardo et al. (2000). For related literature, see: Koudelka et al. (1985); Saito et al. (2004); Schweiger et al. (2001).

Experimental top

A mixture of chlorocyclohexane (125 ml, 1.05 mol) and benzene (9 ml, 0.1 mol) in a 250 ml 3-necked flask was cooled to -40° C and mechanically stirred while anhydrous AlCl3 (6.6 g, 0.05 mol) was added in portions over a 20 min. period. The mixture was allowed to slowly warm to -15° C and the stirring continued for 2 h. The resulting yellow-orange mixture was quenched by pouring it over 800 g of ice and, after thawing, was filtered. The organic layer of the filtrate was separated off, washed several times with water and reduced to a small volume under reduced pressure. After standing for 1 week, a precipitate formed which was filtered off, washed with 10% aqueous HCl and collected by filtration to provide 16.0 g (40%) of white solid (M.p. 549–550 K, bulk sample). 1H NMR (δ, CDCl3): 1.4 (20H, br multiplet), 1.8 (20H, br multiplet),2.7 (4H, multiplet), 7.2 (2H, s). 13C NMR (δ, CDCl3): 26.59, 27.56, 34.97, 123.25, 141.8.

Refinement top

H-atoms were placed in calculated positions (C–H = 0.95 - 0.98 Å) and refined as riding on their carriers with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker 2004); data reduction: SAINT-Plus (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker,2000); software used to prepare material for publication: SHELXTL (Bruker,2000).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H-atoms are represented by spheres of arbitrary radius. Primed atoms are related to unprimed atoms by the symmetry operation 0.5 - x, -y, -z
1,2,4,5-tetracyclohexylbenzene top
Crystal data top
C30H46F(000) = 452
Mr = 406.67Dx = 1.113 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6595 reflections
a = 10.3868 (7) Åθ = 2.7–28.3°
b = 10.1434 (7) ŵ = 0.06 mm1
c = 11.5419 (8) ÅT = 100 K
β = 93.314 (1)°Block, colorless
V = 1213.99 (14) Å30.24 × 0.21 × 0.11 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2805 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 0 pixels mm-1θmax = 27.6°, θmin = 2.0°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 1313
Tmin = 0.975, Tmax = 0.993l = 1414
10421 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.3565P]
where P = (Fo2 + 2Fc2)/3
2805 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C30H46V = 1213.99 (14) Å3
Mr = 406.67Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.3868 (7) ŵ = 0.06 mm1
b = 10.1434 (7) ÅT = 100 K
c = 11.5419 (8) Å0.24 × 0.21 × 0.11 mm
β = 93.314 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2805 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2460 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.993Rint = 0.019
10421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
2805 reflectionsΔρmin = 0.21 e Å3
136 parameters
Special details top

Experimental. The diffraction data were collected in three sets of 606 frames (ω scans, 0.3°/scan) at ϕ settings of 0, 120 and 240°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62897 (10)0.01942 (10)0.04453 (8)0.0136 (2)
C20.57336 (10)0.10675 (10)0.04764 (9)0.0144 (2)
C30.44681 (10)0.12214 (10)0.00191 (9)0.0152 (2)
H30.41010.20790.00250.018*
C40.64402 (10)0.22668 (10)0.09843 (9)0.0147 (2)
H40.72480.19470.14080.018*
C50.56481 (11)0.30053 (11)0.18625 (10)0.0202 (2)
H5A0.48270.33080.14720.024*
H5B0.54380.23960.24940.024*
C60.63818 (11)0.41900 (11)0.23785 (10)0.0207 (3)
H6A0.58330.46630.29150.025*
H6B0.71650.38820.28290.025*
C70.67666 (12)0.51267 (11)0.14301 (10)0.0225 (3)
H7A0.72800.58610.17830.027*
H7B0.59810.55060.10340.027*
C80.75542 (11)0.44235 (12)0.05420 (10)0.0228 (3)
H8A0.83900.41410.09180.027*
H8B0.77340.50430.00920.027*
C90.68369 (11)0.32171 (11)0.00324 (9)0.0185 (2)
H9A0.73990.27470.04950.022*
H9B0.60570.35120.04290.022*
C100.76656 (9)0.04649 (10)0.09169 (9)0.0142 (2)
H100.81660.03700.08400.017*
C110.83559 (10)0.15393 (11)0.02505 (10)0.0194 (2)
H11A0.78640.23740.02830.023*
H11B0.83830.12770.05740.023*
C120.97328 (10)0.17627 (12)0.07605 (10)0.0225 (3)
H12A1.01370.24870.03350.027*
H12B1.02490.09540.06610.027*
C130.97401 (11)0.21099 (11)0.20452 (11)0.0223 (3)
H13A1.06410.22100.23610.027*
H13B0.92930.29610.21400.027*
C140.90724 (11)0.10416 (12)0.27195 (10)0.0211 (3)
H14A0.95700.02110.26890.025*
H14B0.90490.13090.35430.025*
C150.76953 (10)0.08069 (11)0.22168 (9)0.0176 (2)
H15A0.73030.00760.26430.021*
H15B0.71740.16090.23270.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0136 (5)0.0149 (5)0.0123 (4)0.0003 (4)0.0001 (4)0.0019 (4)
C20.0159 (5)0.0138 (5)0.0134 (5)0.0014 (4)0.0002 (4)0.0003 (4)
C30.0167 (5)0.0126 (5)0.0161 (5)0.0017 (4)0.0004 (4)0.0011 (4)
C40.0148 (5)0.0121 (5)0.0169 (5)0.0006 (4)0.0022 (4)0.0004 (4)
C50.0215 (5)0.0203 (5)0.0192 (5)0.0063 (4)0.0045 (4)0.0042 (4)
C60.0224 (5)0.0199 (5)0.0198 (5)0.0033 (4)0.0025 (4)0.0067 (4)
C70.0268 (6)0.0135 (5)0.0267 (6)0.0019 (4)0.0032 (5)0.0019 (4)
C80.0267 (6)0.0217 (6)0.0203 (5)0.0103 (5)0.0022 (4)0.0002 (4)
C90.0194 (5)0.0192 (5)0.0171 (5)0.0044 (4)0.0017 (4)0.0018 (4)
C100.0127 (5)0.0132 (5)0.0164 (5)0.0001 (4)0.0013 (4)0.0004 (4)
C110.0153 (5)0.0216 (5)0.0208 (5)0.0024 (4)0.0012 (4)0.0041 (4)
C120.0139 (5)0.0243 (6)0.0291 (6)0.0034 (4)0.0008 (4)0.0051 (5)
C130.0150 (5)0.0189 (5)0.0321 (6)0.0022 (4)0.0052 (4)0.0022 (5)
C140.0178 (5)0.0249 (6)0.0198 (5)0.0013 (4)0.0045 (4)0.0022 (4)
C150.0148 (5)0.0209 (5)0.0167 (5)0.0023 (4)0.0011 (4)0.0024 (4)
Geometric parameters (Å, º) top
C1—C3i1.3941 (14)C8—H8B0.9900
C1—C21.4053 (14)C9—H9A0.9900
C1—C101.5245 (13)C9—H9B0.9900
C2—C31.3967 (14)C10—C111.5353 (14)
C2—C41.5207 (14)C10—C151.5384 (14)
C3—C1i1.3941 (14)C10—H101.0000
C3—H30.9500C11—C121.5316 (14)
C4—C91.5357 (14)C11—H11A0.9900
C4—C51.5368 (14)C11—H11B0.9900
C4—H41.0000C12—C131.5237 (17)
C5—C61.5255 (15)C12—H12A0.9900
C5—H5A0.9900C12—H12B0.9900
C5—H5B0.9900C13—C141.5243 (16)
C6—C71.5203 (16)C13—H13A0.9900
C6—H6A0.9900C13—H13B0.9900
C6—H6B0.9900C14—C151.5308 (14)
C7—C81.5250 (17)C14—H14A0.9900
C7—H7A0.9900C14—H14B0.9900
C7—H7B0.9900C15—H15A0.9900
C8—C91.5322 (15)C15—H15B0.9900
C8—H8A0.9900
C3i—C1—C2117.82 (9)C4—C9—H9A109.3
C3i—C1—C10119.96 (9)C8—C9—H9B109.3
C2—C1—C10122.21 (9)C4—C9—H9B109.3
C3—C2—C1118.12 (9)H9A—C9—H9B107.9
C3—C2—C4118.62 (9)C1—C10—C11113.85 (8)
C1—C2—C4123.26 (9)C1—C10—C15110.75 (8)
C1i—C3—C2124.04 (10)C11—C10—C15110.17 (9)
C1i—C3—H3118.0C1—C10—H10107.3
C2—C3—H3118.0C11—C10—H10107.3
C2—C4—C9111.71 (8)C15—C10—H10107.3
C2—C4—C5112.29 (8)C12—C11—C10111.42 (9)
C9—C4—C5110.00 (9)C12—C11—H11A109.3
C2—C4—H4107.5C10—C11—H11A109.3
C9—C4—H4107.5C12—C11—H11B109.3
C5—C4—H4107.5C10—C11—H11B109.3
C6—C5—C4111.54 (9)H11A—C11—H11B108.0
C6—C5—H5A109.3C13—C12—C11111.12 (9)
C4—C5—H5A109.3C13—C12—H12A109.4
C6—C5—H5B109.3C11—C12—H12A109.4
C4—C5—H5B109.3C13—C12—H12B109.4
H5A—C5—H5B108.0C11—C12—H12B109.4
C7—C6—C5110.94 (9)H12A—C12—H12B108.0
C7—C6—H6A109.5C12—C13—C14110.84 (9)
C5—C6—H6A109.5C12—C13—H13A109.5
C7—C6—H6B109.5C14—C13—H13A109.5
C5—C6—H6B109.5C12—C13—H13B109.5
H6A—C6—H6B108.0C14—C13—H13B109.5
C6—C7—C8111.42 (9)H13A—C13—H13B108.1
C6—C7—H7A109.3C13—C14—C15111.09 (9)
C8—C7—H7A109.3C13—C14—H14A109.4
C6—C7—H7B109.3C15—C14—H14A109.4
C8—C7—H7B109.3C13—C14—H14B109.4
H7A—C7—H7B108.0C15—C14—H14B109.4
C7—C8—C9111.33 (9)H14A—C14—H14B108.0
C7—C8—H8A109.4C14—C15—C10111.74 (9)
C9—C8—H8A109.4C14—C15—H15A109.3
C7—C8—H8B109.4C10—C15—H15A109.3
C9—C8—H8B109.4C14—C15—H15B109.3
H8A—C8—H8B108.0C10—C15—H15B109.3
C8—C9—C4111.80 (9)H15A—C15—H15B107.9
C8—C9—H9A109.3
C3i—C1—C2—C31.33 (16)C7—C8—C9—C454.77 (12)
C10—C1—C2—C3179.74 (9)C2—C4—C9—C8179.76 (9)
C3i—C1—C2—C4178.54 (9)C5—C4—C9—C854.84 (12)
C10—C1—C2—C40.39 (15)C3i—C1—C10—C1134.20 (13)
C1—C2—C3—C1i1.42 (17)C2—C1—C10—C11146.89 (10)
C4—C2—C3—C1i178.46 (9)C3i—C1—C10—C1590.60 (11)
C3—C2—C4—C973.47 (12)C2—C1—C10—C1588.31 (12)
C1—C2—C4—C9106.67 (11)C1—C10—C11—C12179.78 (9)
C3—C2—C4—C550.66 (12)C15—C10—C11—C1255.11 (12)
C1—C2—C4—C5129.21 (10)C10—C11—C12—C1356.53 (13)
C2—C4—C5—C6178.97 (9)C11—C12—C13—C1456.64 (13)
C9—C4—C5—C655.96 (12)C12—C13—C14—C1556.22 (12)
C4—C5—C6—C756.89 (12)C13—C14—C15—C1055.83 (12)
C5—C6—C7—C856.00 (12)C1—C10—C15—C14178.25 (9)
C6—C7—C8—C954.96 (12)C11—C10—C15—C1454.90 (12)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cgii0.992.623.520 (2)150
Symmetry code: (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC30H46
Mr406.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.3868 (7), 10.1434 (7), 11.5419 (8)
β (°) 93.314 (1)
V3)1213.99 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.24 × 0.21 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.975, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10421, 2805, 2460
Rint0.019
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.04
No. of reflections2805
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.21

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker,2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cgi0.992.623.520 (2)150
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory, and the Louisiana Board of Regents through the Louisiana Educational Quality Support Fund [grant LEQSF (2003–2003)-ENH-TR-67] for the purchase of the APEX diffractometer.

References

First citationBruker (2000). SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus. Version 7.03. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoudelka, J., Saman, J. & Exner, O. (1985). Collect. Czech. Chem. Commun. 50, 208–214.  CrossRef CAS Google Scholar
First citationMague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008a). Acta Cryst. E64, o376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMague, J. T., Linhardt, L., Medina, I. & Fink, M. J. (2008b). Acta Cryst. E64, o335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaito, M., Tokitoh, N. & Okazaki, R. (2004). J. Am. Chem. Soc. 126, 15572–15582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchweiger, S. W., Salberg, M. M., Pulvirenti, A. L., Freeman, E. E., Fanwick, P. E. & Rothwell, I. P. (2001). J. Chem. Soc. Dalton Trans. pp. 2020–2031.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS, Version 2.05. University of Göttingen, Germany.  Google Scholar
First citationVilardo, J. S., Salberg, M. M., Parker, J. R., Fanwick, P. E. & Rothwell, I. P. (2000). Inorg. Chim. Acta, 299, 135–141.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds