metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(di-2-pyridyl sulfide-κ2N,N′)zinc(II)

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
*Correspondence e-mail: mwriedt@ac.uni-kiel.de

(Received 10 December 2007; accepted 2 January 2008; online 9 January 2008)

The molecule of the title compound, [ZnBr2(C10H8N2S)], contains a six-membered chelate ring in a boat conformation in which the Zn atom is coordinated by two Br atoms and by the two pyridyl N atoms of a single di-2-pyridyl sulfide (dps) ligand within a slightly distorted tetra­hedron. The dihedral angle between the pyridine rings is 52.7 (1)°. As is usual for this type of complex, the sulfide group does not participate in the zinc coordination.

Related literature

For related literature, see: Anderson & Steel (1998[Anderson, R. J. & Steel, P. J. (1998). Acta Cryst. C54, 223-225.]); Bhosekar et al. (2007[Bhosekar, G., Jess, I. & Näther, C. (2007). Inorg. Chem. 43, 6508-6515.]); Kondo et al. (1995[Kondo, M., Kawata, S., Kitagawa, S., Kiso, H. & Munakata, M. (1995). Acta Cryst. C51, 567-569.]); Nicolò et al. (1996[Nicolò, F., Bruno, G. & Tresoldi, G. (1996). Acta Cryst. C52, 2188-2191.]); Teles et al. (1999[Teles, W. M., Fernandes, N. G., Abras, A. & Filgueiras, C. A. L. (1999). Transition Met. Chem. 24, 321-325.]); Tresoldi et al. (1991[Tresoldi, G., Piraino, P., Rotondo, E. & Faraone, F. (1991). J. Chem. Soc. Dalton Trans. pp. 425-430.], 1992[Tresoldi, G., Rotondo, E., Piraino, P., Lanfranchi, M. & Tiripichio, A. (1992). Inorg. Chim. Acta, 194, 233-241.]); Näther et al. (2003[Näther, C., Wriedt, M. & Jess, I. (2003). Inorg Chem. 42, 2391-2397.]); Näther & Jess (2006[Näther, C. & Jess, I. (2006). Inorg Chem. 45, 7446-7454.])

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C10H8N2S)]

  • Mr = 413.43

  • Monoclinic, P 21 /c

  • a = 11.0385 (8) Å

  • b = 8.9627 (5) Å

  • c = 13.157 (1) Å

  • β = 91.663 (9)°

  • V = 1301.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.16 mm−1

  • T = 170 (2) K

  • 0.14 × 0.10 × 0.07 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe, 1998[Stoe (1998). X-SHAPE (Version 1.03) and IPDS Program Package (Version 2.89). Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.285, Tmax = 0.394

  • 14781 measured reflections

  • 3105 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.03

  • 3105 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N11 2.055 (3)
Zn1—N1 2.058 (3)
Zn1—Br2 2.3504 (6)
Zn1—Br1 2.3527 (5)
N11—Zn1—N1 94.66 (11)
N11—Zn1—Br2 115.35 (8)
N1—Zn1—Br2 109.76 (8)
N11—Zn1—Br1 107.43 (8)
N1—Zn1—Br1 108.56 (8)
Br2—Zn1—Br1 118.38 (2)

Data collection: IPDS Program Package (Stoe, 1998[Stoe (1998). X-SHAPE (Version 1.03) and IPDS Program Package (Version 2.89). Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS Program Package; data reduction: IPDS Program Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: CIFTAB in SHELXTL.

Supporting information


Comment top

In our ongoing investigation on the synthesis, structures and properties of new coordination polymers based on zinc(II) halides and N-donor ligands (Bhosekar et al. 2007), we have started systematic investigation of their thermal behavior because we have demonstrated that new ligand-deficient coordination polymers can be conveniently prepared by thermal decomposition of suitable ligand-rich precursur compounds (Näther et al. 2003; Näther & Je\&s, 2006). In further investigations we have reacted zinc(II) bromide with 2,2'-bipyridyldisulfide (dpds). In this reaction a cleavage of the S—S bond takes place leading to the formation of di-2-pyridyl sulfide (dps) which in a concomitant reaction with zinc(II) bromide forms the title chelate-complex.

In general, dps is a versatile ambidentate ligand that, due to its conformational flexibility, can act in N,N'-bidentate (Tresoldi et al., 1992; Kondo et al., 1995 and Nicolò et al., 1996) or bridging (Tresoldi et al., 1991 and Teles et al., 1999) coordination modes toward many metals, resulting in complexes with different stereochemistry. When dps is connected to a metal atom as a chelate ligand, a six-membered ring in boat conformation is formed, differently from its rigid analogues 2,2'-bipyridine that generates a pentacyclic chelate in a planar arragement. In addition, in some cases dps can act as tridentate ligand in a N,N,S-coordination mode involving metal-sulfur interactions (Anderson & Steel, 1998).

In the molecular structure the coordination geometry about the Zn atom is almost tetrahedral with bonds being formed to two Br atoms and the two pyridyl N atoms of a single dps ligand (Fig. 1). These interactions result in the formation of a six-membered chelate ring in a boat conformation. The X—Zn—X angles (X = Br, N) range from 94.7 (1) to 118.38 (2)°, the largest being Br—Zn—Br. The Zn—Br and Zn—N distances are in the range of 2.3504 (6)–2.3527 (5) and 2.055 (3)–2.058 (3) Å. The structural parameters in the bps molecule are quite regular. In particular the C—S bonds of 1.776 (4) Å (S1—C1) and 1.778 (4) Å (S1—C11) are in good agreement with those expected for C(sp2)—S bonds (1.77 Å, Tresoldi et al. 1992).

Related literature top

For related literature, see: Anderson & Steel (1998); Bhosekar et al. (2007); Kondo et al. (1995); Nicolò et al. (1996); Teles et al. (1999); Tresoldi et al. (1991, 1992); Näther et al. (2003); Näther & Je\&s (2006)

Experimental top

ZnBr2 and 2,2'-bipyridyldisulfide was obtained from Alfa Aesar, methanol was obtained from Fluka. 0.125 mmol (28.1 mg) zinc(II) bromide, 0.0312 mmol (6.87 mg) 2,2'-bipyridyldisulfide and 3 ml of methanol were transfered into a test-tube, which was closed and heated to 110 °C for three days. On cooling colourless block-shaped single crystals of the title compound were obtained.

Refinement top

All H atoms were located from the difference Fourier map but were positioned with idealized geometry and were refined isotropically with Ueq(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.97 Å.

Computing details top

Data collection: IPDS Program Package (Stoe, 1998); cell refinement: IPDS Program Package (Stoe, 1998); data reduction: IPDS Program Package (Stoe, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. : Crystal structure of compound I showing the labelling scheme, and displacement ellipsoids drawn at the 50% probability level.
Dibromido(di-2-pyridyl sulfide-κ2N,N')zinc(II) top
Crystal data top
[ZnBr2(C10H8N2S)]F(000) = 792
Mr = 413.43Dx = 2.111 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 11.0385 (8) Åθ = 13.8–24.9°
b = 8.9627 (5) ŵ = 8.16 mm1
c = 13.157 (1) ÅT = 170 K
β = 91.663 (9)°Block, colourless
V = 1301.2 (2) Å30.14 × 0.10 × 0.07 mm
Z = 4
Data collection top
Stoe IPDS-1
diffractometer
3105 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Phi scansθmax = 28.0°, θmin = 2.8°
Absorption correction: numerical
(X-SHAPE; Stoe, 1998)
h = 1414
Tmin = 0.285, Tmax = 0.394k = 1111
14781 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.9116P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3105 reflectionsΔρmax = 1.15 e Å3
146 parametersΔρmin = 1.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0076 (6)
Crystal data top
[ZnBr2(C10H8N2S)]V = 1301.2 (2) Å3
Mr = 413.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0385 (8) ŵ = 8.16 mm1
b = 8.9627 (5) ÅT = 170 K
c = 13.157 (1) Å0.14 × 0.10 × 0.07 mm
β = 91.663 (9)°
Data collection top
Stoe IPDS-1
diffractometer
3105 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe, 1998)
2534 reflections with I > 2σ(I)
Tmin = 0.285, Tmax = 0.394Rint = 0.041
14781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 1.15 e Å3
3105 reflectionsΔρmin = 1.16 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.74601 (4)0.84740 (4)0.50911 (3)0.01791 (12)
Br10.72001 (4)1.08853 (4)0.57571 (3)0.03251 (13)
Br20.76278 (4)0.82087 (5)0.33235 (3)0.03579 (13)
N10.8929 (3)0.7499 (3)0.5825 (2)0.0174 (5)
C10.8968 (3)0.6003 (4)0.5939 (2)0.0187 (6)
C20.9955 (4)0.5287 (4)0.6405 (3)0.0258 (7)
H20.99730.42310.64610.031*
C31.0912 (4)0.6142 (5)0.6789 (3)0.0308 (8)
H31.15970.56770.71060.037*
C41.0854 (4)0.7682 (5)0.6702 (3)0.0323 (9)
H41.14910.82890.69730.039*
C50.9853 (3)0.8322 (4)0.6215 (3)0.0252 (7)
H50.98180.93770.61530.030*
S10.77889 (9)0.48727 (9)0.54086 (8)0.0262 (2)
N110.6206 (3)0.7109 (3)0.5746 (2)0.0173 (5)
C110.6435 (3)0.5653 (3)0.5880 (2)0.0175 (6)
C120.5613 (3)0.4683 (4)0.6314 (3)0.0247 (7)
H120.57900.36500.63840.030*
C130.4528 (4)0.5268 (4)0.6640 (3)0.0291 (8)
H130.39450.46350.69350.035*
C140.4303 (4)0.6768 (5)0.6535 (3)0.0311 (8)
H140.35690.71850.67670.037*
C150.5160 (3)0.7667 (4)0.6085 (3)0.0240 (7)
H150.50040.87050.60150.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0211 (2)0.01532 (19)0.01722 (19)0.00099 (14)0.00055 (14)0.00326 (13)
Br10.0418 (3)0.01468 (17)0.0407 (2)0.00437 (14)0.00482 (17)0.00135 (13)
Br20.0492 (3)0.0418 (2)0.01642 (18)0.01221 (18)0.00179 (15)0.00378 (14)
N10.0158 (14)0.0174 (12)0.0192 (13)0.0002 (10)0.0023 (10)0.0007 (10)
C10.0196 (17)0.0198 (15)0.0171 (15)0.0046 (12)0.0062 (12)0.0003 (11)
C20.026 (2)0.0284 (17)0.0238 (17)0.0106 (14)0.0068 (14)0.0047 (13)
C30.0200 (19)0.049 (2)0.0232 (17)0.0120 (16)0.0013 (14)0.0013 (15)
C40.0188 (19)0.047 (2)0.0313 (19)0.0016 (16)0.0014 (15)0.0104 (17)
C50.0214 (19)0.0282 (17)0.0261 (18)0.0005 (14)0.0007 (14)0.0044 (14)
S10.0246 (5)0.0165 (4)0.0380 (5)0.0023 (3)0.0090 (4)0.0081 (3)
N110.0172 (14)0.0191 (12)0.0157 (12)0.0031 (10)0.0003 (10)0.0008 (10)
C110.0208 (18)0.0151 (13)0.0164 (14)0.0039 (12)0.0003 (12)0.0008 (11)
C120.0234 (19)0.0238 (16)0.0270 (18)0.0072 (14)0.0021 (14)0.0013 (13)
C130.027 (2)0.0340 (19)0.0269 (18)0.0118 (16)0.0030 (15)0.0007 (14)
C140.0142 (18)0.041 (2)0.038 (2)0.0009 (15)0.0047 (15)0.0051 (16)
C150.0164 (18)0.0251 (16)0.0305 (18)0.0017 (13)0.0014 (13)0.0014 (13)
Geometric parameters (Å, º) top
Zn1—N112.055 (3)C4—H40.9500
Zn1—N12.058 (3)C5—H50.9500
Zn1—Br22.3504 (6)S1—C111.778 (4)
Zn1—Br12.3527 (5)N11—C111.340 (4)
N1—C51.348 (4)N11—C151.347 (5)
N1—C11.350 (4)C11—C121.391 (5)
C1—C21.391 (5)C12—C131.387 (6)
C1—S11.776 (4)C12—H120.9500
C2—C31.388 (6)C13—C141.373 (6)
C2—H20.9500C13—H130.9500
C3—C41.386 (6)C14—C151.388 (5)
C3—H30.9500C14—H140.9500
C4—C51.385 (5)C15—H150.9500
N11—Zn1—N194.66 (11)N1—C5—H5118.9
N11—Zn1—Br2115.35 (8)C4—C5—H5118.9
N1—Zn1—Br2109.76 (8)C1—S1—C11104.63 (15)
N11—Zn1—Br1107.43 (8)C11—N11—C15118.6 (3)
N1—Zn1—Br1108.56 (8)C11—N11—Zn1120.5 (2)
Br2—Zn1—Br1118.38 (2)C15—N11—Zn1120.8 (2)
C5—N1—C1118.6 (3)N11—C11—C12122.7 (3)
C5—N1—Zn1121.6 (2)N11—C11—S1119.7 (2)
C1—N1—Zn1119.8 (2)C12—C11—S1117.5 (3)
N1—C1—C2122.0 (3)C13—C12—C11118.0 (3)
N1—C1—S1120.1 (3)C13—C12—H12121.0
C2—C1—S1117.8 (3)C11—C12—H12121.0
C3—C2—C1118.9 (3)C14—C13—C12119.7 (3)
C3—C2—H2120.5C14—C13—H13120.2
C1—C2—H2120.5C12—C13—H13120.2
C4—C3—C2119.2 (3)C13—C14—C15119.1 (4)
C4—C3—H3120.4C13—C14—H14120.4
C2—C3—H3120.4C15—C14—H14120.4
C5—C4—C3119.0 (4)N11—C15—C14121.8 (3)
C5—C4—H4120.5N11—C15—H15119.1
C3—C4—H4120.5C14—C15—H15119.1
N1—C5—C4122.3 (3)

Experimental details

Crystal data
Chemical formula[ZnBr2(C10H8N2S)]
Mr413.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)170
a, b, c (Å)11.0385 (8), 8.9627 (5), 13.157 (1)
β (°) 91.663 (9)
V3)1301.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)8.16
Crystal size (mm)0.14 × 0.10 × 0.07
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe, 1998)
Tmin, Tmax0.285, 0.394
No. of measured, independent and
observed [I > 2σ(I)] reflections
14781, 3105, 2534
Rint0.041
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.03
No. of reflections3105
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 1.16

Computer programs: IPDS Program Package (Stoe, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Bruker, 1998), CIFTAB in SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
Zn1—N112.055 (3)Zn1—Br22.3504 (6)
Zn1—N12.058 (3)Zn1—Br12.3527 (5)
N11—Zn1—N194.66 (11)N11—Zn1—Br1107.43 (8)
N11—Zn1—Br2115.35 (8)N1—Zn1—Br1108.56 (8)
N1—Zn1—Br2109.76 (8)Br2—Zn1—Br1118.38 (2)
 

Acknowledgements

This work was supported by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Projekt No. NA 720/1-1). We are very grateful to Professor Dr Wolfgang Bensch for the facility to use his experimental equipment.

References

First citationAnderson, R. J. & Steel, P. J. (1998). Acta Cryst. C54, 223–225.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBhosekar, G., Jess, I. & Näther, C. (2007). Inorg. Chem. 43, 6508–6515.  Google Scholar
First citationBruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKondo, M., Kawata, S., Kitagawa, S., Kiso, H. & Munakata, M. (1995). Acta Cryst. C51, 567–569.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2006). Inorg Chem. 45, 7446–7454.  Web of Science PubMed Google Scholar
First citationNäther, C., Wriedt, M. & Jess, I. (2003). Inorg Chem. 42, 2391–2397.  Web of Science PubMed Google Scholar
First citationNicolò, F., Bruno, G. & Tresoldi, G. (1996). Acta Cryst. C52, 2188–2191.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (1998). X-SHAPE (Version 1.03) and IPDS Program Package (Version 2.89). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTeles, W. M., Fernandes, N. G., Abras, A. & Filgueiras, C. A. L. (1999). Transition Met. Chem. 24, 321–325.  Web of Science CSD CrossRef CAS Google Scholar
First citationTresoldi, G., Piraino, P., Rotondo, E. & Faraone, F. (1991). J. Chem. Soc. Dalton Trans. pp. 425–430.  CrossRef Web of Science Google Scholar
First citationTresoldi, G., Rotondo, E., Piraino, P., Lanfranchi, M. & Tiripichio, A. (1992). Inorg. Chim. Acta, 194, 233–241.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds