organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Hydr­­oxy-N-o-tolyl­acetamide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bJiangsu Pesticide Research Institute Co. Ltd., Nanjing 210019, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 19 January 2008; accepted 23 January 2008; online 30 January 2008)

In the mol­ecule of the title compound, C9H11NO2, the methyl C atom bonded to the ring and the N atom lie in the benzene ring plane. An intra­molecular O—H⋯O hydrogen bond results in the formation of a five-membered planar ring, which is oriented at a dihedral angle of 81.37 (3)° with respect to the benzene ring. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules stacked along the b axis. There are also ππ inter­actions between benzene rings with a face-to-face stacking distance of 3.434 Å.

Related literature

For related literature, see: Fu et al. (2000[Fu, S. Y., Zhan, H. Y. & Yu, H. S. (2000). J. S. China Univ. Technol. (Nat. Sci. Ed.), 28, 59-63.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO2

  • Mr = 165.19

  • Monoclinic, P 21 /c

  • a = 7.7890 (16) Å

  • b = 7.1570 (14) Å

  • c = 15.613 (3) Å

  • β = 96.86 (3)°

  • V = 864.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.965, Tmax = 0.973

  • 1821 measured reflections

  • 1695 independent reflections

  • 1187 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.182

  • S = 1.05

  • 1695 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 2.19 2.608 (3) 112
O1—H1A⋯O2i 0.82 1.97 2.719 (3) 152
Symmetry code: (i) -x+2, -y, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, (I), contains hydroxy and formyl groups, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate that can be used for many fields such as pesticide, paper making etc. (Fu et al., 2000). We report herein its crystal structure.

In the molecule of (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The atoms N and C1 lie in the benzene ring plane. The intramolecular O—H···O hydrogen bond (Table 1) results in the formation of a five-membered planar ring A (O1/H1A/O2/N/C8). The dihedral angle between five- and six-membered rings is 81.37 (3)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules stacked along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

There are also the π-π interactions of benzene rings with a face-to-face stacking distance of 3.434 Å.

Related literature top

For related literature, see: Fu et al. (2000). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared by the literature method (Fu et al., 2000). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in petroleum ether (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H, and x = 1.5 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
N-Hydroxy-N-o-tolylacetamide top
Crystal data top
C9H11NO2F(000) = 352
Mr = 165.19Dx = 1.270 Mg m3
Monoclinic, P21/cMelting point: 350 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.7890 (16) ÅCell parameters from 25 reflections
b = 7.1570 (14) Åθ = 10–13°
c = 15.613 (3) ŵ = 0.09 mm1
β = 96.86 (3)°T = 294 K
V = 864.1 (3) Å3Block, colorless
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1187 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 26.0°, θmin = 2.6°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.965, Tmax = 0.973l = 019
1821 measured reflections3 standard reflections every 120 min
1695 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.05P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
1695 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C9H11NO2V = 864.1 (3) Å3
Mr = 165.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7890 (16) ŵ = 0.09 mm1
b = 7.1570 (14) ÅT = 294 K
c = 15.613 (3) Å0.40 × 0.30 × 0.30 mm
β = 96.86 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1187 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.054
Tmin = 0.965, Tmax = 0.9733 standard reflections every 120 min
1821 measured reflections intensity decay: none
1695 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
1695 reflectionsΔρmin = 0.36 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.7518 (4)0.1297 (4)0.08788 (17)0.0451 (7)
O10.8117 (3)0.0536 (3)0.08895 (15)0.0554 (7)
H1A0.88880.06240.05770.083*
O20.9365 (3)0.2046 (3)0.00399 (16)0.0573 (7)
C10.8476 (4)0.1834 (6)0.2703 (2)0.0593 (10)
H1B0.85270.20030.33160.089*
H1C0.90650.28480.24610.089*
H1D0.90220.06750.25850.089*
C20.6626 (4)0.1799 (4)0.23108 (19)0.0406 (7)
C30.5278 (5)0.2025 (5)0.2806 (2)0.0508 (9)
H3A0.55330.22000.33980.061*
C40.3579 (5)0.1999 (5)0.2453 (2)0.0536 (9)
H4A0.27060.21500.28050.064*
C50.3164 (4)0.1750 (5)0.1577 (2)0.0572 (9)
H5A0.20130.17210.13370.069*
C60.4465 (4)0.1545 (5)0.1062 (2)0.0454 (8)
H6A0.41940.13920.04700.054*
C70.6189 (4)0.1567 (4)0.14250 (18)0.0370 (7)
C80.8214 (4)0.2543 (5)0.03929 (18)0.0411 (7)
C90.7578 (5)0.4524 (5)0.0400 (3)0.0586 (10)
H9A0.81860.52700.00230.088*
H9B0.77790.50130.09750.088*
H9C0.63620.45550.02050.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0584 (17)0.0377 (14)0.0420 (14)0.0072 (12)0.0179 (12)0.0028 (12)
O10.0735 (16)0.0420 (13)0.0570 (15)0.0174 (11)0.0338 (12)0.0085 (11)
O20.0654 (15)0.0530 (15)0.0599 (15)0.0118 (12)0.0343 (13)0.0102 (12)
C10.054 (2)0.066 (2)0.057 (2)0.0089 (18)0.0002 (16)0.0039 (18)
C20.0504 (18)0.0360 (16)0.0352 (16)0.0026 (14)0.0045 (13)0.0034 (12)
C30.073 (2)0.0481 (19)0.0339 (16)0.0030 (17)0.0155 (15)0.0029 (14)
C40.057 (2)0.050 (2)0.059 (2)0.0045 (16)0.0285 (17)0.0015 (17)
C50.0411 (18)0.064 (2)0.066 (2)0.0057 (17)0.0044 (16)0.0010 (19)
C60.0486 (18)0.0471 (19)0.0401 (17)0.0052 (15)0.0043 (14)0.0001 (14)
C70.0423 (16)0.0363 (16)0.0349 (15)0.0036 (13)0.0150 (12)0.0012 (12)
C80.0440 (16)0.0482 (18)0.0318 (15)0.0009 (14)0.0076 (12)0.0017 (13)
C90.069 (2)0.044 (2)0.066 (2)0.0046 (17)0.0243 (19)0.0052 (17)
Geometric parameters (Å, º) top
N—C81.328 (4)C3—H3A0.9300
N—O11.392 (3)C4—C51.378 (5)
N—C71.431 (4)C4—H4A0.9300
O1—H1A0.8200C5—C61.375 (5)
C1—C21.497 (5)C5—H5A0.9300
C1—H1B0.9600C6—C71.394 (4)
C1—H1C0.9600C6—H6A0.9300
C1—H1D0.9600C8—C91.502 (5)
O2—C81.238 (3)C9—H9A0.9600
C2—C31.386 (4)C9—H9B0.9600
C2—C71.394 (4)C9—H9C0.9600
C3—C41.371 (5)
C8—N—O1118.8 (2)C6—C5—C4119.5 (3)
C8—N—C7128.6 (3)C6—C5—H5A120.3
O1—N—C7112.7 (2)C4—C5—H5A120.3
N—O1—H1A109.5C5—C6—C7120.2 (3)
C2—C1—H1B109.5C5—C6—H6A119.9
C2—C1—H1C109.5C7—C6—H6A119.9
H1B—C1—H1C109.5C6—C7—C2120.9 (3)
C2—C1—H1D109.5C6—C7—N119.1 (3)
H1B—C1—H1D109.5C2—C7—N119.9 (3)
H1C—C1—H1D109.5O2—C8—N119.4 (3)
C3—C2—C7117.1 (3)O2—C8—C9122.4 (3)
C3—C2—C1121.7 (3)N—C8—C9118.2 (3)
C7—C2—C1121.1 (3)C8—C9—H9A109.5
C4—C3—C2122.2 (3)C8—C9—H9B109.5
C4—C3—H3A118.9H9A—C9—H9B109.5
C2—C3—H3A118.9C8—C9—H9C109.5
C3—C4—C5120.1 (3)H9A—C9—H9C109.5
C3—C4—H4A119.9H9B—C9—H9C109.5
C5—C4—H4A119.9
C7—C2—C3—C40.9 (5)C1—C2—C7—N2.0 (4)
C1—C2—C3—C4179.9 (3)C8—N—C7—C682.5 (4)
C2—C3—C4—C50.3 (5)O1—N—C7—C698.0 (3)
C3—C4—C5—C60.6 (6)C8—N—C7—C299.2 (4)
C4—C5—C6—C70.8 (5)O1—N—C7—C280.4 (3)
C5—C6—C7—C20.1 (5)O1—N—C8—O20.4 (5)
C5—C6—C7—N178.2 (3)C7—N—C8—O2179.9 (3)
C3—C2—C7—C60.7 (4)O1—N—C8—C9178.9 (3)
C1—C2—C7—C6179.7 (3)C7—N—C8—C90.6 (5)
C3—C2—C7—N179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.192.608 (3)112
O1—H1A···O2i0.821.972.719 (3)152
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC9H11NO2
Mr165.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.7890 (16), 7.1570 (14), 15.613 (3)
β (°) 96.86 (3)
V3)864.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.965, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
1821, 1695, 1187
Rint0.054
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.182, 1.05
No. of reflections1695
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.192.608 (3)112.00
O1—H1A···O2i0.821.972.719 (3)152.00
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFu, S. Y., Zhan, H. Y. & Yu, H. S. (2000). J. S. China Univ. Technol. (Nat. Sci. Ed.), 28, 59–63.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds