organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-chloro-3-nitro­benzoate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 28 November 2007; accepted 24 December 2007; online 25 January 2008)

In the mol­ecule of the title compound, C9H8ClNO4, an intra­molecular C—H⋯O hydrogen bond results in the formation of a planar five-membered ring, which is nearly coplanar with the adjacent six-membered ring, the rings being oriented at a dihedral angle of 4.40 (3)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Jönsson et al. (2004[Jönsson, D., Warrington, B. H. & Ladlow, M. (2004). J. Comb. Chem. 6, 584-595.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8ClNO4

  • Mr = 229.61

  • Monoclinic, C 2/c

  • a = 12.930 (3) Å

  • b = 7.4820 (15) Å

  • c = 20.945 (4) Å

  • β = 92.11 (3)°

  • V = 2024.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.866, Tmax = 0.964

  • 1984 measured reflections

  • 1984 independent reflections

  • 1449 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.06

  • 1984 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2 0.97 2.29 2.706 (3) 104
C8—H8A⋯O2i 0.93 2.53 3.357 (3) 148
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Siemens, 1996[Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. As part of our ongoing studies, we synthesized the title compound, (I), and report herein its crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a planar five-membered ring B (C2/H2B/C3/O1/O2). Ring A (C4—C9) is, of course, planar and the dihedral angle between them is A/B = 4.40 (3)°. So, rings A and B are also nearly co-planar.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Daniel et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 4-chloro-3-nitrobenzoic acid (35.0 g, 174 mmol) was suspended in ethanol (150 ml) and cooled to 273 K. Concentrated sulfuric acid (15 ml) was slowly added with stirring, and then the mixture was heated under reflux for 17 h. Upon cooling to room temperature, a precipitate formed, which was collected by filtration and washed with cold ethanol (2 × 50 ml) and hexane (2 × 50 ml) to afford the ethyl ester as a white solid (yield; 29.9 g, 75%) (Daniel et al., 2004). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Ethyl 4-chloro-3-nitrobenzoate top
Crystal data top
C9H8ClNO4F(000) = 944
Mr = 229.61Dx = 1.506 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 12.930 (3) Åθ = 9–14°
b = 7.4820 (15) ŵ = 0.37 mm1
c = 20.945 (4) ÅT = 298 K
β = 92.11 (3)°Block, colorless
V = 2024.9 (7) Å30.40 × 0.30 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1449 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
ω/2θ scansh = 1515
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.866, Tmax = 0.964l = 025
1984 measured reflections3 standard reflections every 120 min
1984 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.06P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
1984 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H8ClNO4V = 2024.9 (7) Å3
Mr = 229.61Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.930 (3) ŵ = 0.37 mm1
b = 7.4820 (15) ÅT = 298 K
c = 20.945 (4) Å0.40 × 0.30 × 0.10 mm
β = 92.11 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1449 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.866, Tmax = 0.9643 standard reflections every 120 min
1984 measured reflections intensity decay: none
1984 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
1984 reflectionsΔρmin = 0.21 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.15365 (6)0.38995 (10)0.39251 (4)0.0722 (3)
O10.91716 (14)0.1218 (3)0.65000 (8)0.0663 (6)
O20.78374 (14)0.0870 (3)0.58085 (9)0.0627 (5)
O30.9430 (2)0.3802 (4)0.33433 (11)0.1031 (9)
O40.87451 (19)0.1219 (3)0.35272 (10)0.0825 (7)
N0.92750 (19)0.2507 (4)0.36829 (10)0.0628 (6)
C10.8393 (3)0.2219 (5)0.74482 (16)0.0967 (12)
H1A0.79990.18620.78070.145*
H1B0.80230.31270.72100.145*
H1C0.90510.26810.75980.145*
C20.8556 (3)0.0672 (5)0.70361 (13)0.0801 (10)
H2A0.89120.02640.72770.096*
H2B0.78940.02070.68790.096*
C30.87120 (18)0.1287 (3)0.59279 (11)0.0427 (5)
C40.94310 (16)0.1938 (3)0.54379 (10)0.0387 (5)
C50.90841 (17)0.1923 (3)0.48080 (10)0.0408 (5)
H5A0.84260.14920.47000.049*
C60.97087 (18)0.2546 (3)0.43393 (11)0.0444 (5)
C71.06993 (18)0.3170 (3)0.44914 (11)0.0459 (6)
C81.10485 (18)0.3167 (3)0.51210 (12)0.0489 (6)
H8A1.17110.35760.52290.059*
C91.04200 (17)0.2561 (3)0.55916 (11)0.0446 (5)
H9A1.06600.25690.60160.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0766 (5)0.0632 (5)0.0794 (5)0.0006 (4)0.0387 (4)0.0099 (4)
O10.0616 (11)0.0952 (15)0.0424 (10)0.0104 (10)0.0052 (8)0.0096 (9)
O20.0497 (10)0.0774 (13)0.0612 (11)0.0127 (9)0.0065 (8)0.0051 (9)
O30.130 (2)0.116 (2)0.0628 (13)0.0096 (17)0.0003 (14)0.0378 (14)
O40.1026 (17)0.0833 (16)0.0601 (12)0.0024 (14)0.0146 (11)0.0164 (11)
N0.0721 (15)0.0704 (16)0.0461 (12)0.0122 (13)0.0057 (11)0.0025 (12)
C10.109 (3)0.109 (3)0.074 (2)0.028 (2)0.037 (2)0.012 (2)
C20.088 (2)0.107 (3)0.0461 (15)0.011 (2)0.0176 (14)0.0144 (16)
C30.0456 (13)0.0368 (12)0.0455 (13)0.0046 (10)0.0015 (10)0.0005 (10)
C40.0422 (11)0.0301 (11)0.0441 (12)0.0041 (9)0.0044 (9)0.0015 (9)
C50.0397 (11)0.0347 (11)0.0480 (13)0.0031 (9)0.0012 (9)0.0023 (10)
C60.0526 (13)0.0385 (12)0.0424 (12)0.0085 (10)0.0053 (10)0.0005 (10)
C70.0517 (13)0.0340 (12)0.0531 (14)0.0057 (10)0.0157 (11)0.0025 (10)
C80.0412 (12)0.0402 (13)0.0657 (16)0.0015 (10)0.0054 (11)0.0038 (11)
C90.0424 (12)0.0443 (13)0.0472 (13)0.0021 (10)0.0009 (10)0.0032 (10)
Geometric parameters (Å, º) top
Cl—C71.724 (2)C2—H2B0.9700
O1—C31.319 (3)C3—C41.492 (3)
O1—C21.459 (3)C4—C51.378 (3)
O2—C31.191 (3)C4—C91.388 (3)
N—O31.222 (3)C5—C61.375 (3)
N—O41.220 (3)C5—H5A0.9300
N—C61.466 (3)C6—C71.389 (3)
C1—C21.463 (5)C7—C81.378 (4)
C1—H1A0.9600C8—C91.377 (3)
C1—H1B0.9600C8—H8A0.9300
C1—H1C0.9600C9—H9A0.9300
C2—H2A0.9700
C3—O1—C2118.0 (2)C5—C4—C9119.3 (2)
O4—N—O3124.9 (3)C5—C4—C3117.84 (19)
O4—N—C6117.3 (2)C9—C4—C3122.8 (2)
O3—N—C6117.7 (3)C6—C5—C4120.1 (2)
C2—C1—H1A109.5C6—C5—H5A119.9
C2—C1—H1B109.5C4—C5—H5A119.9
H1A—C1—H1B109.5C5—C6—C7120.7 (2)
C2—C1—H1C109.5C5—C6—N116.6 (2)
H1A—C1—H1C109.5C7—C6—N122.6 (2)
H1B—C1—H1C109.5C8—C7—C6119.1 (2)
O1—C2—C1109.1 (3)C8—C7—Cl117.85 (19)
O1—C2—H2A109.9C6—C7—Cl123.07 (19)
C1—C2—H2A109.9C9—C8—C7120.3 (2)
O1—C2—H2B109.9C9—C8—H8A119.9
C1—C2—H2B109.9C7—C8—H8A119.9
H2A—C2—H2B108.3C8—C9—C4120.5 (2)
O2—C3—O1125.0 (2)C8—C9—H9A119.8
O2—C3—C4123.5 (2)C4—C9—H9A119.8
O1—C3—C4111.5 (2)
C3—O1—C2—C1109.8 (3)C3—C4—C5—C6178.6 (2)
C2—O1—C3—O23.0 (4)C5—C4—C9—C80.3 (3)
C2—O1—C3—C4177.6 (2)C3—C4—C9—C8179.2 (2)
O4—N—C6—C538.6 (3)C4—C5—C6—C71.0 (3)
O3—N—C6—C5138.0 (3)C4—C5—C6—N179.2 (2)
O4—N—C6—C7141.2 (3)C5—C6—C7—C80.3 (3)
O3—N—C6—C742.2 (3)N—C6—C7—C8179.8 (2)
O2—C3—C4—C55.1 (3)C5—C6—C7—Cl177.82 (17)
O1—C3—C4—C5174.2 (2)N—C6—C7—Cl2.0 (3)
O2—C3—C4—C9174.4 (2)C6—C7—C8—C90.3 (3)
O1—C3—C4—C96.2 (3)Cl—C7—C8—C9178.58 (18)
C9—C4—C5—C61.0 (3)C7—C8—C9—C40.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O20.972.292.706 (3)104
C8—H8A···O2i0.932.533.357 (3)148
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC9H8ClNO4
Mr229.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.930 (3), 7.4820 (15), 20.945 (4)
β (°) 92.11 (3)
V3)2024.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.866, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
1984, 1984, 1449
Rint0.000
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.06
No. of reflections1984
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O20.97002.29002.706 (3)104.00
C8—H8A···O2i0.932.533.357 (3)148.0
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank Dr Shan Liu. Nanjing University of Technology. for useful discussion and the Center of Testing and Analysis, Nanjing University. for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJönsson, D., Warrington, B. H. & Ladlow, M. (2004). J. Comb. Chem. 6, 584–595.  Web of Science PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds